

MEMORANDUM

To: Otniel Rodriguez, E.I.

City of Miami Beach

From: Adrian K. Dabkowski, P.E., PTOE AK

AND

Date: May 3, 2023

Subject: Lincoln Road 100 Block Streetscape and Sagamore Hotel

Response to Traffic Impact Analysis Comments

We have received comments provided by the City of Miami Beach's Transportation Department. We offer the following responses to the comments:

 Page 22, Valet Operations Analysis – Please state the source or reasoning for the assumption that 10% of the Sagamore Hotel redevelopment generated trips are resident guests.

Response: To remain consistent with the approved methodology, the analysis included 10 percent (10%) of trips associated with the residential redevelopment as resident guests. Please refer to the approved methodology in Appendix B of the response Attachment A-A.

 Page 23, Valet Operations Analysis – Valet operations should be analyzing the midday peak and PM peak hours instead of the AM peak hour. Based on the SYNCHRO analysis, the control delay for these times are more than 1.5 minutes than the assumed 1.0-minute control delay.

Response: The Sagamore residential guest porte-cochere was analyzed for the highest trip generation peak hour, the P.M. peak hour, consistent with the approved methodology. Additionally, the Ritz Carlton Valet was analyzed for the peak hotel valet times, Thursday 12 P.M. to 2 P.M. and Saturday 4:30 to 6:30 P.M. consistent with the approved methodology. Please refer to the approved methodology in Appendix B of Attachment A-A.

Note that delay experienced by the WBR or SBL movements at the signalized intersection of Lincoln Road and Collis Avenue/A1A are expected to be at most 64.9 seconds under future total conditions with signal optimization. However, in order to facilitate the review process and provide a conservative analysis, the valet analysis was updated for the 1.5-minute control delay. Based on the update processing time, the valet analysis results do not change and one (1) valet attendant is required. The updated valet analysis is included as part of the updated traffic study in Attachment A-A.

3. Page 23, Valet Operations Analysis – Please justify the rationale or source for using the increase factor of 1.136 for the maximum queue observed and for the Valet attendants required. The queuing is typically non-linear and increases with much higher rate than the increase in the hotel rooms as part of the Ritz Carlton Porte-Cochere queuing analysis (Appendix J).

Response: Consistent with the approved methodology, maximum queues were factored proportionally to account for the Sagamore Hotel valet traffic that will use the Ritz-Carlton

porte-cochere. Furthermore, if additional valet attendants are required, they will be provided to ensure that that the valet queue does not extend into public right-of-way. This is a typical condition of approval by the City of Miami Beach. Please refer to the approved methodology in Appendix B of the response Attachment A-A.

4. Page 26, Pedestrian Crossing Evaluation – Please provide the source or reasoning for the assumption that 50% of the non-Ritz Carlton pedestrian traffic will be reassigned to the south sidewalk. Did this reassignment consider the growth in proportion of pedestrians coming from north of Lincoln Road, south of Lincoln Road, and west of A1A/Collins Ave? Is any additional signage being provided along the south sidewalk noting that pedestrians should utilize this side of the road to access the beach?

Response: Pedestrian volumes are expected to be reassigned to the south side of Lincoln Road as a 15-foot-wide art walk is proposed as part of this project, which is designed to align with the Beach Walk entry that will direct pedestrians to access the beach from the newly renovated street end. The volumes were grown for future conditions, consistent with the approved methodology.

Note that, even if pedestrians are not diverted they will not conflict with loading truck maneuvers as all loading maneuvers will be internalized. Currently trucks back-in and conflict with pedestrians crossing.

Additionally, "vehicles crossing sidewalk" signs on either side of the Ritz-Carlton loading/garage driveway could be provided along the sidewalk, if requested by the City of Miami Beach.

5. Page 28, Transportation Demand Management Strategies – Please confirm that 129 bicycle parking spaces (bike racks and lockers) are being proposed?

Response: Confirmed.

6. Page 29, Parking Evaluation – With the relocation of the freight loading space, 1 emergency/city vehicle space is being removed but is not being relocated. Where do you anticipate this emergency/city vehicle to park after the 100 Block streetscape project is incorporated?

Response: Please note that the one (1) emergency/city vehicle space will be removed. Coordination efforts with the Miami Beach Parking Department are ongoing.

7. Page 29, Parking Evaluation – Due to substantial number of pedestrians crossing, recommend providing additional signage/DMS for the loading vehicles to yield to the pedestrians due to enlarged existing driveway being proposed?

Response: Implementing signage directing loading vehicles to yield to pedestrians will likely create safety concerns as typical traffic operations are that pedestrians yield to vehicles entering a driveway and vehicles at a stop-controlled driveway approach yield to pedestrians in the crosswalk. Further note, that proposed improvements will allow trucks direct, head-in access to the loading area to perform loading maneuvers internally to the site and eliminate the current back-in maneuvers which conflict with pedestrians.

Additionally, the proposed entrance to the beach walk is designed in a manner to direct pedestrians to the art walk on the south side of Lincoln Road and therefore the number of pedestrians crossing the loading area driveway is expected to be reduced.

Finally, "vehicles crossing sidewalk" signs on either side of the driveway along the sidewalk alerting pedestrians could be provided, if requested by the City of Miami Beach.

8. Page 29, Parking Evaluation – Based on our previous Comment #6 from the Traffic Impact Analysis Methodology, "Please confirm no loss of on-street parking along both sides of Lincoln Road due to the proposed lanes in the westbound direction of Lincoln Road."

Four (4) on-street parking spaces including one emergency/city vehicle space, two taxi/cab spaces, and four motorcycle spaces are being lost due to the project based on the Parking Evaluation section.

Response: As documented in the Parking Evaluation section of the submitted Traffic Impact Analysis, parking spaces along the north and south sides of Lincoln Road will be removed as part of the 100 Block Streetscape project. Please note that coordination efforts with the Miami Beach Parking Department are ongoing.

 Appendix L, Parking Evaluation – Based on Appendix L, the existing parking spaces are reduced from 247 to 236, please confirm the loss of 11 total parking spaces and how we are addressing them.

Response: As noted in Appendix L, 189 parking spaces are required by code and 236 spaces are provided. Therefore, the project exceeds the parking requirements.

10. General, Please provide SYNCHRO files for review.

Response: Synchro files are provided as an attachment in the email. Note that a SimTraffic simulation was not part of the approved methodology nor a requirement of the City of Miami Beach Code. Therefore, Synchro files were not setup or calibrated for SimTraffic simulation.

11. General, Please include SYNCHRO analysis at the Ritz-Carlton driveway/Lincoln Road for all the Build analysis.

Response: Please note that this intersection was not included as part of the approved methodology. Furthermore, as the east and westbound volumes on Lincoln Road east of Collins Avenue are expected to be in the range of 180 to 250 peak hour trips, significantly less than 800 vehicles per direction, further analysis is not typical.

12. Page 2, Project Location – Please include study area intersection and committed developments, if any, on the Location Map.

Response: Comment noted. Figure 1 has been updated to include the study area intersection. Please refer to the updated traffic impact analysis contained in response Attachment A-A.

13. Page 3, Existing Traffic – Did the 72-hour counts also determine the peak periods for pedestrians? How were the pedestrian peak hours determined so that counts could be taken?

Response: The 72-hour counts were continuous roadway counts and did not include pedestrians. Traffic analyses are typically prepared for the peak vehicular volumes and

pedestrian volumes during those peak periods are analyzed. This is necessary when intersection capacities are analyzed for improved roadway configurations, as this study performs. Note that this is consistent with the approved methodology.

14. Page 7, Future Traffic Volumes – Did the Future Background Growth take committed developments, if any, into consideration within the study area.

Response: No committed developments were identified as part of the City's review and approval of the methodology. Note that the 100 Block Streetscape project was included as a committed development as part of the Lincoln Road Pedestrian Mall Extension.

15. Page 7, Future Traffic Volumes – Please mention the version of SERPM used.

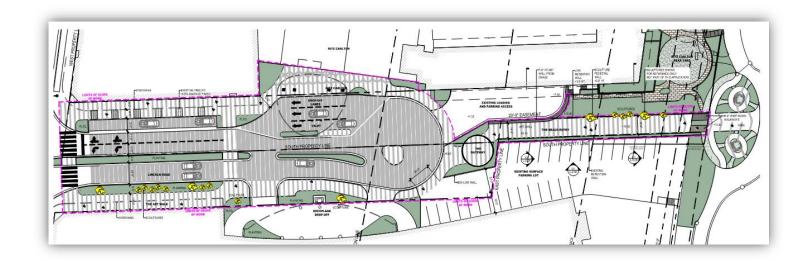
Response: As provided in background growth rate section of the submitted traffic impact analysis, SERPM model 8.512 is used.

16. Page 14, Figure 5 – Entering trips do not add up to 18. Based on Figure 8, the SB Left Turn should be 10.

Response: Note that entering trips include trips accessing the Ritz-Carlton porte-cochere and parking garage and the Sagamore porte-cochere. As indicated in Figure 5, 97 percent (97%) of trips entered Lincoln Road directly, while 3 percent (3%) of entering trips continued north on Collins Avenue/A1A to the Sagamore porte-cochere. Note that non-rideshare vehicles utilizing the Sagamore porte-cochere will be valeted as presented in Figure 6. Therefore, the southbound left turn volumes at the intersection of Collins Avenue/SR A1A and Lincoln Road in Figure 8 are a sum of the project trip assignment and valet trip assignment volumes. The sum of the project trip assignment and valet trip assignment leads to a total of SBL 10 trips which is accurately displayed in the future total condition.

17. Page 20, Table 3 – Based on the Synchro reports in Appendix I, the Thursday P.M. Peak Hour WB approach LOS is "D".

Response: The Thursday P.M. Peak Hour WB approach has been revised in the updated traffic study in Attachment A-A to reflect the Synchro results provided in Appendix I of the submitted traffic impact analysis.


We trust that this response adequately addresses the comment provided. Please contact us should you have any questions.

K:\FTL_TPTO\143584000-Lincoln Road East\Correspondence\2023 05 - Response to City 100 block traffic study comments\Response to City 100 Block Comments 2023 05.docx

Attachment A-A
Updated Traffic Study

Traffic Impact Analysis for Submittal to the City of Miami Beach

100 BLOCK STREETSCAPE AND SAGAMORE HOTEL REDEVELOPMENT MIAMI BEACH, FLORIDA

© 2023 Kimley-Horn and Associates, Inc. **Updated May 2023** March 2023 143584000

Traffic Impact Analysis for Submittal to the City of Miami Beach

100 BLOCK STREETSCAPE AND SAGAMORE HOTEL REDEVELOPMENT MIAMI BEACH, FLORIDA

Prepared for:

Sobe Sky Development, LLC

Prepared by:

Kimley-Horn and Associates, Inc.

©2023 Kimley-Horn and Associates, Inc. **Update May 2023** March 2023 143584000

This item has been digitally signed and sealed by Adrian K. Dabkowski, P.E., PTOE, on 5/2/2023.

Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Adrian K. Dabkowski, P.E., PTOE Florida Registration Number 78828 Kimley-Horn and Associates, Inc. 8201 Peters Road, Suite 2200 Plantation, FL 33324

EXECUTIVE SUMMARY

Sobe Sky Development, LLC is proposing a streetscape project for Lincoln Road and to redevelop the Sagamore Hotel. The streetscape project is bounded by Collins Avenue/SR A1A to the west and the public beach access/Ritz Carlton Hotel loading dock and parking garage access to the east, referred to as the 100 Block, in Miami Beach, Florida. Lincoln Road, east of Collins Avenue/SR A1A consists of one (1) 20-foot lane in each direction (wide enough to accommodate two [2] lanes but not designated as such), on-street parking on the north and south sides of the road, and a curbed 9.5-foot median. Lincoln Road terminates to the east at the public beach access in a cul-de-sac street-end with a curbed median island. The proposed project examines the appropriate laneage for the roadway configuration and provides for a wider pedestrian sidewalk along the south side of Lincoln Road. The streetscape project will also include reconfiguring the Ritz Carlton porte-cochere.

Additionally, the existing 93-room Sagamore Hotel (1671 Collins Avenue) is proposed to be redeveloped. The redevelopment includes a 51-room hotel and 30 mid-rise multifamily residential units. Trip generation for the proposed redevelopment was calculated using rates contained in the Institute of Transportation Engineers' (ITE's) *Trip Generation Manual*, 11th Edition. The project is expected to result in a reduction of seven (7) net new weekday A.M. peak hour trips and a reduction of ten (10) net new weekday P.M. peak hour trips.

The results of the intersection capacity analysis indicate that the study intersection is expected to operate at adopted level of service (LOS) or better during the Thursday mid-day peak hour, Thursday P.M. peak hour, and Friday P.M. peak hour under all analysis scenarios with the exception of the eastbound approach which operates at LOS F during the Friday P.M. peak hour under all analysis scenarios and the westbound approach which operates at LOS F during the Friday P.M. peak hour under future total conditions. The streetscape project proposes to improve the westbound approach at the intersection of Collins Avenue/A1A and Lincoln Road from one (1) shared left-turn/through/right-turn lane to one (1) exclusive left-turn lane and one (1) shared through/right-turn lane. With the proposed improvements and signal timing optimization, all approaches are expected to operate at adopted LOS or better during the Thursday mid-day peak hour, Thursday P.M. peak hour, and Friday P.M. peak hour under future total conditions, with the exception of the eastbound approach which operates at LOS F during the Friday P.M. peak hour under all analysis scenarios.

The results of the weekday A.M. and P.M. peak hours valet operations analysis demonstrate that one (1) valet attendant would be required to accommodate vehicle drop-off/pick-up demand at the

Sagamore Hotel porte-cochere. Furthermore, the seven (7) vehicles of storage capacity for the reconfigured Ritz Carlton porte-cochere is expected to be sufficient and provide enough storage capacity for the future demand of six (6) vehicles of stacking.

The maneuverability analysis determined that the loading vehicles and the City of Miami Beach emergency/fire truck are expected to be able to ingress, egress, and travel within Lincoln Road and the Ritz Carlton loading areas without conflicting with oncoming traffic. Additionally, loading vehicles will be able to maneuver into loading spaces within the loading area and will not need to reverse (back-in) into the site from the street as they do under existing conditions. As a result, loading vehicles are not expected to reverse through the pedestrian crossing area at the loading driveway, and will be able to enter the site head-on. This allows for greater visibility of pedestrians within the crosswalk and improved safety.

Transportation Demand Management (TDM) strategies are proposed to reduce the impacts of the project traffic on the surrounding roadway network City of Miami Beach provide public transit in close proximity to the project site. In addition, other measures are proposed to encourage people to use public transportation, use bicycles and walk, and find alternatives to the typical workday hours. The applicant proposes the following TDMs:

- Secure bicycle parking spaces (bike racks and lockers)
- Improved and enhanced (wide) sidewalks around the site
- Elevators that can accommodate bikes
- Lockers for bicyclists to store a change of clothes will be provided on-site
- Shower facility for bicyclists will be provided on-site

The required parking for the site, based on the City of Miami Beach Code of Ordinances, is 189 parking spaces. As part of the proposed redevelopment, 238 parking spaces will be provided with two (2) parking spaces provided on-street and 236 parking spaces provided on-site. Additionally, 129 bicycle spaces will be provided. As part of the 100 Block streetscape project, the freight loading zone, two (2) taxi/cab spots, and four (4) motorcycle pay-to-park spots along the south side of Lincoln Road are proposed to be removed. The freight loading zone is proposed to be relocated to the north side of Lincoln Road. Note that with the relocation of the freight loading, four (4) parking spaces will be removed, including one (1) emergency/city vehicle space and three (3) pay-to-park spaces.

TABLE OF CONTENTS

INTRODUCTION	1
EXISTING TRAFFIC	3
PROGRAMMED TRANSPORTATION IMPROVEMENTS	5
City of Miami Beach Transportation Master Plan	5
Miami-Dade TPO Transportation Improvement Program	6
FDOT's Work Program	6
FUTURE TRAFFIC VOLUMES	7
Background Area Growth	7
PROJECT TRAFFIC	10
Existing and Proposed Land Use	10
Project Access	10
Trip Generation	10
Multimodal Reduction	10
Net New Project Trips	10
Trip Distribution and Assignment	11
FUTURE TOTAL TRAFFIC	17
INTERSECTION OPERATIONAL ANALYSIS	19
95 TH PERCENTILE QUEUE ANALYSIS	21
VALET OPERATIONS ANALYSIS	22
Sagamore Porte-Cochere Queue Analysis	22
Ritz Carlton Porte-Cochere Queue Analysis	24
PEDESTRIAN CROSSING EVALUATION	26
MANEUVERABILITY ANALYSIS	27
TRANSPORTATION DEMAND MANAGEMENT STRATEGIES	
PARKING EVALUATION	29
CONCLUSION	30

LIST OF FIGURES

Figure 1: Site L	ocation Map	2	
Figure 2: Existi	ing Peak Hour Traffic	4	
Figure 3: Futur	re Background Peak Hour Traffic	9	
Figure 4: Peak	Hour Project Trip Distribution	13	
Figure 5: Mid-	Day/P.M. Peak Hour Project Trip Assignment	14	
Figure 6: Peak	Hour Valet Trip Distribution	15	
Figure 7: Mid-	Day/P.M. Peak Hour Valet Trip Assignment	16	
Figure 8: Futur	re Total Peak Hour Traffic	18	
	LIST OF TABLES		
Table 1: Trip G	Generation	11	
Table 2: Cardir	nal Trip Distribution	11	
Table 3: Inters	ection Capacity Analysis	20	
Table 4: 95 th P	ercentile Queuing Analysis Summary	21	
Table 5: Loadii	ng Driveway Conflicting Pedestrian	26	
	LIST OF APPENDICES		
APPENDIX A:	Preliminary Conceptual Exhibits		
APPENDIX B:	Methodology Correspondence		
APPENDIX C:	Traffic Data		
APPENDIX D:	Programmed Roadway Improvements		
APPENDIX E:	Growth Rate Calculations		
APPENDIX F:	Trip Generation Calculations		
APPENDIX G: Cardinal Distribution			
APPENDIX H:	Volume Development Worksheets		
APPENDIX I:	Intersection Capacity Analysis Worksheets		
APPENDIX J:	Valet Analysis		
APPENDIX K:	Pedestrian Crossing Calculations		
APPENDIX L:	Maneuverability Analysis		
APPENDIX M:	Parking Evaluation		

INTRODUCTION

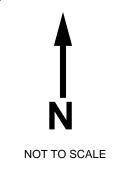
Sobe Sky Development, LLC is proposing a streetscape project for Lincoln Road and to redevelop the Sagamore Hotel. The streetscape project is bounded by Collins Avenue/SR A1A to the west and the public beach access/Ritz Carlton Hotel loading dock and parking garage access to the east, referred to as the 100 Block, in Miami Beach, Florida. Lincoln Road, east of Collins Avenue/SR A1A consists of one (1) 20-foot lane in each direction (wide enough to accommodate two [2] lanes but not designated as such), on-street parking on the north and south sides of the road, and a curbed 9.5-foot median. Lincoln Road terminates to the east at the public beach access in a cul-de-sac street-end with a curbed median island. The proposed project examines the appropriate laneage for the roadway configuration to provide for a wider pedestrian sidewalk along the south side of Lincoln Road. The streetscape project will also include reconfiguring the Ritz Carlton portecochere.

Additionally, the existing 93-room Sagamore Hotel (1671 Collins Avenue) is proposed to be redeveloped. The redevelopment includes a 51-room hotel and 30 mid-rise multifamily residential units. Currently, access to the Sagamore Hotel is provided by a porte-cochere on Collins Avenue north of Lincoln Road. The redevelopment will relocate the Sagamore Hotel access to the Ritz Carlton Hotel porte-cochere. Sagamore residents will self-park within the Ritz Carlton garage located on Lincoln Road. Sagamore resident guests will use the existing Sagamore porte-cochere on Collins Avenue to valet their vehicles or for rideshare drop-off/pick-up. The project is expected to be completed and opened by year 2025. A project location map is provided as Figure 1. A conceptual site plan is provided in Appendix A.

Kimley-Horn and Associates, Inc. has completed this traffic impact analysis for submittal to the City of Miami Beach. The purpose of the study is to assess the project's impact on the surrounding roadway network. The study's methodology is consistent with the requirements of the City of Miami Beach. Methodology correspondence detailing the traffic study requirements is included in Appendix B.

EXISTING TRAFFIC

In order to determine the peak traffic periods for analysis, 72-hour continuous counts were collected at the following two (2) locations from Thursday, June 16, 2022, through Saturday, June 18, 2022, and evaluated:


- Collins Avenue/SR A1A, north of Lincoln Road
- Lincoln Road, east of Collins Avenue/SR A1A

Based on the peak periods observed, turning movement counts (TMC's) were collected during peak conditions on Friday, January 13, 2023, from 3:30 P.M. to 5:30 P.M. and on Thursday, March 2, 2023, from 10:30 A.M. to 1:30 P.M. and from 2:30 P.M. to 6:30 P.M. to capture peak traffic volumes at the intersections of Lincoln Road and Collins Avenue/SR A1A.

Additionally, to capture peak pedestrian traffic volumes at the Ritz Carlton Porte-Cochere Exit Driveway and Ritz Carlton Loading Driveway, turning movement counts were collected during peak conditions on Thursday, July 21, 2022, from 10:30 A.M. to 1:30 P.M. and from 2:30 P.M. to 6:30 P.M. and on Friday, July 22, 2022, from 2:30 P.M. to 5:30 P.M.

All traffic volumes were collected in 15-minute intervals and the peak hour was determined for each intersection. Turning movement counts also included pedestrian and bicycle data. The appropriate Florida Department of Transportation (FDOT) peak season conversion factor (PSCF) of 1.06 was applied to the traffic data collected on July 21, 2022 to July 22, 2022, and 1.04 was applied to the traffic data collected on January 13, 2023. Note that the appropriate FDOT PSCF was 0.99 for the traffic data collected on March 2, 2023. However, to provide for a conservative analysis, a peak season conversion factor of 1.00 was applied to the traffic data where the identified PSCF was less than 1.00.

The 72-hour counts, turning movement counts, FDOT peak season category reports, and signal timing data are included in Appendix C. Figure 2 presents the existing turning movement volumes at the study intersection during the Thursday mid-day, Thursday P.M., and Friday P.M. peak hours.

Study RoadwayStudy Intersection

XX Thursday Mid-Day Peak Hour Traffic

(XX) Thursday P.M. Peak Hour Traffic

<XX> Friday P.M. Peak Hour Traffic

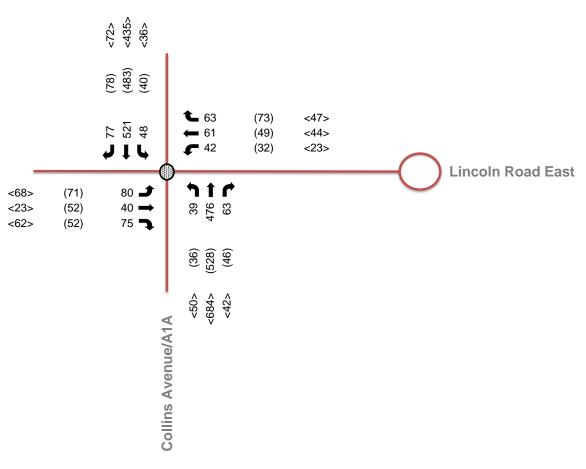


Figure 2 Existing Peak Hour Traffic Lincoln Road East Miami Beach, Florida

PROGRAMMED TRANSPORTATION IMPROVEMENTS

Local transportation plans were reviewed in order to gather information about planned and programmed transportation improvements in the study area. The purpose of the plan review is to identify improvements for consideration in the analysis. Detailed plans can be found in Appendix D. The following transportation plans were examined:

- City of Miami Beach Transportation Master Plan
- Miami-Dade Transportation Planning Organization's (TPO) Transportation Improvement
 Program (TIP)
- Florida Department of Transportation's (FDOT's) Five-Year Work Program

Relevant information from these plans is summarized below.

CITY OF MIAMI BEACH TRANSPORTATION MASTER PLAN

The most recent City of Miami Beach Transportation Master Plan was reviewed to identify planned roadway improvements in the study area. Currently, planned studies and/or projects include the following:

- 16th Street bicycle facilities improvements from Bay Road to Collins Avenue.
- 17th Street evaluation of exclusive transit and protected/buffered bicycle lanes from Washington Avenue to Collins Avenue.
- Collins Avenue/A1A evaluation of exclusive transit and protected/buffered bicycle lanes from 17th Street to 44th Street.
- Lincoln Road shared spaces from Washington Avenue to Collins Avenue/A1A (Various multimodal accommodations).
- Lincoln Lane North Bicycle Connection/Neighborhood Greenway from Alton Road to Washington Avenue.
- Collins Avenue/A1A protected/buffered bicycle lanes and enhanced crosswalks from South Pointe Drive to 17th Street.
- 15th Street Neighborhood Greenway (Bicycle boulevard markers and enhanced crosswalks) from Washington Avenue to West Avenue.

 Drexel Avenue Neighborhood Greenway (Bicycle boulevard markers and enhanced crosswalks) from Espanola Way to 17th Street.

MIAMI-DADE TPO TRANSPORTATION IMPROVEMENT PROGRAM

The Miami-Dade Transportation Improvement Program (TIP) specifies programmed improvements to be implemented within Miami-Dade County over the next five (5) years. The most recent TIP is for fiscal years 2023 to 2027. Improvements identified in the TIP are characterized as Intermodal, Highway, Transit, Aviation, Seaport, and Non-Motorized. Based on the review of the Miami-Dade TPO TIP, the TPO has developed the Strategic Miami Area Rapid Transit (SMART) Plan that provides recommendations for six (6) rapid transit corridors, including the Beach Corridor which extends from the existing Downtown Metromover Omni station along MacArthur Causeway to 5th Street near Washington Avenue via an elevated rubber-tire transit vehicle to be implemented by 2026. Bus-only lanes along Washington Avenue are proposed as part of TPO Resolution #03-2020 for the SMART Plan.

The Miami-Dade TPO is also developing a Transit Oriented Development (TOD) Master Plan for the Beach Corridor. This master plan is scheduled to be completed by 2024.

FDOT'S WORK PROGRAM

FDOT's Five Year Work Program specifies state regulated roadway improvements to be implemented over the next five (5) years (2023-2027). Based on the review of FDOT's Work Program, bicycle lane and sidewalk improvements will be implemented along 17th Street from West Avenue to the Beach Walk by the City of Miami Beach.

FUTURE TRAFFIC VOLUMES

Future background traffic conditions are defined as expected traffic conditions on the roadway network in the year 2025 without the completion of the proposed redevelopment. Future background traffic volumes used in the analysis are the sum of the existing traffic and additional traffic generated by growth in the study area. Refer to Figure 3 for the future background 2025 peak hour traffic volumes.

BACKGROUND AREA GROWTH

Traffic growth on the transportation network was determined based upon (a) historical growth trends at nearby FDOT traffic count stations and (b) traffic volume comparisons from the year 2015 and 2045 Florida Standard Urban Transportation Model Structure (FSUTMS) - Southeast Florida Regional Planning Model (SERPM). FDOT count stations referenced in this analysis include:

- FDOT count station no. 5159 located on SR A1A/Collins Avenue, north of 5th Street
- FDOT count station no. 5170 located on SR A1A/Collins Avenue, north of 21st Street
- FDOT count station no. 8414 located on Washington Avenue, north of 12th Street
- FDOT count station no. 8531 located on 17th Street, east of Meridian Avenue
- FDOT count station no. 8567 located on 16th Street, east of Meridian Avenue

The historic growth rate analysis, based on FDOT count stations, examined linear, exponential, and decaying exponential growth rates for the most recent five (5) and 10-year periods. The linear growth trend yielded an average growth rate of negative 2.24 percent (-1.59%) over the most recent five (5) year period and negative 0.55 percent (-0.55%) over the most recent ten (10) year period. The exponential growth trend yielded a growth rate of negative 2.85 percent (-2.85%) over the most recent five (5) year period and negative 0.57 percent (-0.57%) over the most recent ten (10) year period. The decaying exponential growth trend yielded a growth rate of negative 2.29 percent (-2.29%) over the most recent five (5) year period and negative 0.20 percent (-0.20%) over the most recent ten (10) year period.

Based on the forecasted volumes obtained from the 2015 and 2045 FSUTMS SERPM 8.521, an annual growth rate of 0.36 percent (0.36%) in the vicinity of the redevelopment was calculated.

To provide a conservative analysis, a minimum growth rate of 0.50 percent (0.50%) was applied annually to the existing traffic volumes to establish future (2025) background conditions. Detailed growth rate calculations are included in Appendix E.

Study Roadway

Study Intersection

XX Thursday Mid-Day Peak Hour Traffic

(XX) Thursday P.M. Peak Hour Traffic

<XX> Friday P.M. Peak Hour Traffic

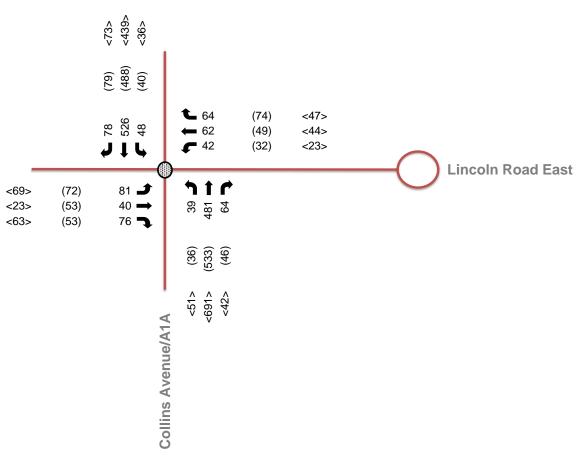


Figure 3
Future Background Peak Hour Traffic
Lincoln Road East
Miami Beach, Florida

PROJECT TRAFFIC

Project traffic used in this analysis is defined as the vehicle trips expected to be generated by the project and the distribution and assignment of that traffic over the study roadway network.

EXISTING AND PROPOSED LAND USE

The site proposed for redevelopment is currently occupied by a 93-room hotel. The proposed redevelopment consists of a 51-room hotel and 30 mid-rise multifamily residential units. The project is expected to be completed and opened by year 2025.

PROJECT ACCESS

Access to the Ritz Carlton Hotel is provided via one (1) porte-cochere at the entrance of the Ritz Carlton Hotel and one (1) ingress/egress driveway to the loading area and parking garage. Access to the Sagamore development is provided via one (1) right-in/left-in entering driveway and one (1) right-out/left-out exiting driveway along Collins Avenue/SR A1A, north of Lincoln Road.

TRIP GENERATION

Trip generation calculations for the proposed project were performed using rates contained in ITE *Trip Generation Manual*, 11th Edition. The trip generation for the proposed land uses was determined using ITE Land Use Code LUC 310 (Hotel) and LUC 221 (Multifamily Housing [Mid-Rise]). Project trips were estimated for the weekday A.M. peak hour and P.M. peak hour.

MULTIMODAL REDUCTION

A multimodal (public transit, bicycle, and pedestrian) factor based on US Census *Means of Transportation to Work* data was reviewed for the census tract in which the redevelopment is located. A multimodal factor of 29.3 percent (29.3%) was determined for the proposed redevelopment. Please note that based on input from the City and to provide a conservative analysis a multimodal factor of 20.0 percent (20.0%) was applied to the project traffic to account for the urban environment in which the project site is located. It is expected that a portion of residents, guests, and employees will choose to walk, bike, or use public transit to and from the proposed redevelopment. Detailed census information is provided in Appendix F.

NET NEW PROJECT TRIPS

The net new project trips represent the additional vehicles on the roadway network. As shown in Table 1, the project is expected to result in a reduction of 7 net new weekday A.M. peak hour

vehicular trips and a reduction of 10 net new weekday P.M. peak hour trips. Detailed calculations are contained in Appendix F.

Table 1: Trip Generation					
A.M. Peak Hour (P.M. Peak Hour)					
Future Land Use	Scale	Net New	Entering	Exiting	
(ITE Code)	Scale	External Trips	Trips	Trips	
Existing Development					
Hotel	93 rooms	34	19	15	
(310)	95 1001115	(44)	(22)	(22)	
	Proposed Redevel	opment			
Hotel	51 rooms	18	10	8	
(310)	311001113	(24)	(12)	(12)	
Multifamily Housing (Mid-Rise)	30 dwelling units	9	2	7	
(221)	30 dwelling drifts	(10)	(6)	(4)	
Subtotal		27	12	15	
		(34)	(18)	(16)	
Net New Vehicle Trips					
Net New Vehicle Trips		-7	-7	0	
Net New Vehicle Hips		(-10)	(-4)	(-6)	

Although the redevelopment of the Sagamore Hotel is expected to result in a reduction of trips, access to the site for valeting hotel guests, self-parking residents, and resident guest valet will be located at the Ritz Carlton site. Therefore, the proposed redevelopment traffic was distributed at the study intersection. Note that credit for the traffic volumes accessing the existing Sagamore site was not taken at the study intersection, in order to provide a conservative analysis.

TRIP DISTRIBUTION AND ASSIGNMENT

The trip distribution was based on an interpolated cardinal trip distribution for the project site's traffic analysis zone (TAZ) obtained from the Miami-Dade Transportation Planning Organization's (TPO's) 2045 Long Range Transportation Plan Directional Trip Distribution Report. The project is located within TAZ 644. The cardinal distribution is shown in Table 2.

Table 2: Cardinal Trip Distribution			
Cardinal Direction	Percentage of Trips		
North-Northeast	14%		
East-Northeast	0%		
East-Southeast	0%		
South-Southeast	0%		
South-Southwest	16%		
West-Southwest	32%		
West-Northwest	19%		
North-Northwest	19%		
Total	100%		

Figure 4 presents the peak hour net new trip distribution and Figure 5 presents the peak hour net new trip assignment. Note that as the P.M. peak hour trip generation generates more trips than the A.M. peak hour, the P.M. peak hour trip generation was used in the mid-day analysis, to provide a conservative analysis. Detailed cardinal distribution calculations are contained in Appendix G. Additionally, as Sagamore resident guest vehicles will be valeted within the on-site Ritz Carlton parking garage, Figures 6 and 7 detail the project's valet distribution and assignment for the peak hours.

Study Roadway
Study Intersection

XX% Entering Trip Distribution

(XX%) Exiting Trip Distribution

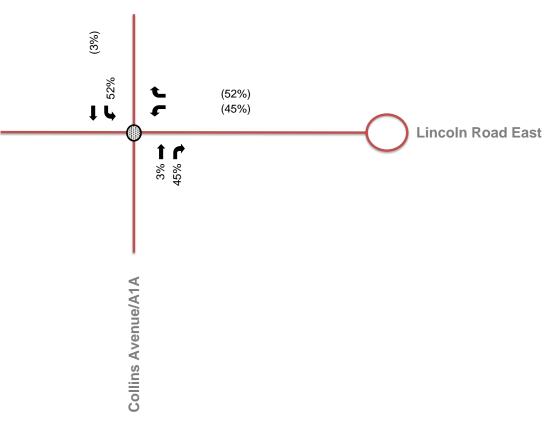
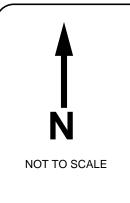



Figure 4
Peak Hour Project Trip Distribution
Lincoln Road East
Miami Beach, Florida

Study Roadway

Study Intersection

XX Mid-Day/P.M. Peak Hour Trip Assignment

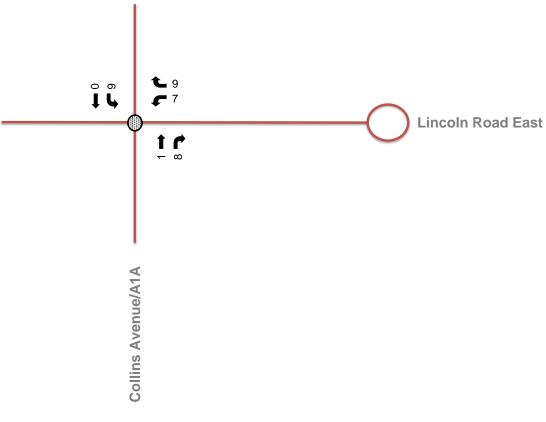


Figure 5 Mid-Day/P.M. Peak Hour Project Trip Assignment Lincoln Road East Miami Beach, Florida

Study Roadway
Study Intersection

XX% Valet Drop-Off Trip Distribution (XX%) Valet Pick-Up Trip Distribution

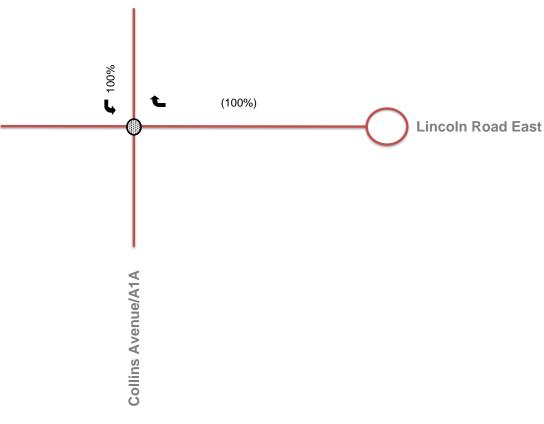
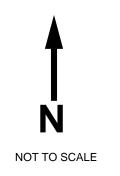



Figure 6
Peak Hour Valet Trip Distribution
Lincoln Road East
Miami Beach, Florida

Study Roadway

Study Intersection

XX Mid-Day/P.M. Peak Hour Valet Trip Assignment

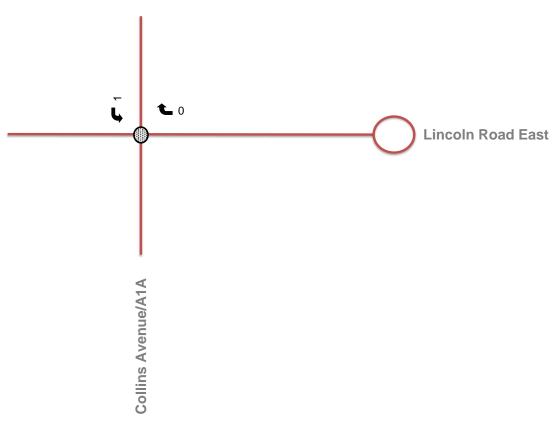


Figure 7 Mid-Day/P.M. Peak Hour Valet Trip Assignment Lincoln Road East Miami Beach, Florida

FUTURE TOTAL TRAFFIC

Future total traffic conditions are defined as the expected traffic conditions in the year 2025 after the opening of the project. Total traffic volumes considered in the analysis for this project are the sum of the background traffic volumes and the expected project traffic volumes. Figure 8 presents the future total turning movement volumes at the study intersections during the Thursday midday peak hour, Thursday P.M. peak hour, and Friday P.M. peak hour. Volume development worksheets for the study intersections are included in Appendix H.

Study Roadway

Study IntersectionXX Thursday Mid-Day Peak Hour Traffic

(XX) Thursday P.M. Peak Hour Traffic

<XX> Friday P.M. Peak Hour Traffic

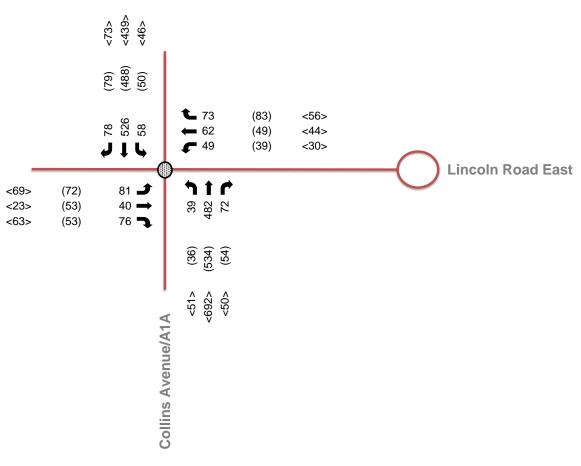


Figure 8
Future Total Peak Hour Traffic
Lincoln Road East
Miami Beach, Florida

INTERSECTION OPERATIONAL ANALYSIS

The operating conditions for the study intersection were analyzed for three (3) scenarios (existing conditions, future background conditions, and future total conditions) using Trafficware's *SYNCHRO* software, which applies methodologies outlined in the Transportation Research Board's (TRB's) *Highway Capacity Manual* (HCM) 6th Edition/2000. The capacity and queuing analyses include the following factors to calibrate the transportation models:

- Peak Hour Factor
- Saturation flow factor (CBD)
- Right turns on red (RTOR)
- Pedestrian crossing volumes
- Conflicting pedestrian volumes
- Conflicting bicycle volumes
- On-street parking lanes
- Bus blockage
- Heavy vehicle percentages
- Critical and follow-up headways at unsignalized intersections

- Signal Timings
 - o Pedestrian signal calls
 - o Recall Mode
 - o Minimum Initial
 - Yellow/All Red Time
 - o Ped Walk Time
 - o Ped Don't Walk Time
 - Vehicle Extension/Minimum Gap
 - o Maximum Split
 - o Offset
 - Platoon Ratio for coordinated approaches

Synchro worksheets for the study intersections are included in Appendix I.

A summary of the intersection capacity analysis is presented in Table 3. As indicated, the study intersection is expected to operate at adopted level of service (LOS) or better during the Thursday mid-day peak hour, Thursday P.M. peak hour, and Friday P.M. peak hour under all analysis scenarios with the exception of the eastbound approach which operates at LOS F during the Friday P.M. peak hour under all analysis scenarios and the westbound approach which operates at LOS F during the Friday P.M. peak hour under future total conditions. However, the streetscape project proposes to modify the westbound approach at the intersection of Collins Avenue/A1A and Lincoln Road from one (1) shared left-turn/through/right-turn lane to one (1) exclusive left-turn lane and one (1) shared through/right-turn lane. With the proposed improvements and signal timing

optimization, all approaches are expected to operate at adopted LOS or better during the Thursday mid-day peak hour, Thursday P.M. peak hour, and Friday P.M. peak hour under future total conditions, with the exception of the eastbound approach which operates at LOS F during the Friday P.M. peak hour under all analysis scenarios.

Table 3: Intersection Capacity Analysis					
Peak Hour	Overall	Approach LOS			
Peak Hour	LOS/Delay	EB	WB	NB	SB
Existing Conditions (Future Background Conditions) [Future Total Conditions]					
Thursday Mid-Day Peak Hour	B/12.1 sec	С	D	Α	А
	(B/12.2 sec)	(C)	(D)	(A)	(A)
	[B/12.3 sec] (1)	[D]	[D]	[A]	[A]
Thursday P.M. Peak Hour ⁽²⁾	C/29.7 sec	D	D+1%	С	С
	(C/30.0 sec)	(D)	(D+3%)	(C)	(C)
	[C/27.6 sec] (1)	[D]	[D]	[C]	[C]
Friday P.M. Peak Hour ⁽²⁾	C/32.7 sec	F	D+46%	С	В
	(C/33.0 sec)	(F)	(D+46%)	(C)	(B)
	[C/31.6 sec] (1)	[F]	[D+18%]	[C]	[B]

Notes: (1) Signal timing optimized, and improvements implemented.

⁽²⁾ Scenario cannot be analyzed using HCM 6th Edition. Therefore, HCM 2000 was used.

95TH PERCENTILE QUEUE ANALYSIS

A queue analysis was performed to determine if the existing turning movements storage lengths at the study intersection can accommodate expected 95th percentile vehicle queue lengths under existing, future background, and future total conditions. The 95th percentile queue lengths were calculated using Trafficware's *SYNCHRO 11* software, which applies methodologies outlined in the TRB's *HCM*, 2000/6th Edition. Synchro worksheets for the study intersections are included in Appendix I. A summary of the queue analyses for the Thursday mid-day peak hour, Thursday P.M. peak hour, and Friday P.M. peak hour is presented in Table 4. As indicated, the anticipated future queues are not expected to exceed the provided storage with the exception of the westbound left-turn/through/right-turn movement during the Thursday mid-day peak hour, Thursday P.M. peak hour, and Friday P.M. peak hour under existing and future background conditions. However, with the proposed improvements to the westbound approach as part of the 100 Block Streetscape, future queues are not expected to exceed the provided storage under future total conditions.

Table 4: 95 th Percentile Queuing Analysis Summary					
	Storage Length (ft) (2)	95 th [Ctanasa		
Movement		Thursday Mid- Day Peak Hour	Thursday P.M. Peak Hour	Friday P.M. Peak Hour	Storage Sufficient?
Existing Conditions (Future Background Conditions) [Future Total Conditions]					
		95	115	134	Yes
Eastbound Left-Turn	140	(95)	(117)	(134)	(Yes)
		[99]	[122]	[130]	[Yes]
Eastbound Through/		88	92	77	Yes
Right-Turn	140	(88)	(94)	(78)	(Yes)
Night-Tulli		[83]	[98]	[78]	[Yes]
Westbound Left-Turn/	145 ⁽³⁾	149	177	163	No
Through/Right-Turn ⁽³⁾		(151)	(180)	(163)	(No)
Till Ough / Night-Tull N-7		[(3)]	[(3)]	[(3)]	[(3)]
		(2)	(2)	(2)	(2)
Westbound Left-Turn	145	((2))	((2))	((2))	((2))
		[62]	[59]	[62]	[Yes]
Westbound Through/		(2)	(2)	(2)	(2)
Right-Turn	145	((2))	((2))	((2))	((2))
		[101]	[107]	[125]	[Yes]
Northbound Left-Turn/ Through/Right-Turn	465	158	268	399	Yes
		(165)	(272)	(407)	(Yes)
		[147]	[264]	[411]	[Yes]
Southbound Left-Turn/	465	185	268	254	Yes
Through/Right-Turn		(192)	(273)	(260)	(Yes)
IIII Ough/ Right-Tulli		[178]	[272]	[268]	[Yes]

Notes:

⁽¹⁾ The 95th percentile queue length is based on HCM methodology. Minimum queue of 25 feet assumed.

⁽²⁾ Storage length based on distance to upstream intersection for non-exclusive turn lane movements.

⁽³⁾ Approach does not exist under existing or future background conditions.

⁽³⁾ Approach does not exist under future total condition with Lincoln Road 100 Block Streetscape

VALET OPERATIONS ANALYSIS

The valet queuing operations analysis was performed to determine if valet operations could accommodate vehicular queues within the provided drop-off/pick-up areas without extending into the public right-of-way. Valet operations were analyzed for the number of valet attendants and required vehicle stacking for the redevelopment's proposed traffic.

The redevelopment will be served by the following two (2) valet drop-off and pick-up areas, including:

- The Sagamore Hotel porte-cochere will provide access to one (1) valet drop-off/pick-up area. The valet drop-off/pick-up area consists of one (1) valet drop-off/pick-up lane with storage for approximately three (3) vehicles and one (1) by-pass lane. Please note that the Sagamore Hotel porte-cochere will exclusively serve resident guests.
- The Ritz Carlton porte-cochere which consists of one (1) valet drop-off/pick-up area will be reconfigured with storage for approximately four (4) vehicles in the outer curb lane, three (3) vehicles in the inner lane, and one (1) by-pass lane as part of the streetscape project. Both lanes are used as rideshare and valet vehicle drop-off/pick-up The Ritz Carlton portecochere will valet all vehicles of the hotel guests for both the Ritz Carlton and Sagamore Hotel.

All resident vehicles will be self-parked within the on-site Ritz Carlton parking garage. Graphic illustrations of the proposed valet routes to and from the valet drop-off/pick-up areas and the on-site Ritz Carlton parking garage are provided in Appendix J.

SAGAMORE PORTE-COCHERE QUEUE ANALYSIS

Trip generation calculations for the proposed redevelopment were performed using the Institute of Transportation Engineers' (ITE) *Trip Generation Manual*, 11th Edition. The trip generation for the proposed redevelopment was determined using ITE Land Use Code (LUC) 310 (Hotel) and LUC 221 (Multifamily Housing [Mid-Rise]). It is assumed that 10 percent (10%) of the Sagamore Hotel redevelopment is resident guests.

The valet analysis was prepared for the weekday A.M. and weekday P.M. peak hours. The proposed Sagamore Hotel redevelopment is expected to generate one (1) pick-up valet trip during

the A.M. peak hour and one (1) drop-off valet trip during the P.M. peak hour. Note that the Sagamore Hotel redevelopment residential guest trips were determined based on the assumption that 10 percent (10%) of the generated trips are residential guests.

VALET ASSUMPTIONS

The valet analysis was prepared based on the methodology outlined in *ITE's Transportation and Land Development*, 1988. The queuing analysis used the multiple-channel waiting line model with Poisson arrivals and exponential service times. The queuing analysis is based on the coefficient of utilization, ρ , which is the ratio of the average vehicle arrival rate over the average service rate multiplied by the number of valet attendants.

Valet attendants will be stationed at the valet drop-off/pick-up areas. Valet drop-off trip service times were calculated based on the time it would take a valet parking attendant to obtain and park a drop-off vehicle within the on-site Ritz Carlton parking garage and return to the valet drop-off area. Valet pick-up trip service times were calculated based on the time it would take a valet parking attendant to bring a parked vehicle back to a guest at the valet pick-up area.

The service time for valet drop-off operation corresponds to the following:

- Exchange between valet attendant and driver (1.5 minute)
- Valet attendant drives vehicle from valet drop-off location to valet parking lot (1.0 minutes)
- Valet attendant parks vehicle in parking space (0.2 minutes)
- Valet attendant walks/runs from valet parking lot to porte-cochere (1.2 minutes)
- Total service rate: 3.9 minutes

The service time for valet pick-off operation corresponds to the following:

- Valet attendant walks/runs from porte-cochere to valet parking lot (1.2 minutes)
- Valet attendant retrieves vehicle in parking space (0.5 minutes)
- Valet attendant drives vehicle from valet parking lot to porte-cochere (0.8 minutes)
- Exchange between valet attendant and driver (1.5 minute)
- Total service rate: 4.0 minutes

Detailed travel time calculations are included in Appendix J.

If the coefficient of utilization (average service rate/valet attendant service capacity) is greater than one (> 1), the calculation methodology does not yield a finite queue length. This result indicates overcapacity conditions for the valet area. The valet attendant service capacity is the number of total trips a valet attendant can make in a one-hour period multiplied by the number of valet attendants.

The analysis determined the required queue storage, M, which is exceeded P percent of the time. This analysis seeks to ensure that the queue length does not exceed the storage provided at a level of confidence of 95 percent (95%). Three (3) vehicle drop-off/pick-up spaces are provided for valet operations based on the attached site plan.

VALET ANALYSIS

An iterative approach was used to determine the number of valet attendants required to accommodate the proposed redevelopment demand during the analysis hour and ensure that the 95th percentile valet queue does not extend beyond the designated valet service area. Detailed valet analysis worksheets are provided in Appendix J.

Results of the highest demand condition valet operations analysis demonstrate that one (1) valet attendant would be required to accommodate vehicle drop-off/pick-up demand.

RITZ CARLTON PORTE-COCHERE QUEUE ANALYSIS

Peak period queue accumulation data was collected during two (2) hour periods on July 21, 2022 (Thursday) from 12:00 P.M. to 2:00 P.M. and on July 23, 2022 (Saturday) from 4:30 P.M. to 6:30 P.M. Valet operations at the redevelopment were analyzed to determine if porte-cochere queues can be accommodated on-site without extending into the cul-de-sac during the weekday and weekend peak periods.

The valet area consists of one (1) outer lane (approximately 160' feet) and one (1) inner lane (approximately 75' feet). There is sufficient storage for approximately six (6) vehicles in the outer lane and three (3) vehicles in the inner lane. Both lanes are used as rideshare and valet vehicle drop-off/pick-up.

Four (4) valet attendants including a manager served valet during the weekday peak period and weekend peak period. The porte-cochere queues reached a maximum of five (5) vehicles with four

(4) vehicles in the inner lane and one (1) vehicle in the outer lane. To accommodate the relocation of the Sagamore Hotel valet to the Ritz Carlton porte-cochere, the maximum queue and number of valet attendants were proportionally factored based off the number of hotel rooms within the existing Ritz Carlton and proposed Sagamore Hotel redevelopment. As the existing Ritz Carlton observed a maximum queue of five (5) vehicles with 373 existing hotel rooms, an addition of 51 rooms from the Sagamore Hotel redevelopment, or 424 hotel rooms in total, would result in a maximum queue of approximately 6 vehicles. Additionally, it is expected that five (5) valet attendants would be needed to accommodate the increase in demand. With a sufficient storage capacity for approximately nine (9) vehicles in existing conditions and seven (7) vehicles in future total conditions with the 100 Block streetscape, it is expected that queues will not extend beyond the valet porte-cochere with five (5) valet attendants. Collected queuing data is provided in Appendix J.

PEDESTRIAN CROSSING EVALUATION

Existing pedestrian volumes crossing at the Ritz Carlton parking garage and loading driveway were evaluated and compared to expected future conditions with the streetscape project in-place. Pedestrian volumes collected in July 2022 crossing at the Ritz Carlton parking garage and loading driveway were factored by pedestrian volumes collected at the intersection of Collins Avenue and Lincoln Road in January 2023/March 2023 to account for any seasonal changes. Based on the data collected in January and March 2023, pedestrian adjustment factors of 0.94 was calculated for the Thursday mid-day peak hour, 1.16 was calculated for the Thursday P.M. peak hour, and 0.85 was calculated for the Friday P.M. peak hour. In order to provide a conservative analysis, the pedestrian adjustment factors were only applied when above 1.00. As a result of the proposed streetscape improvements, it is expected that a portion of pedestrians will choose to access the beach via the shared use path along south sidewalk which as a maximum width of 18.5 feet and is designed in a manner to provide more direct access to the beach walk than the sidewalk on the north side of Lincoln Road. Therefore, 50 percent (50%) of non-Ritz Carlton pedestrian traffic was reassigned to access the beach via the shared use path along the south sidewalk. A summary of the pedestrian crossing evaluation is presented in Table 5. Peak pedestrian traffic volumes at the Ritz Carlton Porte-Cochere Exit Driveway and Ritz Carlton Loading Driveway are included in Appendix C. Detailed pedestrian crossing calculations are provided in Appendix K.

Table 5: Loading Driveway Conflicting Pedestrian											
Pre-Streetscape Conditions Future Conditions											
Thursday Mid-Day Peak Hour (Thursday	P.M. Peak Hour) [Friday P.M. Peak Hour]										
227	186										
(356)	(215)										
[302]	[209]										

MANEUVERABILITY ANALYSIS

A maneuverability analysis was prepared for the ground level passenger vehicle circulation areas and loading area. The analysis was performed using Transoft's *AutoTurn 11* software design vehicle turning templates and vehicle turning templates consistent with American Association of State Highway and Transportation Officials' (AASHTO) *A Policy on Geometric Design of Highways and Streets*, 2018. The analysis was prepared using a passenger (P) vehicle, single unit (SU-30) truck, modified WB-62 semi-trailer, and City of Miami Beach emergency/fire truck for the proposed loading area.

The analysis determined that the loading vehicles and the City of Miami Beach emergency/fire truck are expected to be able to ingress, egress, and travel within the ground level without conflicting with oncoming traffic. Additionally, loading vehicles will be able to maneuver into loading spaces within the loading area and will not need to reverse (back-in) into the site from the street. As a result, loading vehicles are not expected to reverse through the pedestrian crossing area at the loading driveway, and will be able to enter the site head-on. This allows for greater visibility of pedestrians within the crosswalk and improved safety. Vehicles accessing the Deco Plage will be able to ingress and egress without conflicting with oncoming traffic. Maneuverability analysis plots are included in Appendix L.

TRANSPORTATION DEMAND MANAGEMENT STRATEGIES

Transportation Demand Management (TDM) strategies are proposed for the Sagamore Hotel redevelopment to reduce the impacts of the project traffic on the surrounding roadway network City of Miami Beach provide public transit in close proximity to the project site. In addition, other measures are under consideration to encourage people to use public transportation, use bicycles and walk, and find alternatives to the typical workday hours. The applicant proposes the following TCMs:

- Secure bicycle parking spaces (bike racks and lockers)
- Improved and enhanced (wide) sidewalks around the site
- Elevators that can accommodate bikes
- Lockers for bicyclists to store a change of clothes will be provided on-site
- Shower facility for bicyclists will be provided on-site

PARKING EVALUATION

The required parking for the site, based on the City of Miami Beach Code of Ordinances, is 189 parking spaces. As part of the proposed redevelopment, 238 parking spaces will be provided with two (2) parking spaces provided on-street and 236 parking spaces provided on-site. Additionally, 129 bicycle spaces will be provided. As part of the 100 Block streetscape project, the freight loading zone, two (2) taxi/cab spots, and four (4) motorcycle pay-to-park spots along the south side of Lincoln Road are proposed to be removed. The freight loading zone is proposed to be relocated to the north side of Lincoln Road. Note that with the relocation of the freight loading, four (4) parking spaces will be removed, including one (1) emergency/city vehicle space and three (3) pay-to-park spaces. Please refer to the detailed parking calculations prepared by others contained in Appendix M.

CONCLUSION

Sobe Sky Development, LLC is proposing a streetscape project for Lincoln Road and to redevelop the Sagamore Hotel. The streetscape project is bounded by Collins Avenue/SR A1A to the west and the public beach access/Ritz Carlton Hotel loading dock and parking garage access to the east, referred to as the 100 Block, in Miami Beach, Florida. Lincoln Road, east of Collins Avenue/SR A1A consists of one (1) 20-foot lane in each direction (wide enough to accommodate two [2] lanes but not designated as such), on-street parking on the north and south sides of the road, and a curbed 9.5-foot median. Lincoln Road terminates to the east at the public beach access in a cul-de-sac street-end with a curbed median island. The proposed project examines the appropriate laneage for the roadway configuration to provide for a wider pedestrian sidewalk along the south side of Lincoln Road. The streetscape project will also include reconfiguring the Ritz Carlton portecochere.

Additionally, the existing 93-room Sagamore Hotel (1671 Collins Avenue) is proposed to be redeveloped. The redevelopment includes a 51-room hotel and 30 mid-rise multifamily residential units. Currently, access to the Sagamore Hotel is provided by a porte-cochere on Collins Avenue north of Lincoln Road. The redevelopment will relocate the Sagamore Hotel access to the Ritz Carlton Hotel porte-cochere. Sagamore residents will self-park within the Ritz Carlton garage located on Lincoln Road. Sagamore resident guests will use the existing Sagamore porte-cochere on Collins Avenue to valet their vehicles or for rideshare drop-off/pick-up. The project is expected to be completed and opened by year 2025.

Trip generation for the proposed redevelopment was calculated using rates contained in the Institute of Transportation Engineers' (ITE's) *Trip Generation Manual*, 11th Edition. The project is expected to result in a reduction of seven (7) net new weekday A.M. peak hour trips and a reduction of ten (10) net new weekday P.M. peak hour trips.

The results of the intersection capacity analysis indicate that the study intersection is expected to operate at adopted level of service (LOS) or better during the Thursday mid-day peak hour, Thursday P.M. peak hour, and Friday P.M. peak hour under all analysis scenarios with the exception of the eastbound approach which operates at LOS F during the Friday P.M. peak hour under all analysis scenarios and the westbound approach which operates at LOS F during the

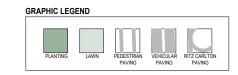
Friday P.M. peak hour under future total conditions. However, the streetscape project proposes to modify the westbound approach at the intersection of Collins Avenue/A1A and Lincoln Road from one (1) shared left-turn/through/right-turn lane to one (1) exclusive left-turn lane and one (1) shared through/right-turn lane. With the proposed improvements and signal timing optimization, all approaches are expected to operate at adopted LOS or better during the Thursday mid-day peak hour, Thursday P.M. peak hour, and Friday P.M. peak hour under future total conditions, with the exception of the eastbound approach which operates at LOS F during the Friday P.M. peak hour under all analysis scenarios.

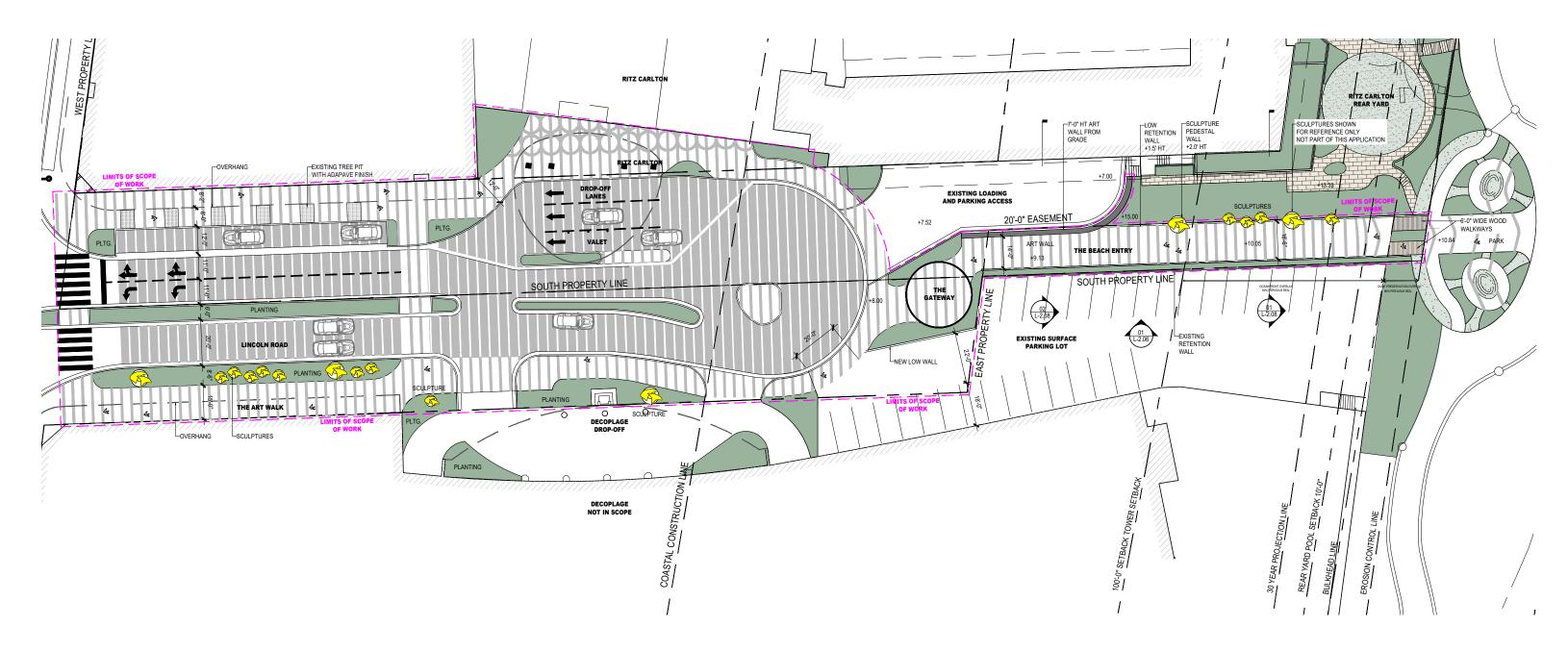
The results of the 95th percentile queue analysis indicate that the anticipated future queues are not expected to exceed the provided storage with the exception of the westbound left-turn/through/right-turn movement during the Thursday mid-day peak hour, Thursday P.M. peak hour, and Friday P.M. peak hour under existing and future background conditions. However, with the proposed improvements to the westbound approach as part of the 100 Block Streetscape, future queues are not expected to exceed the provided storage under future total conditions.

The results of the weekday A.M. and P.M. peak hours valet operations analysis demonstrate that one (1) valet attendant would be required to accommodate vehicle drop-off/pick-up demand at the Sagamore Hotel porte-cochere. Furthermore, the seven (7) vehicles of storage capacity for the reconfigured Ritz Carlton porte-cochere is expected to be sufficient and provide enough storage capacity for the increased demand.

The maneuverability analysis determined that the loading vehicles and the City of Miami Beach emergency/fire truck are expected to be able to ingress, egress, and travel within the ground level without conflicting with oncoming traffic. Additionally, loading vehicles will be able to maneuver into loading spaces within the loading area and will not need to reverse (back-in) into the site from the street. As a result, loading vehicles are not expected to reverse through the pedestrian crossing area at the loading driveway, and will be able to enter the site head-on. This allows for greater visibility of pedestrians within the crosswalk and improved safety.

TDM strategies are proposed to reduce the impacts of the project traffic on the surrounding roadway network City of Miami Beach provide public transit in close proximity to the project site. In addition, other measures are under consideration to encourage people to use public


transportation, use bicycles and walk, and find alternatives to the typical workday hours. The applicant proposes the following TDMs:


- Secure bicycle parking spaces (bike racks and lockers)
- Improved and enhanced (wide) sidewalks around the site
- Elevators that can accommodate bikes
- Lockers for bicyclists to store a change of clothes will be provided on-site
- Shower facility for bicyclists will be provided on-site

The required parking for the site, based on the City of Miami Beach Code of Ordinances, is 189 parking spaces. As part of the proposed redevelopment, 238 parking spaces will be provided with two (2) parking spaces provided on-street and 236 parking spaces provided on-site. Additionally, 129 bicycle spaces will be provided. As part of the 100 Block streetscape project, the freight loading zone, two (2) taxi/cab spots, and four (4) motorcycle pay-to-park spots along the south side of Lincoln Road are proposed to be removed. The freight loading zone is proposed to be relocated to the north side of Lincoln Road. Note that with the relocation of the freight loading, four (4) parking spaces will be removed, including one (1) emergency/city vehicle space and three (3) pay-to-park spaces.

Appendix A

Site Plan

HPB SUBMITTAL

NATURALFICIAL

6915 Red Rd Suite 224, Coral Gables, FL 33143 T 786.717.6564

THIS ITEM HAS BEEN DIGITALLY SIGNED AND SEALED BY PETER ANSELMO ON 04.17.2023

LINCOLN ROAD 100 BLOCK MIAMI BEACH, FL 33139

OVERALL HARDSCAPE PLAN

SCALE: 1/64" = 1'-0"

04/17/2023

DATE:

L-1.01

Appendix B

Methodology Correspondence

Dabkowski, Adrian

From: Fawaz, Dani < DaniFawaz@miamibeachfl.gov>

Sent: Monday, March 27, 2023 12:35 PM

To: Dabkowski, Adrian

Cc: Selanikio, Raquel; Hussaini, Danish; Govardhan Muthyalagari; Rodriguez, Otniel; Gonzalez, Jose R. **Subject:** RE: Lincoln Road | 100 Block Streetscape and Sagamore Hotel Redevelopment Traffic Study

Methodology

Categories: External

Good afternoon Adrian,

Following an internal meeting with our peer reviewer, we recommend approval of the methodology and for the applicant to move forward with the study with the following conditions.

- The applicant to provide detailed pedestrian crossing evaluation crossing the Ritz Carlton parking garage and loading driveway with the proposed streetscape project.
- As part of the maneuverability analysis, perform the AutoTURN software with the emergency/fire truck and also for the different types of vehicles coming out of the development from the southside of the Lincoln Road.

Regards

MIAMIBEACH

Dani Fawaz, P.E.

Senior Transportation Engineer Transportation & Mobility Department 1700 Convention Center Drive, 3rd FL, Miami Beach, FL 33139 Direct: 305.673.7000, Ext. 26693

From: Dabkowski, Adrian <Adrian.Dabkowski@Kimley-horn.com>

Sent: Wednesday, March 22, 2023 1:22 PM

To: Fawaz, Dani < DaniFawaz@miamibeachfl.gov>

Cc: Michael Larkin < MLarkin@brzoninglaw.com >; Graham Penn < GPenn@brzoninglaw.com >; Victor Druga

<victor@victordruga.com>; Richard Murphy <richard.murphy@flagluxury.com>; Selanikio, Raquel

<Raquel.Selanikio@kimley-horn.com>; Hussaini, Danish <Danish.Hussaini@kimley-horn.com>; Govardhan Muthyalagari <gmuthyalagari@HNTB.com>

Subject: RE: Lincoln Road | 100 Block Streetscape and Sagamore Hotel Redevelopment Traffic Study Methodology

[THIS MESSAGE COMES FROM AN EXTERNAL EMAIL - USE CAUTION WHEN REPLYING AND OPENING LINKS OR ATTACHMENTS]

Good afternoon Dani:

Our response to methodology comments and updated methodology are attached. Please let us know if the City has any additional comments. We plan on submitting the traffic study by 4/3 for the July HPB hearing.

Thank you Adrian Adrian K. Dabkowski, P.E., PTOE

Kimley-Horn | 8201 Peters Road, Suite 2200, Plantation, FL 33324

Direct: 954-535-5144 | Mobile: 303-990-2761

From: Fawaz, Dani < DaniFawaz@miamibeachfl.gov>

Sent: Wednesday, March 15, 2023 9:08 AM

To: Dabkowski, Adrian < Adrian. Dabkowski@Kimley-horn.com >

Cc: Michael Larkin <MLarkin@brzoninglaw.com>; Graham Penn <GPenn@brzoninglaw.com>; Victor Druga

<victor@victordruga.com>; Richard Murphy <richard.murphy@flagluxury.com>; Selanikio, Raquel

<<u>Raquel.Selanikio@kimley-horn.com</u>>; Hussaini, Danish <<u>Danish.Hussaini@kimley-horn.com</u>>; Govardhan Muthyalagari

<gmuthyalagari@HNTB.com>

Subject: RE: Lincoln Road | 100 Block Streetscape and Sagamore Hotel Redevelopment Traffic Study Methodology

Good morning Adrian,

Please see attached comments on the methodology.

Regards

MIAMIBEACH

Dani Fawaz, P.E.

Senior Transportation Engineer Transportation & Mobility Department 1700 Convention Center Drive, 3rd FL, Miami Beach, FL 33139 Direct: 305.673.7000, Ext. 26693

From: Dabkowski, Adrian <Adrian.Dabkowski@Kimley-horn.com>

Sent: Wednesday, March 15, 2023 8:52 AM

To: Fawaz, Dani < DaniFawaz@miamibeachfl.gov>

Cc: Michael Larkin < MLarkin@brzoninglaw.com>; Graham Penn < GPenn@brzoninglaw.com>; Victor Druga

<victor@victordruga.com>; Richard Murphy <richard.murphy@flagluxury.com>; Selanikio, Raquel

< <u>Raquel. Selanikio@kimley-horn.com</u> >; Hussaini, Danish < <u>Danish. Hussaini@kimley-horn.com</u> >; Govardhan Muthyalagari

<gmuthyalagari@HNTB.com>

Subject: RE: Lincoln Road | 100 Block Streetscape and Sagamore Hotel Redevelopment Traffic Study Methodology

[THIS MESSAGE COMES FROM AN EXTERNAL EMAIL - USE CAUTION WHEN REPLYING AND OPENING LINKS OR ATTACHMENTS]

Good morning Dani:

Following up on our methodology meeting last week, can you please let me know if the City has any comments. We are planning on submitting the study 4/3.

Thank you

Adrian

Adrian K. Dabkowski, P.E., PTOE

Kimley-Horn | 8201 Peters Road, Suite 2200, Plantation, FL 33324

Direct: 954-535-5144 | Mobile: 303-990-2761

From: Dabkowski, Adrian

Sent: Monday, February 27, 2023 11:46 AM

MEMORANDUM

To: Dani Fawaz, P.E.

City of Miami Beach

Adrian K. Dabkowski, P.E., PTOE 🍂 From:

Date: March 22, 2023

Subject: Lincoln Road East

100 Block Streetscape and Sagamore Hotel Redevelopment Response to Traffic Impact Analysis Methodology Comments

We have received comments provided by the City of Miami Beach's Transportation Department on March 14, 2023. We offer the following responses to the comments:

1. Page 2, Background Growth Rate – As discussed in the methodology meeting on March 8, 2023, please clarify the buildout date for the project to be consistent with the Capacity Analysis described in Page 3.

Response: The methodology was updated to state that buildout date for the project is 2025. Refer to the updated methodology in Attachment A-A.

2. Page 3, Capacity Analysis – Due to the eastbound vehicular traffic closure and the proposed conversion to pedestrian mall extension of the Lincoln Road from the Lincoln Road Pedestrian Mall Extension project, there will be an increase in pedestrian activity crossing the Collins Avenue/SR A1A at Lincoln Road. Please incorporate the pedestrian growth as part of the Build capacity analysis.

Response: Please note that Lincoln Road Pedestrian Mall Extension project has a buildout year of 2028. As the buildout year of the 100 Block Streetscape and Sagamore Hotel redevelopment is 2025, the pedestrian volumes will not be grown for this analysis. It is also noted that the Lincoln Road Pedestrian Mall Extension study should incorporate the 100 Block Streetscape and Sagamore Hotel redevelopment.

3. Page 4, Valet Operational Analysis – Due to the relocation of the Sagamore Hotel parking from Collins Avenue to the Ritz-Carlton Hotel along Lincoln for both the hotel and residents, please analyze the impacts to the pedestrians due to the increased traffic due to the loading dock and parking garage access.

Response: Please note that the redesign of the beach walk and south side of Lincoln Road is expected to ameliorate the safety concerns for pedestrians by encouraging pedestrians to use the wide southern sidewalk that serves as a shared use path to access the beach. Additionally, back-in maneuvers will be internalized for loading vehicles so that trucks can avoid using the street-end and drive aisles to reverse into the loading driveway.

Pedestrian crossing volumes will be examined at the Ritz Carlton parking garage and loading driveway will be examined and redistributed to account for the streetscape project. The updated methodology in Attachment A-A was updated to provide this analysis.

4. Parking – Please provide documentation to indicate the availability of parking for the 51-room hotel and 30 mid-rise residential units at the Ritz-Carlton Hotel due to the relocation of the Sagamore Hotel parking from Collins Avenue to the Ritz-Carlton Hotel

Response: Please note that parking calculations will be included within the traffic impact analysis. The methodology memorandum has been updated to include a Parking Evaluation section. The updated methodology is included in Attachment A-A.

 General – As discussed in the methodology meeting on March 8, 2023, please provide adequate sidewalk connectivity within the area of influence along Lincoln Road and Collins Avenue/SR A1A.

Response: Please note a dimensioned plan will be provided as part of the HPB submittal.

6. General – Please confirm no loss of on-street parking along both sides of Lincoln Road due to proposed lanes in the westbound direction of Lincoln Road. In addition, please consider and negate any impacts on the operations from the on-street parking vehicles with the additional traffic in the westbound direction due to the relocation of the parking for the Sagamore Hotel redevelopment.

Response: Noted. A review of on-street parking will be provided as part of the traffic impact analysis and a section was added to the updated methodology in Attachment A-A.

7. General – Please incorporate the diversion of traffic from the Lincoln Road Pedestrian Mall Extension project along Collins Avenue/SR A1A for all the intersections within the study area.

Response: Please note that Lincoln Road Pedestrian Mall Extension project has a buildout year of 2028. As the buildout year of the 100 Block Streetscape and Sagamore Hotel redevelopment is 2025, the pedestrian volumes will not be grown for this analysis. It is also noted that the Lincoln Road Pedestrian Mall Extension study should incorporate the 100 Block Streetscape and Sagamore Hotel redevelopment.

We trust that this response adequately addresses the comment provided. Please contact us should you have any questions.

K:\FTL_TPTO\143584000-Lincoln Road East\Correspondence\100 Block Methodology\2023 03 - Response to City Methodology Comments\Response to City Methodology Comments 2023 03.docx

Attachment A-A Updated Traffic Study Methodology

MEMORANDUM

To: Dani Fawaz, P.E.

City of Miami Beach

From: Adrian K. Dabkowski, P.E., PTOE 🍂

Date: March 22, 2023

Subject: Lincoln Road East

100 Block Streetscape and Sagamore Hotel Redevelopment

Traffic Impact Analysis Methodology

The purpose of this memorandum is to summarize the traffic impact analysis methodology for the Lincoln Road East, 100 Block Streetscape and Sagamore Hotel redevelopment. The Lincoln Road streetscape project limits are Collins Avenue/SR A1A to the west and the public beach access/Ritz-Carlton Hotel loading dock and parking garage access to the east. Lincoln Road, east of Collins Avenue/SR A1A consists of one (1) 20-foot lane in each direction (wide enough to accommodate two [2] lanes), on-street parking on the north and south sides of the road, and a curbed 9.5-foot median. Lincoln Road terminates to the east at the public beach access in a cul-de-sac street-end with a curbed median island. The proposed project will examine the appropriate laneage for the roadway configuration to provide for a wider pedestrian sidewalk along the south side of Lincoln Road.

Additionally, the existing 93-room Sagamore Hotel will be redeveloped to consist of a 51-room hotel and 30 mid-rise residential units. Currently, access to the Sagamore Hotel is provided by a portecochere on Collins Avenue north of Lincoln Road. The redevelopment will relocate the Sagamore Hotel access to the Ritz-Carlton Hotel porte-cochere. Sagamore residents will self-park within the Ritz Carlton garage located on Lincoln Road. Sagamore resident guests will use the existing Sagamore portecochere on Collins Avenue to valet their vehicles or for rideshare drop-off/pick-up. The project is expected to be completed by 2025. A project location map and initial concept plan are provided as Attachment A. The following sections summarize our proposed methodology.

TRIP GENERATION

Trip generation calculations for the Sagamore hotel redevelopment for the existing development and proposed redevelopment were performed using the Institute of Transportation Engineers' (ITE) Trip Generation Manual, 11th Edition. The trip generation for the existing land use was determined using ITE Land Use Code LUC 310 (Hotel). The trip generation for the proposed land uses was determined using ITE LUC 310 (Hotel) and LUC 221 (Mid-Rise, Multifamily Housing).

A multimodal (public transit, bicycle, and pedestrian) factor based on US Census Means of Transportation to Work data was reviewed for the census tract in the vicinity of the redevelopment. The US Census data indicated that there is a 29.3 percent (29.3%) multimodal factor within the vicinity of the development. Note, that the multimodal factor was capped at 20.0 percent (20.0%) as required by City of Miami Beach. It is expected that residents, patrons, and visitors will choose to walk, bike, or use public transit to and from the proposed development. Transit route information will be documented in the report. Detailed trip generation calculations and US Census Means of Transportation to Work data are included in Attachment B.

The proposed redevelopment is expected to result in a reduction of 7 net new vehicle trips during the weekday A.M. peak hour and a reduction of 10 net new vehicle trips during the P.M. peak hour. Detailed trip generation calculations are included as Attachment B.

DATA COLLECTION

Consistent with the approved traffic study methodology for the Lincoln Road Pedestrian Mall Extension, the same 72-hour continuous counts were used to determine the peak traffic periods for analysis. The 72-hour continuous counts were gathered at the following two (2) locations from Thursday, June 16, 2022, through Saturday, June 18, 2022, and evaluated:

- 1. Collins Avenue/SR A1A, north of Lincoln Road
- 2. Lincoln Road, east of Collins Avenue/A1A

Based on the peak periods observed, turning movement counts (TMC's) will be collected on a Thursday from 10:30 A.M. to 1:30 P.M., 2:30 P.M. to 6:30 P.M., and on a Friday from 3:30 P.M. to 5:30 P.M to capture peak traffic volumes at the intersections of Lincoln Road and Collins Avenue/SR A1A.

Turning movement counts were collected in 15-minute intervals during the peak period. Turning movement counts include pedestrian and bicyclist volumes. All traffic counts will be adjusted to peak season conditions using the appropriate Florida Department of Transportation (FDOT) peak season category factors. All traffic data will be provided in the Appendix of the traffic impact study. The 72-hour continuous counts are included in Attachment B.

STUDY AREA

Intersection capacity analyses will be conducted for the analysis peak hours to determine the impacts of the proposed streetscape laneage plan at the intersection of Collins Avenue/SR A1A and Lincoln Road.

PROGRAMMED ROADWAY IMPROVEMENTS

Local transportation plans will be reviewed in order to gather information about planned and programmed transportation improvements in the study area. Relevant projects will be documented within the traffic impact analysis. The purpose of the plan review is to identify programmed capacity improvements for consideration in the analysis. The following transportation plans will be examined:

- Miami Beach Transportation Master Plan
- Miami-Dade Transportation Planning Organization's (TPO) Transportation Improvement Program (TIP)
- FDOT's Five-Year Work Program

BACKGROUND GROWTH RATE/MAJOR COMMITTED DEVELOPMENT

A background growth rate was calculated based on historical growth trends at nearby Florida Department of Transportation (FDOT) traffic count stations. Additionally, growth rates based on the TPO's projected 2015 and 2045 model network volumes were examined. The greater of the historical growth rate and SERPM growth rate will be used in the analysis. FDOT count stations referenced in this analysis include:

- FDOT count station no. 5159 located on SR A1A/Collins Avenue, north of 5th Street
- FDOT count station no. 5170 located on SR A1A/Collins Avenue, north of 21st Street

- FDOT count station no. 8414 located on Washington Avenue, north of 12th Street
- FDOT count station no. 8531 located on 17th Street, east of Meridian Avenue
- FDOT count station no. 8567 located on 16th Street, east of Meridian Avenue

The historic growth rate analysis, based on FDOT count stations, examined linear, exponential, and decaying exponential growth rates for the most recent five (5) and 10-year periods. The linear growth trend yielded an average growth rate of negative 2.24 percent (-2.24%) over the most recent five (5) year period and negative 0.55 percent (-0.55%) over the most recent ten (10) year period. The exponential growth trend yielded a growth rate of negative 2.85 percent (-2.85%) over the most recent five (5) year period and negative 0.57 percent (-0.57%) over the most recent ten (10) year period. The decaying exponential growth trend yielded a growth rate of negative 2.29 percent (-2.29%) over the most recent five (5) year period and negative 0.20 percent (-0.20%) over the most recent ten (10) year period.

Based on the forecasted volumes obtained from the 2015 and 2045 FSUTMS SERPM 8.521, an annual growth rate of 0.36 percent (0.36%) in the vicinity of the development was calculated. To provide a conservative analysis, a minimum growth rate of 0.50 percent (0.50%) will be applied annually to the existing traffic volumes to establish future (2025) background conditions. Detailed growth rate calculations are included in Attachment C.

The City's review of this document will determine any committed projects to include in background conditions. The City will provide the corresponding approved traffic study for any committed projects identified.

CAPACITY ANALYSIS

Capacity analyses will be conducted for the analysis period for the study intersections. Intersection analyses will be performed using Trafficware's *Synchro* traffic engineering analysis software which applies the Transportation Research Board's (TRB's), *Highway Capacity Manual* (HCM), 2000 and 6th Edition methodologies. Capacity analyses will be conducted for three (3) scenarios including:

- Existing (2023) conditions,
- Future (2025) no-build conditions
- Future (2025) build (with Streetscape) conditions

The capacity analyses will include the following factors to calibrate the transportation models:

- Peak Hour Factor
- Pedestrian crossing volumes
- Conflicting pedestrian volumes
- Conflicting bicycle volumes
- On-street parking lanes
- Bus blockage
- Heavy vehicle percentages
- Critical and follow-up headways at unsignalized intersections
- Signal Timings
 - Pedestrian signal calls
 - Recall Mode

- Minimum Initial
- Yellow Time
- All Red Time
- o Ped Walk Time
- o Ped Don't Walk Time
- Vehicle Extension/Minimum Gap
- o Maximum Split
- o Offset
- Platoon Ratio for coordinated approaches

The following figures will be included for the study intersections:

- Existing peak hour volumes
- Existing laneage
- Future peak hour volumes
- Proposed future laneage

95TH PERCENTILE QUEUE ANALYSIS

A queue analysis will be performed to determine if the existing storage lengths for exclusive turn lanes and the westbound approach at study area intersection can accommodate expected 95th percentile vehicle queue lengths under existing, future background, and future total conditions. The 95th percentile queue lengths will be calculated using Trafficware's *SYNCHRO 11* software, which applies methodologies outlined in the TRB's HCM, 2000/6th Edition.

VALET OPERATIONS ANALYSIS

A queue analysis will be performed for the existing Ritz-Carlton porte-cochere to determine the space needed to accommodate vehicle queues during peak times. Based on information provided by the hotel and the 72-hour count data gathered, maximum valet queues will be gathered in one-minute intervals during the peak valet times of Thursday 12 to 2 PM and Saturday 4:30 to 6:30 PM. These maximum valet queues will be used in the proposed layout. Additionally, the maximum queues will be factored proportionally to account for the Sagamore Hotel valet traffic that will use the Ritz-Carlton portecochere.

A queue analysis will be performed for the proposed Sagamore porte-cochere for resident guests. The analysis will be based on the highest trip generation peak hour assuming that 10 percent of the residential redevelopment is resident guest. The valet queuing analysis will be conducted consistent with procedures described in the ITE's *Transportation and Land Development*, 1988.

PEDESTRIAN CROSSING EVALUATION

Existing pedestrian volumes crossing at the Ritz Carlton parking garage and loading driveway will be evaluated and compared to expected future conditions with the streetscape project in-place. Pedestrian volumes collected in July 2022 crossing at the Ritz Carlton parking garage and loading driveway will be factored by pedestrian volumes collected at the intersection of Collins Avenue and Lincoln Road in January 2023/March 2023 intersection turning movement counts. The pedestrian volumes crossing at the Ritz Carlton parking garage and loading driveway will be adjusted to account for the streetscape project and wide sidewalk on the southside of Lincoln Road that serves as a shared use path to access the beach.

MANEUVERABILITY ANALYSIS

A maneuverability analysis for the Lincoln Road street-end will be performed utilizing Transoft Solutions' *AutoTURN* software. Deficiencies related to maneuverability, traffic flow, and vehicular conflicts will be documented in a technical memorandum as part of the traffic study.

TRANSPORTATION DEMAND MANAGEMENT STRATEGIES

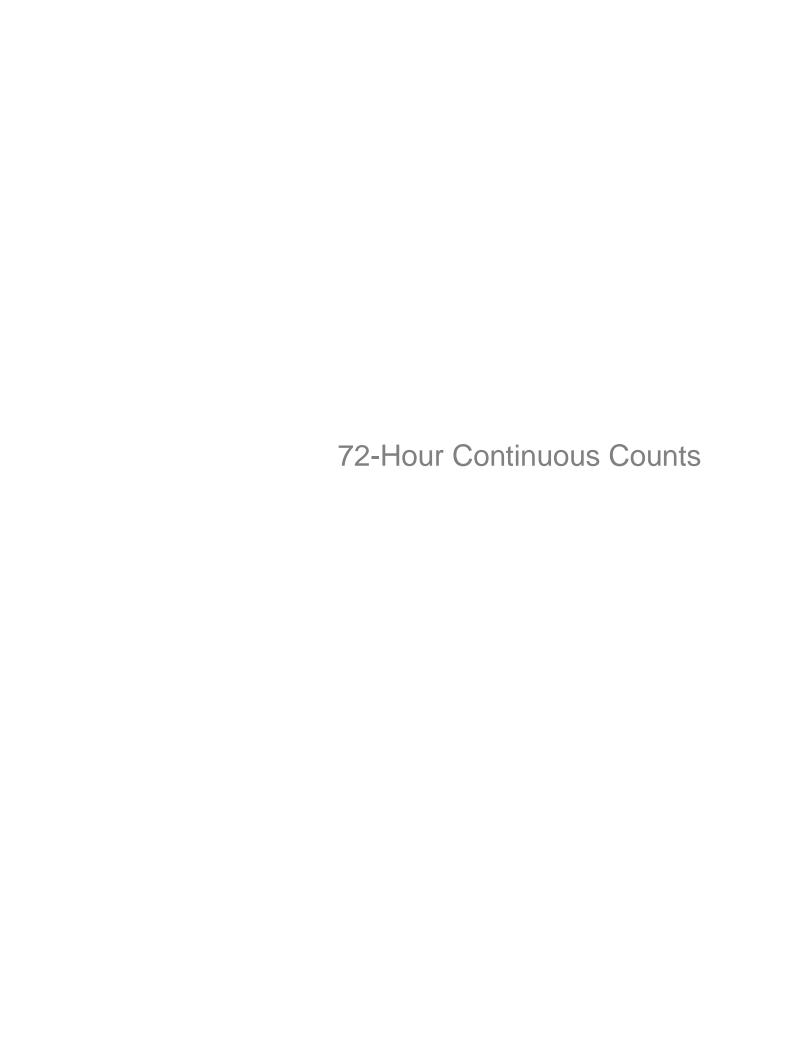
Demand Management (TDM) strategies for the Sagamore hotel redevelopment will be developed to reduce the impact of project traffic on the surrounding roadway network and promote trip reduction. Typical measures promote bicycling and walking, encourage car/vanpooling and offer alternatives to the typical workday hours.

PARKING EVALUATION

A summary of the proposed parking supply to accommodate the Sagamore Hotel redevelopment be prepared and included as part of the traffic study based on parking calculations prepared by others.

The impacts of the streetscape design on on-street parking will also be documented in the parking evaluation section of the traffic study.

DOCUMENTATION


The results of the traffic impact analysis will be summarized in a report. The report will include graphics and tabulations plus text to describe the study procedure, key assumptions, and findings.

K:\FTL_TPTO\143584000-Lincoln Road East\Correspondence\100 Block Methodology\Lincoln Road Block 100 Methodology 2023 03.docx

Methodology Attachments removed to eliminate duplicate information.

Appendix C

Traffic Data

				ncoln Road Hourly Volumes		
Time	Thursday	Thursday Hourly Count	Friday	Friday Hourly Count Counts	Saturday	Saturday Hourly Count
00:00	196	715	206	851	265	1113
00:15	192	660	232	828	301	1136
00:30	159	593	233	769	257	1098
00:45	168	561	180	714	290	1103
01:00	141	494	183	668	288	1068
01:15 01:30	125 127	476 449	173 178	607 569	263 262	1013 958
01:45	101	407	134	523	255	894
02:00	123	388	122	487	233	784
02:15	98	337	135	459	208	725
02:30	85	316	132	406	198	685
02:45 03:00	72 72	284	98 94	365	145 174	624
03:00	77	276 255	82	362 368	168	613 574
03:30	53	236	91	376	137	542
03:45	74	253	95	375	134	498
04:00	51	229	100	343	135	492
04:15	58	226	90	313	136	460
04:30	70	231	90	282	93	437
04:45 05:00	50 48	232 266	63 70	260 289	128 103	426 382
05:15	63	312	59	307	113	363
05:30	71	349	68	343	82	348
05:45	84	394	92	389	84	346
06:00	94	464	88	417	84	389
06:15	100	513	95	479	98	413
06:30 06:45	116 154	559 589	114 120	500 513	80 127	447 516
07:00	143	609	150	558	108	534
07:15	146	657	116	598	132	571
07:30	146	698	127	662	149	595
07:45	174	745	165	741	145	618
08:00	191	800	190	796	145	659
08:15 08:30	187 193	811 853	180 206	810 818	156	711 749
08:30	229	861	206	818 819	172 186	749
09:00	202	857	204	822	197	800
09:15	229	866	188	840	194	843
09:30	201	875	207	892	205	904
09:45	225	896	223	930	204	951
10:00	211	950	222 240	1014	240	1050
10:15 10:30	238	1015 1041	240	1081 1140	255 252	1091 1158
10:45	279	1100	307	1184	303	1158
11:00	276	1106	289	1190	281	1208
11:15	264	1116	299	1174	322	1268
11:30	281	1125	289	1191	252	1246
11:45 12:00	285 286	1140 1153	313 273	1195 1199	353 341	1309 1295
12:15	273	1138	316	1270	300	1255
12:30	296	1262	293	1305	315	1256
12:45	298	1291	317	1311	339	1293
13:00	271	1274	344	1325	301	1303
13:15	397	1258	351	1327	301	1370
13:30 13:45	325 281	1116 1076	299 331	1350 1403	352 349	1436 1443
14:00	255	1084	346	1431	368	1445
14:15	255	1167	374	1446	367	1444
14:30	285	1255	352	1444	359	1397
14:45	289	1273	359	1463	353	1378
15:00	338	1263	361	1426	365	1331
15:15 15:30	343 303	1245 1222	372 371	1380 1455	320 340	1261 1266
15:45	279	1219	322	1543	306	1262
16:00	320	1270	315	1621	295	1315
16:15	320	1214	447	1732	325	1341
16:30	300	1160	459	1658	336	1351
16:45 17:00	330 264	1148 1091	400 426	1553 1508	359 321	1384 1378
17:00	266	1153	373	1448	335	1378
17:30	288	1170	354	1405	369	1374
17:45	273	1175	355	1361	353	1311
18:00	326	1200	366	1327	342	1278
18:15 18:30	283 293	1159	330 310	1236	310	1266
18:30	293	1182 1175	310	1181 1166	306 320	1320 1346
19:00	285	1181	275	1200	330	1367
19:15	306	1260	275	1254	364	1342
19:30	286	1250	295	1347	332	1317
19:45	304	1238	355	1396	341	1262
20:00 20:15	364 296	1170 1049	329 368	1325 1293	305 339	1266 1264
20:15	274	1008	344	1202	277	1265
20:45	236	957	284	1150	345	1332
21:00	243	978	297	1217	303	1342
21:15	255	993	277	1238	340	1355
21:30	223	984	292	1307	344	1335
21:45	257	1013	351	1418	355	1334
22:00 22:15	258 246	1002 1018	318 346	1407 1451	316 320	1350 1373
22:30	252	983	403	1412	343	1378
22:45	246	957	340	1296	371	1323
23:00	274	948	362	1292	339	1282
23:15	211		307		325	
23:30	226		287		288	
23:45	431		336		330	l

	Thursday	Thursday Hourly Count	Friday	Friday Hourly Count	Saturday	Saturday Hourly Coun
Time 00:00	66	182	57	Counts 197	80	336
00:15	18	170	46	199	82	316
00:30	51	180	56	192	91	282
00:45	47	162	38	164	83	245
01:00	54	144	59	170	60	206
01:15	28 33	107 100	39 28	135 130	48 54	190 180
01:45	29	79	44	129	44	143
02:00	17	69	24	102	44	110
02:15	21	68	34	93	38	91
02:30	12	61	27	68	17	73
02:45	19	53	17	54	11	66
03:00 03:15	16 14	42 38	15 9	44 34	25 20	74 56
03:30	4	30	13	41	10	54
03:45	8	44	7	45	19	56
04:00	12	46	5	55	7	58
04:15	6	52	16	58	18	69
04:30	18	53	17	63	12	66
04:45	10	47 66	17	70	21	94 104
05:00 05:15	18 7	78	8 21	70 93	18 15	104
05:30	12	102	24	93	40	112
05:45	29	121	17	102	31	107
06:00	30	118	31	129	18	127
06:15	31	125	21	146	23	133
06:30	31	127	33	150	35	173
06:45	26 37	143	44	145	51 24	196
07:00 07:15	37	210 240	48 25	180 182	63	201 224
07:15	47	287	28	210	58	210
07:45	93	286	79	243	56	203
08:00	67	282	50	254	47	199
08:15	80	287	53	276	49	215
08:30	46	294	61	283	51	228
08:45	89	347	90	295	52	235
09:00 09:15	72 87	338 340	72 60	280 298	63 62	241 252
09:15	99	333	73	325	58	271
09:45	80	335	75	315	58	298
10:00	74	366	90	334	74	331
10:15	80	417	87	350	81	360
10:30	101	456	63	387	85	374
10:45	111	456	94	391	91	355
11:00	125 119	452 441	106 124	420 426	103 95	382 368
11:15 11:30	101	441	67	441	66	390
11:45	107	463	123	491	118	461
12:00	114	466	112	455	89	473
12:15	124	466	139	465	117	482
12:30	118	480	117	447	137	472
12:45	110	475	87	456	130	436
13:00 13:15	114 138	466 450	122 121	495 486	98 107	435 456
13:30	113	413	126	489	101	458
13:45	101	408	126	497	129	465
14:00	98	387	113	529	119	458
14:15	101	366	124	539	109	456
14:30	108	384	134	550	108	486
14:45 15:00	80 77	381 412	158 123	546 499	122 117	503 506
15:15	119	455	135	452	139	502
15:30	105	434	130	427	125	477
15:45	111	435	111	420	125	499
16:00	120	446	76	434	113	480
16:15	98	440	110	480	114	476
16:30 16:45	106 122	453 445	123 125	521 529	147 106	489 442
17:00	114	445	123	513	109	442
17:15	111	453	151	524	127	483
17:30	98	436	131	465	100	479
17:45	149	452	109	414	110	514
18:00	95	466	133	387	146	518
18:15	94	470	92	366	123	494
18:30 18:45	114 163	476 445	80 82	397 405	135 114	445 422
19:00	99	378	112	417	122	436
19:15	100	401	123	416	74	400
19:30	83	414	88	413	112	409
19:45	96	416	94	439	128	409
20:00	122	417	111	451	86	394
20:15	113	384	120	439	83	417
20:30	85 97	376 388	114 106	413 375	112 113	431 443
21:00	89	388 377	99	362	109	443
21:15	105	353	94	357	97	416
21:30	97	338	76	343	124	404
21:45	86	328	93	347	97	357
22:00	65	315	94	339	98	338
22:15	90	333	80	344	85	310
22:30	87	331	80	334	77	317
	73	314	85 99	327 343	78 70	334 347
22:45	00					
22:45 23:00 23:15	83 88	299	70	3.3	92	3.,

All Segments
Thursday Hourly Count Friday Friday Hourly Count Saturday Saturday Hourly Count Time 00:00 00:15 1,048 1,449 263 278 830 383 1,452 00:30 210 773 289 961 348 1,380 00:45 723 878 1,348 218 373 215 242 212 838 742 1,274 1,203 01:00 638 348 01:15 153 583 311 206 178 1,138 1,037 01:45 130 486 652 299 816 119 405 169 02:30 159 758 02:45 337 115 419 690 03:00 109 318 406 293 402 188 630 03:30 03:45 266 297 104 417 596 554 04:00 142 106 04:30 04:45 520 332 390 359 400 486 467 05:15 80 128 05:30 05:45 92 109 460 453 113 119 06:15 06:30 131 147 638 116 147 625 650 121 546 620 06:45 07:00 07:15 180 732 164 658 198 735 180 819 738 132 07:30 193 985 155 872 805 08:00 258 1,082 240 1,050 858 08:15 233 926 1,098 1,086 267 310 08:30 1,147 977 08:45 1,017 318 1,208 1,114 238 09:00 1,195 276 248 1,102 1,138 1,041 1,095 316 1,206 09:30 1,208 1,175 09:45 10:00 1,231 1,316 1,245 1,348 1,249 1,381 298 312 10:15 10:30 10:45 11:00 318 323 1,432 327 308 1,431 1,527 1,451 1,532 1,575 1,590 11:15 11:30 11:45 12:00 12:15 12:30 12:45 356 1,636 382 1.632 318 1,603 1,686 1,768 1,737 385 1.654 455 1,604 1,735 414 408 410 404 1,728 1,729 1,738 13:15 13:30 535 1,708 472 1,813 408 1,826 1,894 1,529 425 1,839 1,484 1,471 1,900 1,960 1,908 1,905 13:45 382 457 478 14:00 353 459 14:15 498 486 476 1,900 14:30 393 1,883 15:00 415 484 482 1,837 15:15 15:30 408 501 465 1,743 15:45 390 1,654 433 1,963 431 1,761 16:00 16:15 16:30 16:45 17:00 17:15 17:30 440 418 391 557 408 1,817 582 452 1,593 1,563 1,826 1,824 525 548 1,882 1,853 524 462 1,606 1,870 17:45 18:00 1,627 1,666 464 499 1,775 1,714 463 1,825 1,796 421 488 18:15 18:30 1,629 1,658 422 390 1,760 1,765 407 1,578 18:45 19:00 1,768 1,803 1.559 1.617 19:15 1,661 1,670 1,742 19:30 19:45 369 1,664 383 449 1,760 444 1,726 1,671 400 1,654 1,835 20:00 20:15 20:30 1,587 440 1,660 409 1,433 488 1,732 422 1,681 20:45 333 1,345 390 1,525 458 1,775 1,355 371 368 1,595 1,650 1,771 1,739 21:15 360 1,346 437 320 21:30 1,322 1,341 1,317 1,765 1,746 1,691 1,688 444 22:00 323 412 414 1,351 1,795 1,683 22:30 1,695 1,657 339 1,314 483 1.746 420 22:45 319 1,271 425 1,623 23:00 23:15 461 377 409 417 357 299 1,247 1,635 1,629

SR A1A/Collins Ave N/O Lincoln Rd

 Day: Thursday
 City: Miami Beach

 Date: 6/16/2022
 Project #: FL22_140314_002

	ם	AILY 1	ΓΩΤΔ	15		NB		SB		EB		WB							Total
		AILI		LJ		10,070	:	10,698		0		0						2	0,768
AM Period	NB		SB		EB	WB		TO	TAL	PM Period	NB		SB		EB	,	WB	Т	OTAL
0:00	97		99			***		196		12:00	145		141				.,,	286	
0:15	102		90					192	l.	12:15	152		121					273	
0:30	70		89					159		12:30	143		153					296	
0:45	78	347	90	368				168	715	12:45	159	599	139	554				298	
1:00	69		72					141		13:00	131		140					271	
1:15 1:30	67 58		58 69					125 127		13:15 13:30	169 169		228 156					397 325	
1:45	46	240	55	254				101	494	13:45	133	602	148	672				281	
2:00	65	210	58	251				123	131	14:00	133	002	122	0,2				255	
2:15	49		49					98		14:15	134		121					255	
2:30	48		37					85		14:30	152		133					285	
2:45	34	196	48	192				82	388	14:45	142	561	147	523				289	
3:00	30		42					72		15:00 15:15	172		166					338	
3:15 3:30	37 25		40 28					77 53		15:15	179 142		164 161					343 303	
3:45	37	129	37	147				74	276	15:45	146	639	133	624				279	
4:00	26	123	25	117				51	270	16:00	162	033	158	02-1				320	
4:15	32		26					58		16:15	166		154					320	
4:30	40		30					70		16:30	148		152					300	
4:45	21	119	29	110				50	229	16:45	160	636	170	634				330	
5:00	30		18					48		17:00	135		129					264	
5:15	32		31					63		17:15	140		126					266	
5:30	35 42	139	36 42	127				71 84	266	17:30 17:45	131 130	536	157	EEE				288 273	
5:45 6:00	42	139	54	127				94	200	18:00	167	530	143 159	555				326	
6:15	63		37					100		18:15	137		146					283	
6:30	61		55					116		18:30	147		146					293	
6:45	71	235	83	229				154	464	18:45	130	581	168	619				298	
7:00	69		74					143		19:00	144		141					285	
7:15	64		82					146		19:15	142		164					306	
7:30	65		81					146		19:30	142		144					286	
7:45	67 75	265	107 116	344				174 191	609	19:45 20:00	145 178	573	159	608				304 364	
8:00 8:15	91		96					187		20:00	130		186 166					296	
8:30	85		108					193		20:30	133		141					274	
8:45	101	352	128	448				229	800	20:45	117	558	119	612				236	
9:00	92		110					202		21:00	121		122					243	
9:15	96		133					229		21:15	119		136					255	
9:30	96		105					201		21:30	105		118					223	
9:45	104	388	121	469				225	857	21:45	134	479	123	499				257	
10:00	89		122					211		22:00 22:15	136		122					258	
10:15 10:30	103 106		135 116					238 222		22:15	112 126		134 126					246 252	
10:30	121	419	158	531				279	950	22:45	110	484	136	518				252	
11:00	137	.13	139					276	550	23:00	130	.5-	144	0_0				274	
11:15	133		131					264		23:15	96		115					211	
11:30	141		140					281		23:30	114		112					226	
11:45	125	536	160	570				285	1106	23:45	117	457	120	491				237	948
TOTALS		3365		3789					7154	TOTALS		6705		6909					13614
SPLIT %		47.0%		53.0%					34.4%	SPLIT %		49.3%		50.7%					65.69
						NB		SB		EB		WB						-	Гotal
	D	AILY 1	ΓΟΤΑ	LS															0,768
						10,070		10,698		0		- 0							7,700
AM Peak Hour		11:45		11:45					11:45	PM Peak Hour		14:30		13:00					12:45
AM Pk Volume		565		575					1140	PM Pk Volume		645		672					1291
Pk Hr Factor		0.929		0.898					0.963	Pk Hr Factor		0.901		0.737					0.813
7 - 9 Volume		617		792	0		0		1409	4 - 6 Volume		1172		1189		0	()	2361
7 - 9 Peak Hour		8:00		8:00					8:00	4 - 6 Peak Hour		16:00		16:00					16:00
7 - 9 Pk Volume		352		448					800	4 - 6 Pk Volume		636		634					1270
Pk Hr Factor		0.871		0.875					0.873	Pk Hr Factor		0.958		0.932					0.962

SR A1A/Collins Ave N/O Lincoln Rd

 Day:
 Friday
 City:
 Miami Beach

 Date:
 6/17/2022
 Project #:
 FL22_140314_002

	D	AILY 1	ГОТА	LS		NB		SB		EB		WB								tal
			. •			11,465		12,610		0		0							24,	075
AM Period	NB		SB		EB	WB			TAL	PM Period	NB		SB		EB		WB			TAL
0:00 0:15	96 120		110 112					206 232		12:00 12:15	131 170		142 146						273 316	
0:30	120		113					233		12:30	132		161						293	
0:45	94	430	86	421				180	851	12:45	152	585	165	614					317	1199
1:00 1:15	84 81		99 92					183 173		13:00 13:15	178 161		166 190						344 351	
1:30	86		92					178		13:30	155		144						299	
1:45	76	327	58	341				134	668	13:45	178	672	153	653					331	1325
2:00 2:15	54 55		68 80					122 135		14:00 14:15	168 181		178 193						346 374	
2:30	53		79					132		14:30	195		157						352	
2:45	51	213	47	274				98	487	14:45	173	717	186	714					359	1431
3:00	47		47					94		15:00	164		197						361	
3:15 3:30	34 48		48 43					82 91		15:15 15:30	173 185		199 186						372 371	
3:45	42	171	53	191				95	362	15:45	145	667	177	759					322	1426
4:00	58		42					100		16:00	151		164						315	
4:15 4:30	48 47		42 43					90 90		16:15 16:30	214 204		233 255						447 459	
4:45	25	178	45 38	165				63	343	16:45	197	766	203	855					400	1621
5:00	34		36					70		17:00	241		185						426	
5:15	33		26					59		17:15	213		160						373	
5:30 5:45	28 38	133	40 54	156				68 92	289	17:30 17:45	177 155	786	177 200	722					354 355	1508
6:00	48	133	40	130				88	203	18:00	175	780	191	122					366	1308
6:15	53		42					95		18:15	159		171						330	
6:30	51	200	63	200				114	447	18:30	133	602	177	724					310	4227
6:45 7:00	57 64	209	63 86	208				120 150	417	18:45 19:00	136 122	603	185 153	724					321 275	1327
7:15	54		62					116		19:15	134		141						275	
7:30	60		67					127		19:30	127		168						295	
7:45 8:00	77 91	255	88 99	303				165 190	558	19:45 20:00	164 148	547	191 181	653					355 329	1200
8:15	78		102					180		20:15	172		196						368	
8:30	75		131					206		20:30	146		198						344	
8:45	104	348	116	448				220	796	20:45 21:00	133	599	151	726					284	1325
9:00 9:15	104 80		100 108					204 188		21:15	132 147		165 130						297 277	
9:30	102		105					207		21:30	137		155						292	
9:45	116	402	107	420				223	822	21:45	154	570	197	647					351	1217
10:00 10:15	112 120		110 120					222 240		22:00 22:15	151 134		167 212						318 346	
10:30	117		128					245		22:30	172		231						403	
10:45	147	496	160	518				307	1014	22:45	158	615	182	792					340	1407
11:00	141		148					289		23:00 23:15	158		204						362	
11:15 11:30	151 144		148 145					299 289		23:15	137 143		170 144						307 287	
11:45	153	589	160	601				313	1190	23:45	149	587	187	705					336	1292
TOTALS		3751		4046					7797	TOTALS		7714		8564						16278
SPLIT %		48.1%		51.9%					32.4%	SPLIT %		47.4%		52.6%						67.6%
	_	AILY 1	TOTA	16		NB		SB		ЕВ		WB							To	tal
	D	AILY	ЮТА	IL)		11,465		12,610		0		0							24,	075
AM Peak Hour		11:30		11:45					11:45	PM Peak Hour		16:15		16:15						16:15
AM Pk Volume		598		609					1195	PM Pk Volume		856		876						1732
Pk Hr Factor		0.879		0.946					0.945	Pk Hr Factor		0.888		0.859						0.943
7 - 9 Volume		603		751					1354	4 - 6 Volume		1552		1577						3129
7 - 9 Peak Hour		8:00		8:00					8:00	4 - 6 Peak Hour		16:15		16:15						16:15
7 - 9 Pk Volume Pk Hr Factor		348 0.837		448 0.855					796 0.905	4 - 6 Pk Volume Pk Hr Factor		856 0.888		876 0.859						1732 0.943
T K TH T dettol		0.037		0.033	0.00	70	0.000		0.303	I K III Tactor		0.000		0.033		0.000		0.000		0.343

SR A1A/Collins Ave N/O Lincoln Rd

Day: Saturday Date: 6/18/2022

City: Miami Beach
Project #: FL22_140314_002 SB WB EB Total **DAILY TOTALS** 25,046

						11,447	13,599	9	0		0						25,	046
AM Period	NB		SB		EB	WB	TC	TAL	PM Period	NB		SB		EB	٧	VB	TO	TAL
0:00	124		141				265		12:00	157		184					341	
0:15	147		154				301		12:15	122		178					300	
0:30	131		126				257	1	12:30	145		170					315	
0:45	138	540	152	573			290	1113	12:45	152	576	187	719				339	1295
1:00	136		152				288		13:00	139		162					301	
1:15	122		141				263		13:15 13:30	125		176					301	
1:30 1:45	115 118	491	147 137	577			262 255	1068	13:45	156 173	593	196 176	710				352 349	1303
2:00	101	491	132	5//			233	1000	14:00	173	393	195	/10				368	1303
2:15	101		106				208		14:15	174		193					367	
2:30	86		112				198		14:30	161		198					359	
2:45	80	369	65	415			145	784	14:45	179	687	174	760				353	1447
3:00	77	303	97	113			174	701	15:00	155	007	210	700				365	
3:15	64		104				168		15:15	143		177					320	
3:30	73		64				137		15:30	143		197					340	
3:45	60	274	74	339			134	613	15:45	130	571	176	760				306	1331
4:00	81		54				135		16:00	137		158					295	
4:15	71		65				136		16:15	156		169					325	
4:30	55		38				93		16:30	154		182					336	
4:45	61	268	67	224			128	492	16:45	146	593	213	722				359	1315
5:00	50		53				103		17:00	142		179					321	
5:15	68		45				113		17:15	144		191					335	
5:30	32		50				82		17:30	186		183					369	
5:45	43	193	41	189			84	382	17:45	156	628	197	750				353	1378
6:00	47		37				84		18:00	152		190					342	
6:15	46		52				98		18:15	120		190					310	
6:30	43		37				80		18:30	153		153					306	
6:45	59	195	68	194			127	389	18:45	136	561	184	717				320	1278
7:00	53		55				108		19:00	159		171					330	
7:15	58		74				132		19:15	157		207					364	
7:30	59	225	90	200			149	F2.4	19:30	151	606	181	761				332	1267
7:45	65	235	80	299			145	534	19:45 20:00	139	606	202	761				341 305	1367
8:00	60		85				145		20:00	137		168						
8:15 8:30	74 80		82 92				156 172		20:30	152 117		187 160					339 277	
8:45	73	287	113	372			186	659	20:45	143	549	202	717				345	1266
9:00	85	201	112	312			197	033	21:00	131	343	172	/1/				303	1200
9:15	75		119				194		21:15	150		190					340	
9:30	104		101				205		21:30	176		168					344	
9:45	90	354	114	446			203	800	21:45	143	600	212	742				355	1342
10:00	109	<u> </u>	131	. 10			240	230	22:00	138		178	. 12				316	10 12
10:15	121		134				255		22:15	146		174					320	
10:30	127		125				252		22:30	164		179					343	
10:45	141	498	162	552			303	1050	22:45	170	618	201	732				371	1350
11:00	138		143				281		23:00	152		187					339	
11:15	152		170				322		23:15	142		183					325	
11:30	137		115				252		23:30	128		160					288	
11:45	175	602	178	606			353	1208	23:45	137	559	193	723				330	1282
TOTALS		4306		4786				9092	TOTALS		7141		8813					15954
SPLIT %		47.4%		52.6%				36.3%	SPLIT %		44.8%		55.2%					63.7%

	DAILY TO	TAIC		NB	SB	EB	WB				Total
	DAILT TO	IALS	1	11,447	13,599	0	0				25,046
AM Peak Hour	11:15	11:45			11:45	PM Peak Hour	14:00	14:15			14:00
AM Pk Volume	621	710			1309	PM Pk Volume	687	775			1447
Pk Hr Factor	0.887	0.965			0.927	Pk Hr Factor	0.959	0.923			0.983
7 - 9 Volume	522	671	0	0	1193	4 - 6 Volume	1221	1472	0	0	2693
7 - 9 Peak Hour	8:00	8:00			8:00	4 - 6 Peak Hour	17:00	16:45			16:45
7 - 9 Pk Volume	287	372			659	4 - 6 Pk Volume	628	766			1384
Pk Hr Factor	0.897	0.823			0.886	Pk Hr Factor	0.844	n 899			0.938

Lincoln Rd E/O SR A1A/Collins Ave

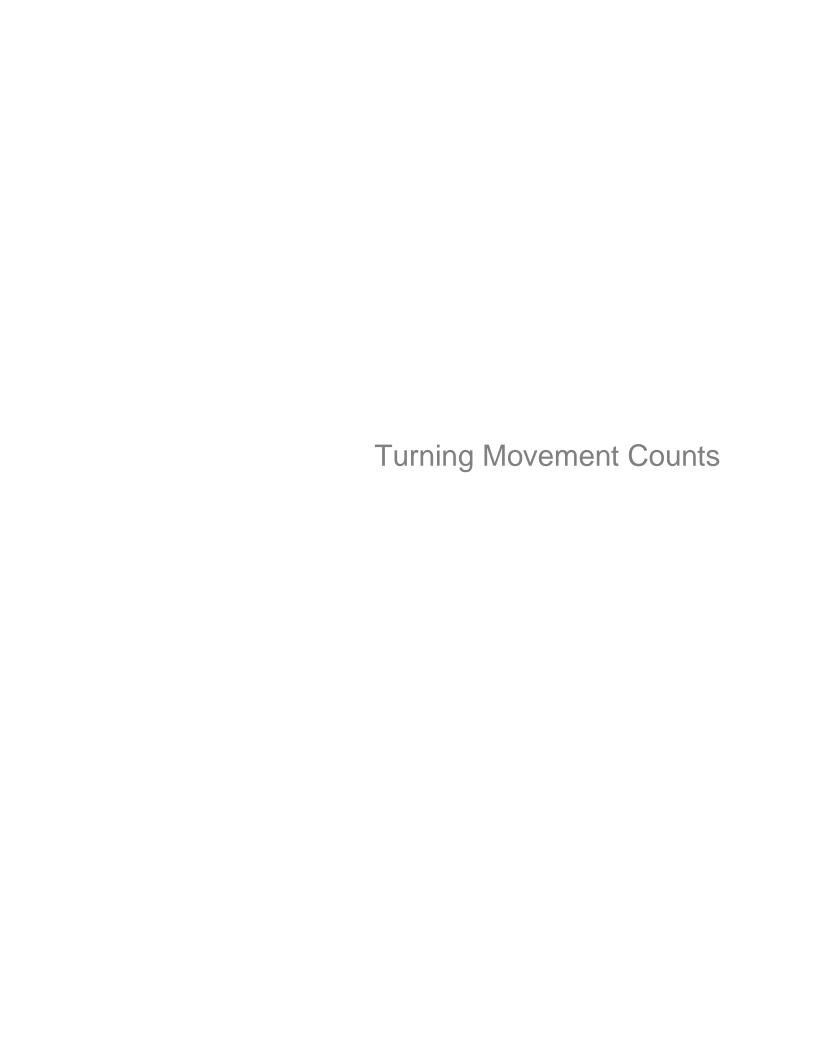
Day: Thursday Date: 6/16/2022

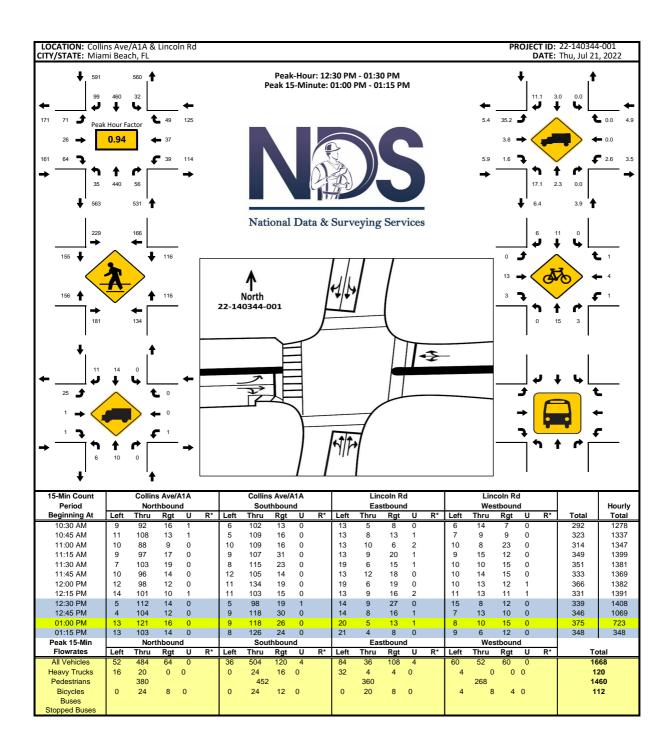
City: Miami Beach
Project #: FL22_140314_003

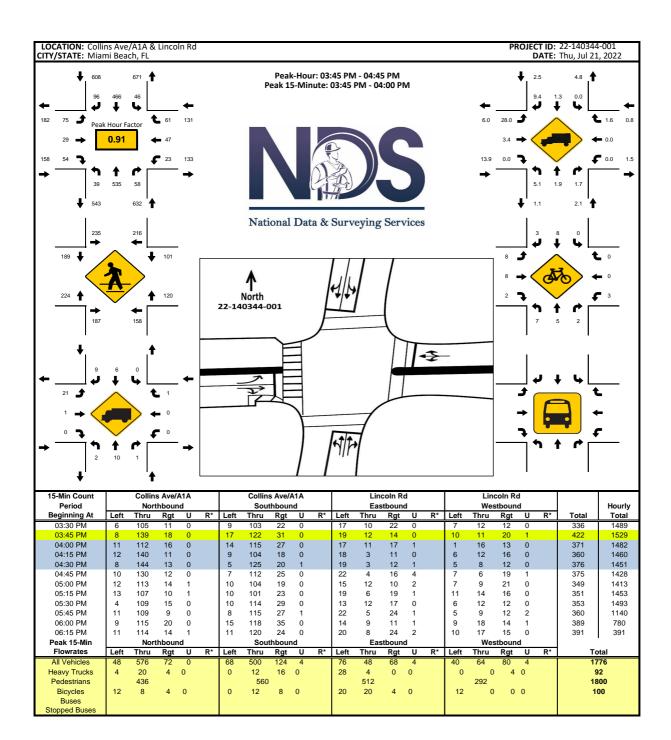
	DAILY TOTALS			NB		SB		EB	WE	_						otal
				0		0		3,538	3,67	8					7,2	216
AM Period	NB SB	EB		WB		_	TAL	PM Period	NB	SB	EB		WB			TAL
0:00 0:15		30 7		36 11		66 18	Į.	12:00 12:15			58 54		56 70		114 124	
0:30		22		29		51		12:30			69		49		118	
0:45 1:00		22 24	81	25 30	101	47 54	182	12:45 13:00			55 64	236	55 50	230	110 114	466
1:15		14		14		28		13:15			90		48		138	
1:30		14	67	19	77	33	144	13:30			52	250	61	207	113	466
1:45 2:00		15 8	67	14 9	77	29 17	144	13:45 14:00			53 55	259	48 43	207	101 98	466
2:15		9		12		21		14:15			53		48		101	
2:30 2:45		5 6	28	7 13	41	12 19	69	14:30 14:45			64 38	210	44 42	177	108 80	387
3:00		8	20	8	41	16	03	15:00			27	210	50	1//	77	367
3:15		6		8		14		15:15			67		52		119	
3:30 3:45		2 4	20	2 4	22	4 8	42	15:30 15:45			51 52	197	54 59	215	105 111	412
4:00		7		5		12		16:00			65		55		120	
4:15 4:30		3 9		3 9		6 18		16:15 16:30			43 56		55 50		98 106	
4:45		5	24	5	22	10	46	16:45			56	220	66	226	122	446
5:00		6		12		18		17:00			49		65		114	
5:15 5:30		5 5		2 7		7 12		17:15 17:30			57 61		54 37		111 98	
5:45		17	33	12	33	29	66	17:45			86	253	63	219	149	472
6:00		17		13		30		18:00 18:15			49		46		95	
6:15 6:30		11 15		20 16		31 31		18:30			42 58		52 56		94 114	
6:45		14	57	12	61	26	118	18:45			93	242	70	224	163	466
7:00 7:15		13 18		24 15		37 33		19:00 19:15			49 57		50 43		99 100	
7:30		17		30		47		19:30			41		42		83	
7:45		37	85	56	125	93	210	19:45			47	194	49	184	96	378
8:00 8:15		33 33		34 47		67 80		20:00 20:15			64 43		58 70		122 113	
8:30		22		24		46		20:30			45		40		85	
8:45 9:00		46 33	134	43 39	148	89 72	282	20:45 21:00			40 43	192	57 46	225	97 89	417
9:15		39		48		87		21:15			48		57		105	
9:30		48	457	51	101	99	220	21:30 21:45			40	474	57	200	97	277
9:45 10:00		37 37	157	43 37	181	80 74	338	22:00			40 33	171	46 32	206	86 65	377
10:15		41		39		80		22:15			47		43		90	
10:30 10:45		48 46	172	53 65	194	101 111	366	22:30 22:45			41 35	156	46 38	159	87 73	315
11:00		62	1/2	63	134	125	300	23:00			36	156	47	133	83	313
11:15		43		76		119		23:15			46		42		88	
11:30 11:45		56 45	206	45 62	246	101 107	452	23:30 23:45			35 27	144	35 31	155	70 58	299
TOTALS			1064		1251		2315	TOTALS				2474		2427		4901
SPLIT %			46.0%		54.0%		32.1%	SPLIT %				50.5%		49.5%		67.9%
	DAILY TOTALS			NB		SB		EB	WE	3					To	otal
	DAILY TOTALS			0		0		3,538	3,67							216
AM Peak Hour			11:45		10:30		11:45	PM Peak Hour				12:30		16:15		12:30
AM Pk Volume			226		257		463	PM Pk Volume				278		236		480
Pk Hr Factor 7 - 9 Volume	0 0		0.819 219		0.845 273		0.933 492	Pk Hr Factor 4 - 6 Volume	0		0	0.772 473		0.894 445		0.870 918
7 - 9 Peak Hour			8:00		7:30		7:30	4 - 6 Peak Hour				17:00		16:15		17:00
7 - 9 Pk Volume			134		167		287	4 - 6 Pk Volume				253		236		472
Pk Hr Factor	0.000 0.000		0.728		0.746		0.772	Pk Hr Factor	0.00	0 0	0.000	0.735		0.894		0.792

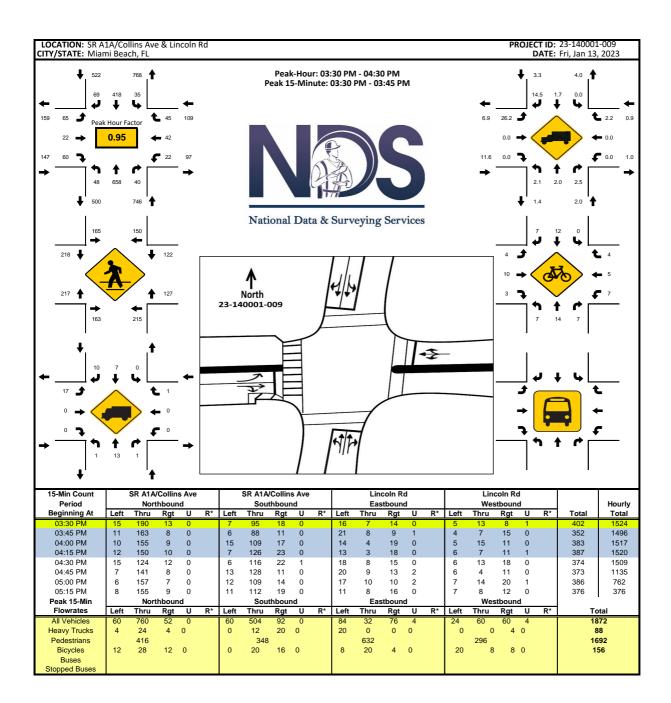
Lincoln Rd E/O SR A1A/Collins Ave

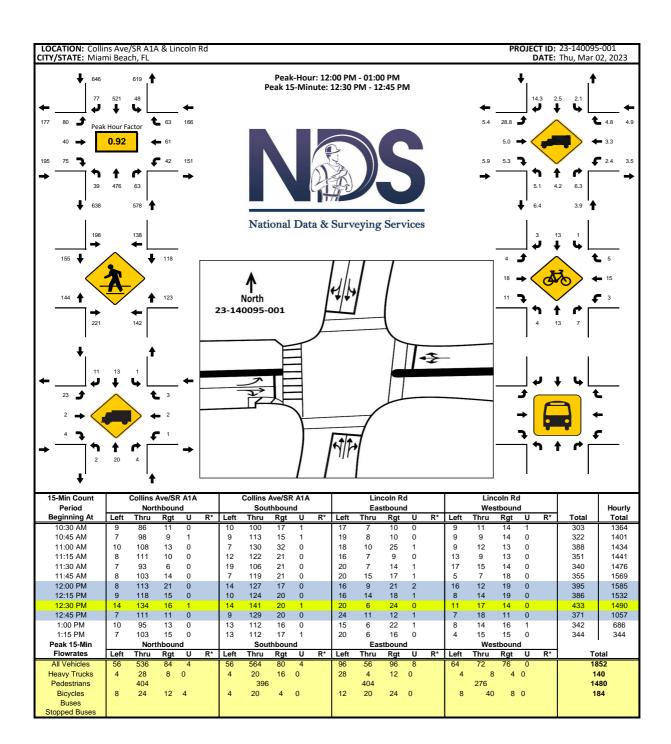
Day: Friday Date: 6/17/2022

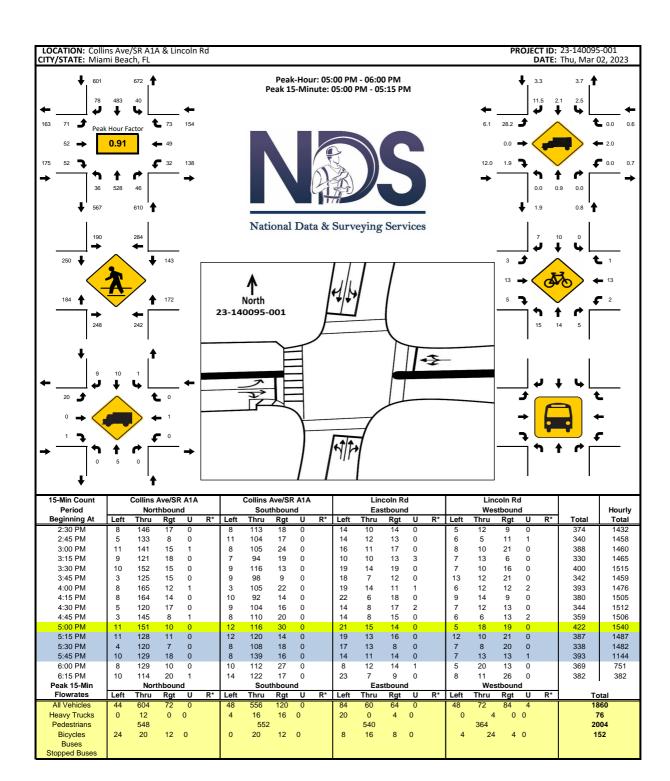

City: Miami Beach
Project #: FL22_140314_003

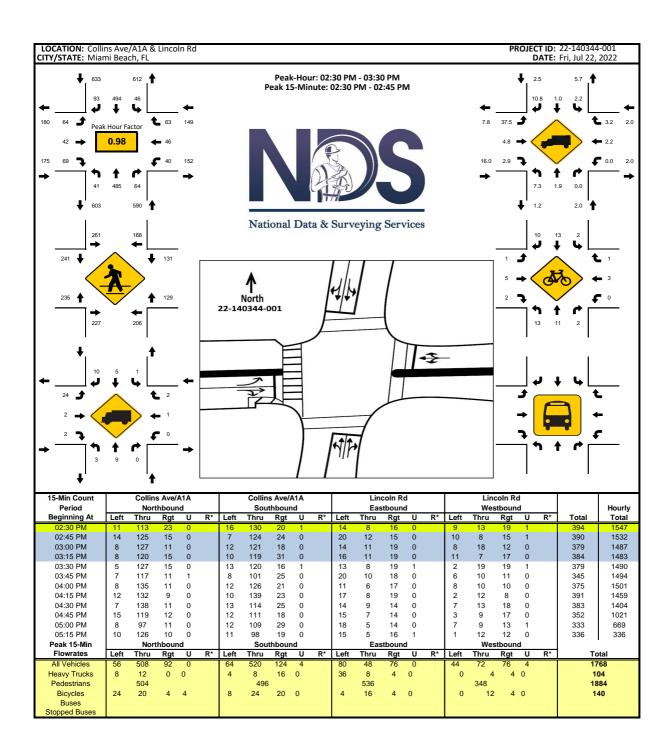

	DAILY TOTALS			NB		SB		EB		WB							otal
				0		0		3,722	3	3,737							459
AM Period 0:00	NB SB	EB 21		WB 36		TO 57	TAL	PM Period 12:00	NB	:	SB	EB 53		WB 59		TO 112	TAL
0:15		22		24		46	l	12:15				76		63		139	
0:30 0:45		27 17	87	29 21	110	56 38	197	12:30 12:45				58 50	237	59 37	218	117 87	455
1:00		29	0/	30	110	59	197	13:00				57	237	65	210	122	455
1:15		20		19		39 28		13:15 13:30				64		57 57		121	
1:30 1:45		10 21	80	18 23	90	28 44	170	13:45				69 57	247	57 69	248	126 126	495
2:00		15		9		24		14:00				61		52		113	
2:15 2:30		17 13		17 14		34 27		14:15 14:30				60 63		64 71		124 134	
2:45		7	52	10	50	17	102	14:45				96	280	62	249	158	529
3:00 3:15		7 4		8 5		15 9		15:00 15:15				61 63		62 72		123 135	
3:30		6		7		13		15:30				51		79		130	
3:45 4:00		2	21	3	23	7 5	44	15:45 16:00				52 37	227	59 39	272	111 76	499
4:15		9		7		16		16:15				53		57		110	
4:30 4:45		10 7	28	7 10	27	17 17	55	16:30 16:45				63 67	220	60 58	214	123 125	434
5:00		3	20	5	21	8	33	17:00				48	220	74	214	122	434
5:15 5:30		10 12		11 12		21 24		17:15 17:30				64 75		87 56		151 131	
5:45		10	35	7	35	24 17	70	17:30 17:45				75 53	240	56	273	109	513
6:00		10		21		31		18:00				59		74		133	
6:15 6:30		12 15		9 18		21 33		18:15 18:30				39 32		53 48		92 80	
6:45		26	63	18	66	44	129	18:45				45	175	37	212	82	387
7:00 7:15		23 12		25 13		48 25		19:00 19:15				57 64		55 59		112 123	
7:30		18		10		28		19:30				43		45		88	
7:45 8:00		36 26	89	43 24	91	79 50	180	19:45 20:00				54 66	218	40 45	199	94 111	417
8:15		33		20		53		20:15				58		62		120	
8:30 8:45		28 53	140	33 37	114	61 90	254	20:30 20:45				65 54	243	49 52	208	114 106	451
9:00		42	140	30	114	72	234	21:00				43	243	56	200	99	431
9:15		26		34		60		21:15 21:30				43		51		94	
9:30 9:45		40 43	151	33 32	129	73 75	280	21:45				39 55	180	37 38	182	76 93	362
10:00		43		47		90		22:00				43		51		94	
10:15 10:30		39 32		48 31		87 63		22:15 22:30				44 40		36 40		80 80	
10:45		43	157	51	177	94	334	22:45				48	175	37	164	85	339
11:00 11:15		53 50		53 74		106 124		23:00 23:15				53 32		46 38		99 70	
11:30		34		33		67		23:30				39		34		73	
11:45		65	202	58	218	123	420	23:45				51	175	50	168	101	343
TOTALS			1105		1130		2235	TOTALS					2617		2607		5224
SPLIT %			49.4%		50.6%		30.0%	SPLIT %					50.1%		49.9%		70.0%
	DAILY TOTALS			NB		SB		EB		WB							otal
				0		0		3,722	3	,737						7,4	459
AM Peak Hour			11:45		11:45 239		11:45 491	PM Peak Hour PM Pk Volume					14:30 283		16:30		14:30 550
AM Pk Volume Pk Hr Factor			252 0.829		0.948		491 0.883	Pk Hr Factor					283 0.737		279 0.802		0.870
7 - 9 Volume	0 0		229		205		434	4 - 6 Volume		0	0		460		487		947
7 - 9 Peak Hour			8:00		7:45		8:00	4 - 6 Peak Hour 4 - 6 Pk Volume					16:45		16:30		16:45
7 - 9 Pk Volume Pk Hr Factor			140 0.660		120 0.698		254 0.706	Pk Hr Factor					254 0.847		279 0.802		529 0.876


Lincoln Rd E/O SR A1A/Collins Ave

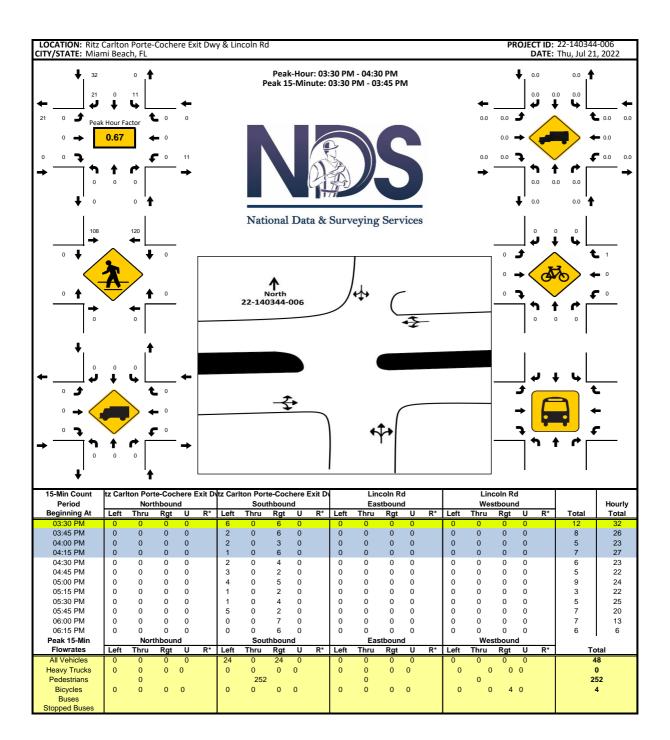

Day: Saturday Date: 6/18/2022 City: Miami Beach
Project #: FL22_140314_003

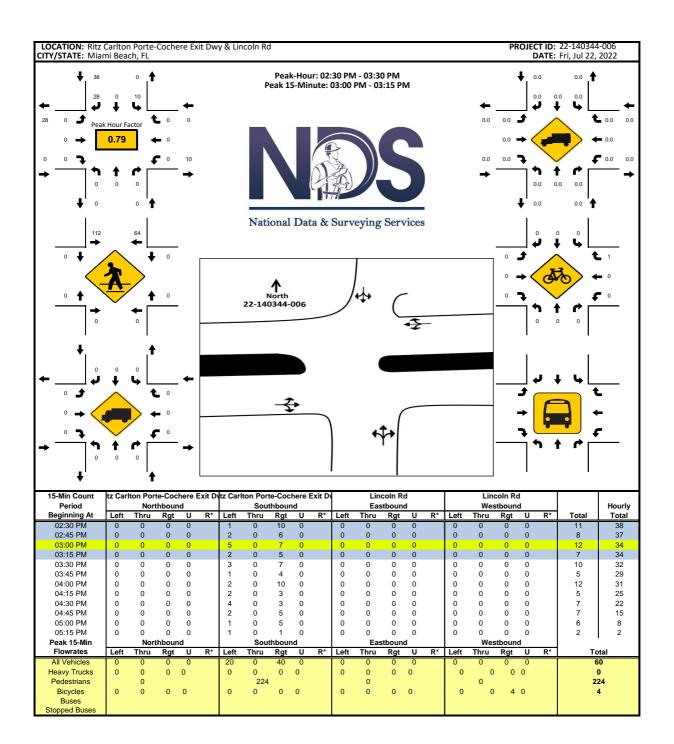

	DAILY TO	TAIS			NB		SB		EB	WB							otal
	DAILI IO	IALS			0		0		3,838	3,789						7,€	627
AM Period	NB S	SB	EB		WB		ТО	TAL	PM Period	NB	SB	EB		WB		то	TAL
0:00 0:15			44 39		36 43		80 82		12:00 12:15			43 63		46 54		89 117	
0:30			48		43 43		91		12:30			72		65		137	
0:45			36	167	47	169	83	336	12:45			72	250	58	223	130	473
1:00			32		28		60		13:00			54		44		98	
1:15 1:30			21 25		27 29		48		13:15 13:30			53 55		54 46		107 101	
1:45			25 17	95	29 27	111	54 44	206	13:45			71	233	58	202	129	435
2:00			18	- 55	26		44	200	14:00			71	200	48	202	119	.55
2:15			18		20		38		14:15			49		60		109	
2:30 2:45			8 5	49	9 6	61	17 11	110	14:30 14:45			54 64	238	54 58	220	108 122	458
3:00			14	49	11	01	25	110	15:00			50	230	67	220	117	436
3:15			9		11		20		15:15			78		61		139	
3:30			8		2		10		15:30			59		66		125	
3:45 4:00			9	40	10 3	34	19 7	74	15:45 16:00			63 56	250	62 57	256	125 113	506
4:15			9		9		18		16:15			57		57 57		114	
4:30			8		4		12		16:30			74		73		147	
4:45			9	30	12	28	21	58	16:45			45	232	61	248	106	480
5:00			12		6		18		17:00 17:15			54		55		109	
5:15 5:30			8 26		7 14		15 40		17:30			68 46		59 54		127 100	
5:45			12	58	19	46	31	104	17:45			57	225	53	221	110	446
6:00			8		10		18		18:00			72		74		146	
6:15			12		11		23		18:15			57		66		123	
6:30 6:45			21 27	68	14 24	59	35 51	127	18:30 18:45			61 57	247	74 57	271	135 114	518
7:00			9	00	15	33	24	127	19:00			63	247	59	2/1	122	318
7:15			34		29		63		19:15			34		40		74	
7:30			30		28		58	204	19:30			56		56		112	10.5
7:45 8:00			31 28	104	25 19	97	56 47	201	19:45 20:00			54 46	207	74 40	229	128 86	436
8:15			26		23		49		20:15			39		44		83	
8:30			23		28		51		20:30			59		53		112	
8:45			29	106	23	93	52	199	20:45			44	188	69	206	113	394
9:00 9:15			30 37		33 25		63 62		21:00 21:15			49 49		60 48		109 97	
9:30			27		31		58		21:30			62		62		124	
9:45			27	121	31	120	58	241	21:45			56	216	41	211	97	427
10:00			35		39		74		22:00			49		49		98	
10:15 10:30			38 42		43 43		81 85		22:15 22:30			50 37		35 40		85 77	
10:30			44	159	45 47	172	91	331	22:45			44	180	34	158	77 78	338
11:00			56	-	47		103		23:00			33		37		70	
11:15			50		45		95		23:15			48		44		92	
11:30 11:45			33 60	199	33 58	183	66 118	382	23:30 23:45			49 46	176	45 45	171	94 91	347
TOTALS			- 00	1196	30	1173	110	2369	TOTALS			70	2642	73	2616	<u> </u>	5258
SPLIT %				50.5%		49.5%		31.1%	SPLIT %				50.2%		49.8%		68.9%
					ALD		CB			- 11/2							
	DAILY TO	TALS			NB 0		SB 0		EB 3,838	WB 3,789							otal 627
							- 0		3,038	5,/89						7,0) <u>L</u>
AM Peak Hour				11:45		11:45		11:45	PM Peak Hour				12:15		18:00		18:00
AM Pk Volume				238		223		461	PM Pk Volume				261		271		518
Pk Hr Factor	0	0		0.826 210		0.858 190		0.841	Pk Hr Factor	0			0.906 457		0.916 469		0.887 926
7 - 9 Volume 7 - 9 Peak Hour				7:15		7:15		400 7:15	4 - 6 Volume 4 - 6 Peak Hour				457 16:30		469 16:00		926 16:30
7 - 9 Pk Volume				123		101		224	4 - 6 Pk Volume				241		248		489
Pk Hr Factor	0.000	0.000		0.904		0.871		0.889	Pk Hr Factor	0.000	0.000)	0.814		0.849		0.832

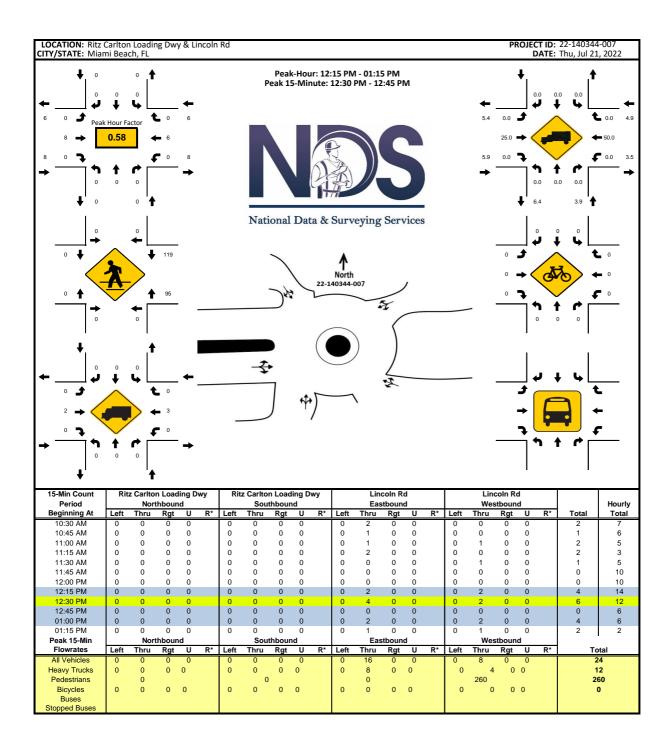


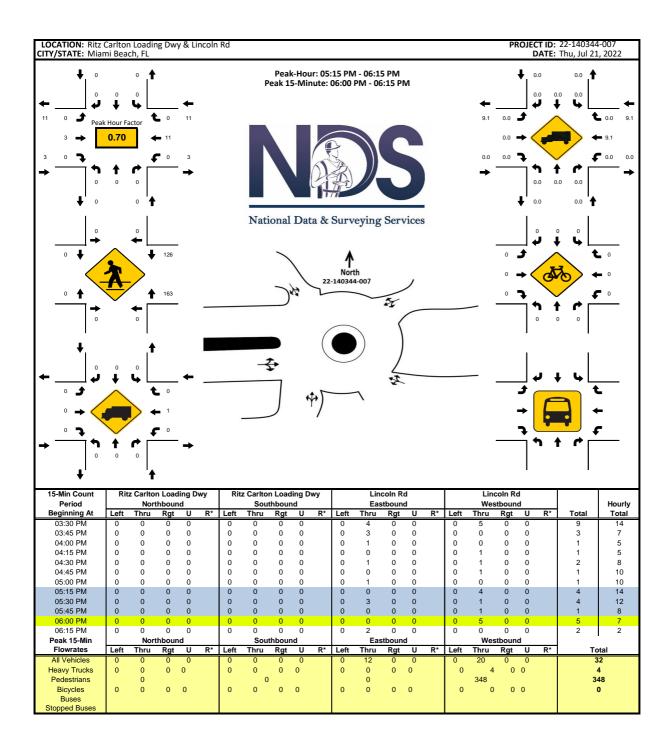


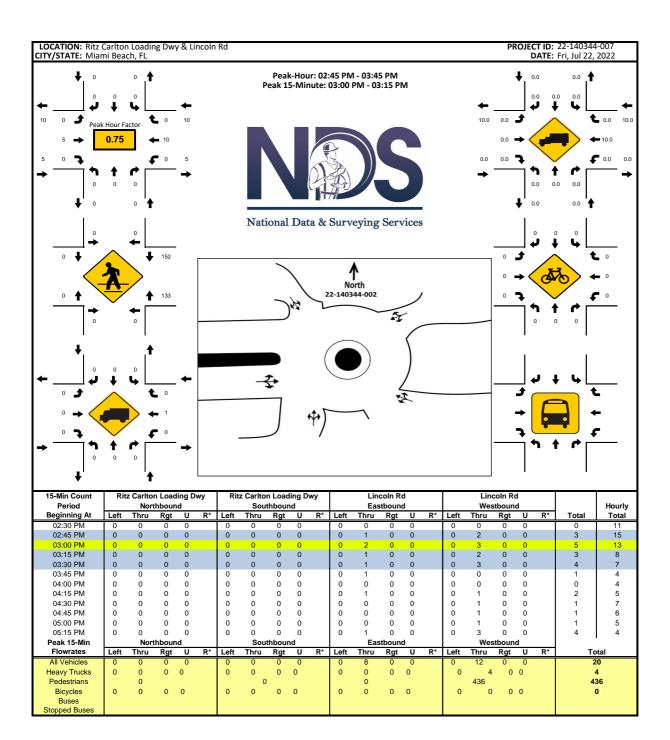


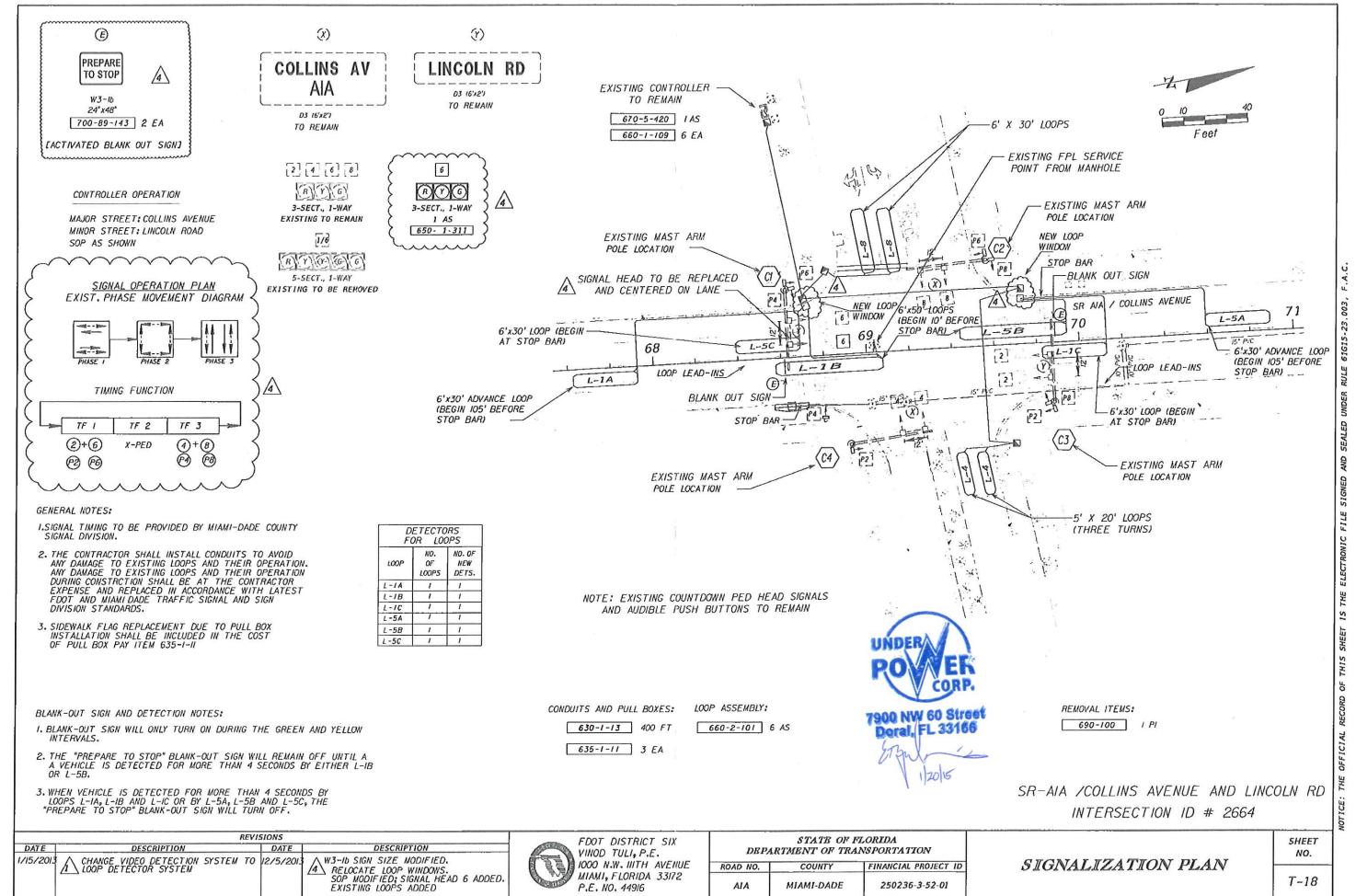











2019 PEAK SEASON FACTOR CATEGORY REPORT - REPORT TYPE: ALL CATEGORY: 8700 MIAMI-DADE NORTH

MOCF: 0.97

onizati. Oroc mimi znez nen			MOCF: 0.97
WEEK	DATES	SF	PSCF
1	01/01/2019 - 01/05/2019	 1.03	1.06
2	01/06/2019 - 01/12/2019	1.02	1.05
3	01/13/2019 - 01/19/2019	1.01	1.04
4	01/20/2019 - 01/26/2019	1.00	1.03
* 5	01/27/2019 - 02/02/2019	0.98	1.01
* 6	02/03/2019 - 02/09/2019	0.97	1.00
* 7 * 8	02/10/2019 - 02/16/2019 02/17/2019 - 02/23/2019	0.96 0.96	0.99 0.99
r 9	02/17/2019 - 02/23/2019	0.96	0.99
*10	03/03/2019 - 03/09/2019	0.96	0.99
*11	03/10/2019 - 03/16/2019	0.97	1.00
*12	03/17/2019 - 03/23/2019	0.97	1.00
*13	03/24/2019 - 03/30/2019	0.97	1.00
*14	03/31/2019 - 04/06/2019	0.97	1.00
*15	04/07/2019 - 04/13/2019	0.98	1.01
*16 *17	04/14/2019 - 04/20/2019	0.98	1.01
18	04/21/2019 - 04/27/2019 04/28/2019 - 05/04/2019	0.98 0.99	1.01 1.02
19	05/05/2019 - 05/11/2019	0.99	1.02
20	05/12/2019 - 05/18/2019	1.00	1.03
21	05/19/2019 - 05/25/2019	1.00	1.03
22	05/26/2019 - 06/01/2019	1.01	1.04
23	06/02/2019 - 06/08/2019	1.01	1.04
24	06/09/2019 - 06/15/2019	1.02	1.05
25	06/16/2019 - 06/22/2019	1.02	1.05
26 27	06/23/2019 - 06/29/2019 06/30/2019 - 07/06/2019	1.02	1.05
28	07/07/2019 - 07/13/2019	1.02 1.03	1.05 1.06
29	07/14/2019 - 07/20/2019	1.03	1.06
30	07/21/2019 - 07/27/2019	1.03	1.06
31	07/28/2019 - 08/03/2019	1.02	1.05
32	08/04/2019 - 08/10/2019	1.02	1.05
33	08/11/2019 - 08/17/2019	1.02	1.05
34	08/18/2019 - 08/24/2019	1.02	1.05
35 36	08/25/2019 - 08/31/2019 09/01/2019 - 09/07/2019	1.02 1.03	1.05 1.06
37	09/08/2019 - 09/14/2019	1.03	1.06
38	09/15/2019 - 09/21/2019	1.03	1.06
39	09/22/2019 - 09/28/2019	1.02	1.05
40	09/29/2019 - 10/05/2019	1.01	1.04
41	10/06/2019 - 10/12/2019	1.00	1.03
42	10/13/2019 - 10/19/2019	0.99	1.02
43 44	10/20/2019 - 10/26/2019	1.00	1.03 1.03
45	10/27/2019 - 11/02/2019 11/03/2019 - 11/09/2019	1.00 1.01	1.03
46	11/10/2019 - 11/16/2019	1.01	1.04
47	11/17/2019 - 11/23/2019	1.02	1.05
48	11/24/2019 - 11/30/2019	1.02	1.05
49	12/01/2019 - 12/07/2019	1.02	1.05
50	12/08/2019 - 12/14/2019	1.03	1.06
51	12/15/2019 - 12/21/2019	1.03	1.06
52	12/22/2019 - 12/28/2019	1.02	1.05
53	12/29/2019 - 12/31/2019	1.01	1.04
4 DD7.T	Z CHACON		

^{*} PEAK SEASON

Signal Timings

1/16/2015

3:52:04 PM

C:\e\Projects\25023615201\signals\PLANSG12Rev4.dgn

TOD Schedule Report

for 2664: Collins Av&Lincoln Rd

Print Date: 10/4/2021

<u>Asset</u>		Intersection	<u>ı</u>	į	TOD Schedule	Op Mode	<u>Plan</u>	<u>#</u>	<u>Cycle</u>	<u>Offset</u>	TOD Setting	<u>Active</u> <u>PhaseBank</u>	Active Maximum
2664	Colli	ns Av&Linc	oln Rd	D	OW-2	TOD		N/A	0	0	N/A	0	Max 0
			<u> </u>	Splits_									
<u>PH 1</u>	<u>PH 2</u>	<u>PH 3</u>	<u>PH 4</u>	<u>PH 5</u>	<u>PH 6</u>	<u>PH 7</u>	<u>PH 8</u>						
-	NBT	-	EBT	-	SBT	-	WBT	Phase	9 - PED c:	rossing	g is adde	ed in Synchi	ro to
0	0	0	0	0	0	0	0					are added pe	_
	^		\rightarrow		T		\leftarrow		/3. As a : d to 161.	result	, total (cycle length	ıis
					•								

Active Phase	Bank: Pha	se Bank 1						
<u>Phase</u>	<u>Walk</u>	Don't Walk	Min Initial	Initial Veh Ext		<u>Max 2</u>	<u>Yellow</u>	Red
	Phase Bank							
	1 2 3	1 2 3	1 2 3	1 2 3	1 2 3	1 2 3		
1 -	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0	0
2 NBT	0 - 5 - 5	0 - 24 - 24	16 - 7 - 7	1 - 1 - 1	35 - 35 - 35	0 - 35 - 31	4	2.5
3 -	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0	0
4 EBT	0 - 5 - 5	0 - 17 - 17	7 - 7 - 7	2.5 - 2.5 - 2.5	22 - 30 - 29	50 - 40 - 32	4	2.2
5 -	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0	0
6 SBT	0 - 5 - 5	0 - 24 - 24	16 - 7 - 7	1 - 1 - 1	35 - 35 - 35	0 - 35 - 31	4	2.5
7 -	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0	0
8 WBT	0 - 5 - 5	0 - 17 - 17	7 - 7 - 7	2.5 -2.5 - 2.5	22 - 30 - 29	50 - 40 - 32	4	2.2

Last In Service Date: unknown **Permitted Phases** <u>12345678</u> -234-6-8 Default External Permit 0 -234-6-8 External Permit 1 -234-6-8 External Permit 2 -234-6-8

Print Time:

3:14 PM Active

Print Date: 10/4/2021

for 2664: Collins Av&Lincoln Rd

Print Time: 3:14 PM

					Green	Time					
<u>Current</u>		1	2	3	4	5	6	7	8		
TOD Schedule Plan	<u>Cycle</u>	-	NBT	-	EBT	-	SBT	-	WBT	Ring Offset	<u>Offset</u>
1	100	0	51	0	37	0	51	0	37	0	74
2	100	0	51	0	37	0	51	0	37	0	68
3	100	0	51	0	37	0	51	0	37	0	20
4	100	0	51	0	37	0	51	0	37	0	57
5	110	0	59	0	39	0	59	0	39	0	8
6	130	0	76	0	42	0	76	0	42	0	0
7	120	0	66	0	42	0	66	0	42	0	0
8	130	0	78	0	40	0	78	0	40	0	81
11	90	0	45	0	33	0	45	0	33	0	27
12	90	0	49	0	29	0	49	0	29	0	42
13	90	0	45	0	33	0	45	0	33	0	42
14	120	0	69	0	39	0	69	0	39	0	76
15	120	0	74	0	34	0	74	0	34	0	70
20	100	0	44	0	44	0	44	0	44	0	53
22	100	0	51	0	37	0	51	0	37	0	81
25	140	0	83	0	45	0	83	0	45	0	81

Local TOD Schedule										
<u>Time</u>	<u>Plan</u>	<u>DOW</u>								
0000	1	Su M T W Th								
0000	7	F S								
0300	4	Su								
0300	3	MTWThFS								
0700	Free	Su M T W Th F S								
0930	2	Su M T W Th								
1000	5	Su F S								
1500	Free	M T W Th								
1500	8	Su F S								
1500	8	Su F S								
1800	20	MTWThF								
2200	6	MTWThF								

Currer	Current Time of Day Function										
<u>Time</u>	<u>Function</u>	Settings *	Day of Week								
0000	TOD OUTPUTS	8	SuM T W ThF S								
0000	TOD LOCAL MULTIFU	4	SuM T W ThF S								
0000	PED RECALL		SuM T W								
0300	TOD OUTPUTS	874	SuM T W ThF S								
0500	TOD LOCAL MULTIFU		SuM T W ThF S								
0530	PED RECALL	84	M T W ThF								
0600	TOD OUTPUTS	872-	SuM T W ThF S								
0700	TOD OUTPUTS		SuM T W ThF S								
0930	TOD OUTPUTS	-72-	SuM T W ThF S								
1500	TOD OUTPUTS		SuM T W ThF S								
2200	TOD OUTPUTS	8	SuM T W ThF S								

Local	Local Time of Day Function									
<u>Time</u>	<u>Function</u>	Settings *	Day of Week							
0000	TOD OUTPUTS	8	SuM T W ThF S							
0000	TOD LOCAL MULTIFUNC	T4	SuM T W ThF S							
0000	PED RECALL	84	ThF S							
0000	PED RECALL		SuM T W							
0200	PED RECALL		ThF S							
0300	TOD OUTPUTS	874	SuM T W ThF S							
0500	PED RECALL	84	Su S							
0500	TOD LOCAL MULTIFUNC	T	SuM T W ThF S							
0530	PED RECALL	84	M T W ThF							
0600	TOD OUTPUTS	872-	SuM T W ThF S							
0700	TOD OUTPUTS		SuM T W ThF S							
0930	TOD OUTPUTS	-72-	SuM T W ThF S							
1500	TOD OUTPUTS		SuM T W ThF S							
2200	TOD OUTPUTS	8	SuM T W ThF S							

* Settings
Blank - FREE - Phase Bank 1, Max 1
Blank - Plan - Phase Bank 1, Max 2
1 - Phase Bank 2, Max 1
2 - Phase Bank 2, Max 2
3 - Phase Bank 3, Max 1
4 - Phase Bank 3, Max 2
5 - EXTERNAL PERMIT 1
6 - EXTERNAL PERMIT 2
7 - X-PED OMIT
8 - TBA

TOD Schedule Report

Print Date:	for 2664: Collins Av&Lincoln Rd	Print Time:
10/4/2021		3:14 PM

 No Calendar	Defined/Enabled	d

			and the second section of the section of	L OPERAT	mannagarita (titalibumakan mbaneri sa	1			enting the white entry year of the fire] N
	Direction	SB	NB	WB	EB		Ped I	-leads	}	l N
Timing Phases	Head No.	6	2	8	4	P6	P2	P8	P4	Movements/Display/Actuatio
	Dwell									
	С					<u> </u>				
	e									
	a r								<u> </u>	
	,									
o para para y approximate approximate proprieta de la compansa de la compansa de la compansa de la compansa de	o				ewondary/columnstation/d/peptitionagy/dolon-freeziging-					
	Dwell									
	с							<u> </u>		
	e							-	<u> </u>	
	a									
	<u> </u>					ļi		-		
	0									ł
(2+6)	Dwell	G	G	R	R	DW	DW	DW	DW	
(270)	2 4+8	Y	Y	R	R	DW	DW	DW		l
N/SB	C 4+0	<u> </u>			11	DVV	DVV	DVV	DVV	
NOB	ę								<u> </u>	▼ 6 2 ↑
Collins Av	a r									
00111110711	t									
(RECALL)	0									
	Dwell	R	R	R	R	W/F	W/F	W/F	W/F	r
X-PED	c 4+8	R	R	R	R	DW	DW	DW	DW	 P4
	1									!
	e a									P2 P6 C
ACTUATED	г									
	t o									P8
Magazin 1888 in the property of the contract o			April and an extensive and an extensive about			DVA	5147	DVA	DIA	
(4+8)	Dwell	R	R	G	G	DW	DW	DW		
EAND	c 2+6	R	R	Y	Y	DW	DW	DW	DW	8
E/WB	e									← ———
22 Street	a r					1				
22 3(166)	_t									
(ACTUATED)	٥					1				i <u>□</u>
And the same of th	Dwell			arangan da arang dan dagan da arang da						30.000
	6			, ,						
	C	PEDS	HAVE A DUAI	MODE OPER	RARTION:	***************************************				
	e a		URRENT OR			IG.				
	r	SHOV	VN HERE IS TI	HE EXCLUSIV	E ONLY					
	t									
gravitas seguinas se					*********					
Flashing Op	eration	FY	FY	FR	FR					Page 1 of 1
			i-Dade Cou	nty Public	Works	Dep	artm	ent		
erregizados securios (entresa, entresa esta entresa entresa entresa entresa entresa entresa entresa entresa en										
Drawn		Date		COUL	INIC A	۷/ ۷	IIN	ורר	N N	BD
Drawn WILLIAM RIVE	ERA PAZ	Date 9/10/2014 Date	Dlo	COLI	INS A		LIN Phasi			RD Asset Number

Appendix D

Programmed Transportation Improvements

City of Miami Beach Transportation Master Plan

TRANSPORTATION MASTER PLAN

City of Miami Beach Mayor and Commissioners

Mayor Philip Levine Commissioner John Elizabeth Alemán Commissioner Ricky Arriola Commisioner Michael Grieco Commissioner Joy Malakoff Commissioner Kristen Rosen Gonzalez Commissioner Micky Steinberg

City of Miami Beach Management Team

Jimmy L. Morales, City Manager Kathie G. Brooks, Assistant City Manager Jose R. Gonzalez, P.E., Transportation Director Josiel Ferrer-Diaz, E.I., Transportation Manager Milosh Majstorovic, M.S.C.E., Transit Operations Supervisor Xavier R. Falconi, P.E., Bicycle & Pedestrian Coordinator

PROJECT NUMBER	PROJECT NAME	CITY Area	PROJECT Type	FROM	To	PROJECT LENGTH (MILES)	PROJECT DESCRIPTION	Purpose & Need
44	16 th Street Bicycle Facilities Improvements	South	Bike/Ped	Bay Road	Collins Avenue	0.83	Phase I of the project proposes the improvement of the existing Bicycle Lanes by painting them green. Phase II of the project includes the implementation of Protected Bicycle Lanes along the corridor.	16 th Street requires an improvement towards local non-motorized transportation infrastructure connectivity. Develop a safe, complete, and accessible multi-user citywide bicycle and pedestrian network. Promote non-motorized transportation as a reliable mode of travel within the City.
45	47th Street Enhanced Bicycle Lane	Middle	Bike/Ped	North Bay Road	Pine Tree Drive	0.66	Enhanced (Green) Bike Lane for the corridor, including the portion between Alton Road and North Bay Road.	47th Street requires an improvement towards local non-motorized transportation infrastructure connectivity. Develop a safe, complete, and accessible multi-user citywide bicycle and pedestrian network. Promote non-motorized transportation as a reliable mode of travel within the City.
46	42 nd Street Enhance Bicycle Lanes	Middle	Bike/Ped	Prairie Avenue	Pine Tree Drive	0.25	Enhanced (Green) Bike Lane for the corridor.	42 nd Street requires an improvement towards local non-motorized transportation infrastructure connectivity. Develop a safe, complete, and accessible multi-user citywide bicycle and pedestrian network. Promote non-motorized transportation as a reliable mode of travel within the City.

PRIORITY 2 PROJECTS

Table 40: Priority 2 Projects

PF	ROJECT JMBER	PROJECT NAME	CITY Area	PROJECT Type	FROM	TO	PROJECT LENGTH (MILES)	PROJECT DESCRIPTION	Purpose & Need
1		17th Street Exclusive transit and protected/buffer ed bicycle lanes	South	Transit/Bik e& Ped	Washingto n Avenue	Collins Avenue	0.14	Evaluation of Exclusive transit and/or protected/buffered bicycle lanes (Lane repurposing and/or roadway widening),	17th Street requires an improvement towards regional and local connectivity. Improve the speed, reliability, comfort and convenience of transit.
2		SR A1A / Collins Avenue / Indian Creek Drive Exclusive transit and protected/buffer ed bicycle lanes	South / Middle	Transit/Bik e& Ped	17th Street	44th Street	2.76	Exclusive transit and protected/buffered bicycle lanes (Lane repurposing and/or roadway widening), Enhanced crosswalks	SR A1A / Collins Avenue / Indian Creek Drive requires an improvement towards regional and local connectivity. Improve the speed, reliability, comfort and convenience of transit. Serve new markets and support economic vitality.
3		Meridian Avenue Protected/buffer ed bicycle lanes	South / Middle	Bike/Ped	16th Street	28th Street	1.04	Protected/buffered bicycle lanes (Lane repurposing and/or roadway widening), Enhanced crosswalks	Meridian Avenue requires an improvement towards local non-motorized transportation infrastructure connectivity. Develop a safe, complete, and accessible multiuser citywide bicycle and pedestrian network. Promote non-motorized transportation as a reliable mode of travel within the City.

PROJECT NUMBER	PROJECT NAME	CITY Area	PROJECT Type	FROM	To	PROJECT LENGTH (MILES)	PROJECT DESCRIPTION	Purpose & Need
10	44 th Street AND SR A1A / Collins Avenue Safety Feasibility Study	Middle	Bike/Ped	44 th Street	SR A1A / Collins Avenue	N/A	Safety Feasibility Study	Improve multimodal vehicular operations along the corridor of 44 th Street AND SR A1A / Collins Avenue
11	Meridian Avenue Bicycle Greenway Analysis	South	Bike/Ped	1 st Street	16 th Street	1	Neighborhood Greenway(Boulevard Markers and Traffic Calming) Enhanced crosswalks	Meridian Avenue requires an improvement towards local non-motorized transportation infrastructure connectivity. Develop a safe, complete, and accessible multi-user citywide bicycle and pedestrian network. Promote non-motorized transportation as a reliable mode of travel within the City.
12	Lincoln Road Shared Space	South	Bike/Ped	Washingto n Avenue	Collins Avenue	0.12	Shared Space including changes to pavement and various multi-modal accommodations.	Meridian Avenue requires an improvement towards local non-motorized transportation infrastructure connectivity. Develop a safe, complete, and accessible multi-user citywide bicycle and pedestrian network. Promote non-motorized transportation as a reliable mode of travel within the City.

PROJECT NUMBER	PROJECT NAME	CITY Area	PROJECT Type	FROM	То	PROJECT LENGTH (MILES)	PROJECT DESCRIPTION	Purpose & Need
13	Lincoln Lane North Bicycle Connection/ Neighborhood Greenway	South	Bike/Ped	Alton Road	Washington Avenue	0.57	Exploring the various typical sections of the alleyway to create an exclusive bicycle lane or Neighborhood Greenways.	Lincoln Lane North requires an improvement towards local non-motorized transportation infrastructure connectivity. Develop a safe, complete, and accessible multiuser citywide bicycle and pedestrian network. Promote non-motorized transportation as a reliable mode of travel within the City.
14	Fairway Drive Shared-Use Path	North	Bike/Ped	Biarritz Drive	Bay Drive	1.10	Shared-Use Path adjacent to the golf course.	Fairway Drive requires an improvement towards local non-motorized transportation infrastructure connectivity. Develop a safe, complete, and accessible multi-user citywide bicycle and pedestrian network. Promote non-motorized transportation as a reliable mode of travel within the City.

PRIORITY 3 PROJECTS

Table 41: Priority 3 Projects

Project Number	PROJECT NAME	CITY Area	PROJECT Type	FROM	To	PROJECT LENGTH (MILES)	PROJECT DESCRIPTION	Purpose & Need
1	SR A1A / Collins Avenue Protected/buffere d bicycle lanes	South	Bike/Ped	South Pointe Drive	17th Street	1.68	Protected/buffered bicycle lanes (Lane repurposing and/or roadway widening) Enhanced crosswalks	SR A1A / Collins Avenue requires an improvement towards local non-motorized transportation infrastructure connectivity. Develop a safe, complete, and accessible multiuser citywide bicycle and pedestrian network. Promote non-motorized transportation as a reliable mode of travel within the City.
2	Prairie Avenue Neighborhood Greenway	Middle	Bike/Ped	44th Street	47th Street	0.25	Neighborhood Greenway(Sharrow Markers) Enhanced crosswalks	Prairie Avenue requires an improvement towards local non-motorized transportation infrastructure connectivity. Develop a safe, complete, and accessible multiuser citywide bicycle and pedestrian network. Promote non-motorized transportation as a reliable mode of travel within the City.
3	SR A1A Collins Avenue Exclusive transit lanes	Middle	Transit	44th Street	SR A1A Collins Avenue / Indian Creek Drive Split	2	Exclusive transit lanes (Lane repurposing)	SR A1A Collins Avenue requires an improvement towards regional and local connectivity. Improve the speed, reliability, comfort and convenience of transit. Serve new markets and support economic vitality.

PROJECT NUMBER	PROJECT NAME	CITY Area	PROJECT Type	FROM	TO	PROJECT LENGTH (MILES)	PROJECT DESCRIPTION	Purpose & Need
28	SR A1A/ Indian Creek Drive Protected Bicycle Lanes	North	Bike/Ped	Abbott Avenue	Dickens Avenue	0.33	Protected Bicycle Lanes (Lane repurposing and/or roadway widening)	That section of Indian Creek Drive requires an improvement towards local non-motorized transportation infrastructure connectivity. Develop a safe, complete, and accessible multiuser citywide bicycle and pedestrian network. Promote non-motorized transportation as a reliable mode of travel within the City.
29	15 th Street Neighborhood Greenway	South	Bike/Ped	Washington Avenue	West Avenue	0.66	Neighborhood Greenway (Bicycle Boulevard Markers) Enhanced crosswalks	15 th Street requires an improvement towards local non-motorized transportation infrastructure connectivity. Develop a safe, complete, and accessible multi-user citywide bicycle and pedestrian network. Promote non-motorized transportation as a reliable mode of travel within the City.
30	20 Street Neighborhood Greenway	South	Bike/Ped	Purdy Avenue	Sunset Drive	0.25	Neighborhood Greenway (Bicycle Boulevard Markers) Enhanced crosswalks	20 th Street requires an improvement towards local non-motorized transportation infrastructure connectivity. Develop a safe, complete, and accessible multi-user citywide bicycle and pedestrian network. Promote non-motorized transportation as a reliable mode of travel within the City.

PROJEC NUMBE		CITY Area	PROJECT Type	FROM	To	PROJECT LENGTH (MILES)	PROJECT DESCRIPTION	Purpose & Need
34	Drexel Avenue Neighborhood Greenway	South	Bike/Ped	Espanola Way	17 th Street	0.40	Neighborhood Greenway (Bicycle Boulevard Markers) Enhanced crosswalks	Drexel Avenue requires an improvement towards local non-motorized transportation infrastructure connectivity. Develop a safe, complete, and accessible multiuser citywide bicycle and pedestrian network. Promote non-motorized transportation as a reliable mode of travel within the City.

Miami-Dade TPO

Transportation Improvement Program

TRANSPORTATION IMPROVEMENT PROGRAM (TIP)

APPROVED JUNE 2, 2022

TRANSPORTATION PLANNING ORGANIZATION FOR THE MIAMI URBANIZED AREAS

2023 - 2027 TIP

TRANSPORTATION IMPROVEMENT PROGRAM (TIP) | FISCAL YEARS 2022/2023 - 2026/2027

This document was prepared by the Transportation Planning Organization for the Miami Urbanized Area in collaboration with the Florida Department of Transportation; Miami-Dade Expressway Authority; Florida's Turnpike Enterprise; South Florida Regional Transportation Authority; Miami-Dade County Office of Strategic Business Management; Miami-Dade Department of Transportation and Public Works, Miami-Dade County Aviation Department; Miami-Dade Seaport Department; Miami-Dade League of Cities; Miami-Dade County Department of Regulatory and Economic Resources; and the Miami-Dade County Developmental Impact Committee.

The Miami-Dade TPO complies with the provisions of Title VI of the Civil Rights Act of 1964, which states: No person in the United States shall, on grounds of race, color, or national origin, be excluded from participation in, be denied the benefits of, or be subjected to discrimination under any program or activity receiving federal financial assistance. It is also the policy of the Miami-Dade TPO to comply with all of the requirements of the Americans with Disabilities Act. For materials in accessible format please call (305) 375-4507.

The preparation of this report has been financed in part from the U.S. Department of Transportation (USDOT) through the Federal Highway Administration (FHWA) and/or the Federal Transit Administration (FTA), the State Planning and Research Program (Section 505 of Title 23, U.S. Code) and Miami-Dade County, Florida. The contents of this report do not necessarily reflect the official views or policy of the U.S. Department of Transportation.

MIAMI-DADE TRANSPORTATION PLANNING ORGANIZATION FY 2023-2027 TRANSPORTATION IMPROVEMENT PROGRAM FUNDED TRANSPORTATION PROJECTS WITHIN 1/2 MILE VICINITY OF SMART CORRIDOR

Stategic Miami Area Rapid Transit (SMART) Plan Beach Corridor (SMART)

Type of Project: Transit

TA11	METRORAIL - TRACK AND GUIDEWAY PROJE	CTS	MAINTENANCE	20.007	12.000	04.070	0		70.077	A44.5
IAII		0.0	MAINTENANCE	36,207	13,000	21,070	0	0	70,277	A11-5
11	Miami-Dade Dept. of Transportation and Public Works (Transit)	OMB # P6	710900							
TA201925	Beach Express South (SMART Plan)		Transit Improvement	0.500	6.400	0	0		2 222	A44.40
TAZ01923		0.0	rranst improvement	2,590	6,490	0	U	0	9,080	A11-10
201925	Miami-Dade Dept. of Transportation and Public Works (Transit)	SMART P	an BERT Route f3; OMB SITE S3002256							
TAS300001	METRORAIL STATIONS REFURBISHMENT	Г	STATION RENEWAL	14.070	01 777	10 004	10.040		70 770	A11.00
39		0.0	STATION RENEWAL	14,070	21,777	18,284	18,642	0	12,773	A11-26
S30000139	Miami-Dade Dept. of Transportation and Public Works (Transit)	OMB #P20	000000104 SITE S3000139							
TAS300295	TOD MASTER PLAN FOR THE BEACH CORRIDOR	(OSP258)								
6	Washington Avenue / Dade NE 41st Street / NE 2nd Avenue	0.0	TOD master plan	0	350	0	0	0	350	A11-36
S3002956	Miami-Dade Dept. of Transportation and Public Works (Transit)	program #	672670, OMB Site S3002956							
TAS300357	METROMOVER GUIDEWAY STRUCTURAL SUPERSTRUCTURE RETROFIT	-		15.042	47.000	15.042	0		70 744	A11 20
5	Downtown Government Center 50 NE 15TH ST	0.0		15,943	47,828	15,943	0	0	/9,/14	A11-39
S3003575	Miami-Dade Dept. of Transportation and Public Works (Transit)	program #	673910, OMB Site S3003575							


MIAMI-DADE TRANSPORTATION PLANNING ORGANIZATION FY 2023-2027 TRANSPORTATION IMPROVEMENT PROGRAM FUNDED TRANSPORTATION PROJECTS WITHIN 1/2 MILE VICINITY OF SMART CORRIDOR

Stategic Miami Area Rapid Transit (SMART) Plan Beach Corridor (SMART)

Type of Project: Pedestrian/Bicycle

TPO Project	Facility/Project Name				Pro	posed Fu	unding (\$0	000s)		TIP
No.	From/Location To/Location	Length (Miles)	Type of Work	2022 - 2023	2023 - 2024	2024 - 2025	2025 - 2026	2026 - 2027	5-YEAR TOTAL	Page Ref
Agency Project No.	Responsible Agency	Project C	comments	•						
DT4424204	SR A1A / MACARTHUR CAUSEWAY		DIVE DATIUEDAN							
DT4434321	FROM SR 5 / BISCAYNE TO SR 907 / ALTON RD BLVD	2.7	BIKE PATH/TRAIL	1,122	0	0	0	0	1,122	A1-289
4434321	FL Dept. of Transportation									
DT1111001	MIAMI BEACH HIGH SCHOOL PEDESTRIAN ENHANG	CEMENTS								
DT4441961		0.2	PEDESTRIAN SAFETY IMPROVEMENT	0	264	0	0	0	264	A1-561
4441961	FL Dept. of Transportation									
DT4460531	CITY OF MIAMI - I-395 PEDESTRIAN BAYWALK CON	NECTION	PEDESTRIAN/WILDLIFE OVERPASS		2.225	45.4				
D14400531		0.0	PEDESTRIAIN/WILDLIFE OVERPASS	0	3,285	454	0	0	3,739	A1-360
4460531	FL Dept. of Transportation									
DT4479841	CITY OF MIAMI BEACH - 17 ST BICYCLE LANE PR	OJECT	BIKE LANE/SIDEWALK		_	570	045		4 404	1 1 500
D14479841		0.0	DINE LAINE/SIDEWALK	0	0	576	915	0	1,491	A1-580
4479841	FL Dept. of Transportation									

TRANSPORTATION IMPROVEMENT PROGRAM (TIP)

PART 2: 5-YEAR PROJECT LISTING

STATE TRANSPORTATION SYSTEM AND MAJOR PROJECTS

MIAMI-DADE TRANSPORTATION PLANNING ORGANIZATION TRANSPORTATION IMPROVEMENT PROGRAM PRIMARY STATE HIGHWAYS AND INTERMODAL

MISCELLANEOUS

CITY OF MIAMI BEACH - 17 ST BICYCLE TPO Project No: DT4479841 Project Description: 06-10 LANE PROJECT LRTP Ref: MIAMI-DADE County: Roadway ID: Type of Work: **BIKE LANE/SIDEWALK** Lanes Exist: SIS or Non-SIS: No Lanes Improved: Extra Lanes Added: Description: Proposed Funding (in \$000s) Project Length: 6 District: **Funding** 2022 -2023 -2024 -2025 -2026 -<2023 >2027 All Years PHASE: Source 2023 2024 2025 2026 2027 TALU 0 81 0 81 0 0 915 CONSTRUCTION Total 576 1,491 \$1,662

Item Number:

RESPONSIBLE AGENCY: CITY OF MIAMI BEACH

Item Segment TOTAL ALL Years ALL Phases:

Item TOTAL ALL Years ALL Phases ALL Segments: \$1,662

DT4479851 TPO Project No: LRTP Ref: 06-10 County: MIAMI-DADE Roadway ID: Lanes Exist: Lanes Improved: Lanes Added: Project Length: 6 District:

Project **TOWN OF CUTLER BAY - CARIBBEAN** Description: **BOULEVARD COMPLETE STREETS**

Type of Work: **BIKE LANE/SIDEWALK**

SIS or Non-SIS: No

447984

Extra

Description.			Proposed Funding (in \$000s)										
	PHASE :	Funding Source	<2023	2022 - 2023	2023 - 2024	2024 - 2025	2025 - 2026	2026 - 2027	>2027	All Years			
		LF	160	0	0	0	0	0	0	160			
	_	TALU	5	0	0	0	0	0	0	5			
	PRELIMINARY ENGINEERING	Total	165	0	0	0	0	0	0	165			
	_	LF	0	0	0	0	546	0	0	546			
	_	SA	0	0	0	0	5	0	0	5			
	_	TALT	0	0	0	0	606	0	0	606			
		TALU	0	0	0	0	394	0	0	394			
	CONSTRUCTION	Total	0	0	0	0	1,551	0	0	1,551			

RESPONSIBLE AGENCY: Town of Cutler Bay

Item Segment TOTAL ALL Years ALL Phases: \$1,716

Item Number: 447985 Item TOTAL ALL Years ALL Phases ALL Segments: \$1,716

TPO RESOLUTION #03-2020

RESOLUTION SELECTING THE LOCALLY PREFERRED ALTERNATIVE FOR THE BEACH CORRIDOR OF THE STRATEGIC MIAMI AREA RAPID TRANSIT (SMART) PLAN

WHEREAS, the Interlocal Agreement creating and establishing the Metropolitan Planning Organization (MPO) for the Miami Urbanized Area requires that the Miami-Dade Transportation Planning Organization (TPO), in its role as the MPO, provide a structure to evaluate the adequacy of the transportation planning and programming process; and

WHEREAS, in 2016, the TPO Governing Board adopted Resolution #06-16, which established transit as the "highest priority" in Miami-Dade County. Subsequently, the Governing Board unanimously adopted Resolution #26-16, which approved the Strategic Miami Area Rapid Transit (SMART) Plan in order to implement mass transit projects throughout the County; and

WHEREAS, the SMART Plan includes six (6) rapid transit corridors along with a network of Bus Express Rapid Transit (BERT) services; and

WHEREAS, implementation of the vital rapid transit corridors, in whole or in part, will provide needed transportation alternatives and relief from traffic congestion in Miami-Dade County; and

WHEREAS, the Beach Corridor is one of the six (6) SMART Plan rapid corridors; and

WHEREAS, the Beach Corridor study area is bounded by I-195/Julia Tuttle Causeway on the north; I-395/MacArthur Causeway on the south; I-95 on the west; and Washington Avenue on the east; and

WHEREAS, the Beach Corridor Development and Environment (PD&E) study builds on prior studies dating back to 1988, including a Supplemental Draft Environment Impact Statement (DEIS), which concluded in 2003 with a LPA (TPO Resolution #26-03); and

WHEREAS, the PD&E studies for the six SMART Plan corridors have been funded and are presently in progress, with the Miami-Dade Department of Transportation and Public Works (DTPW) serving as the lead agency for the Beach Corridor,

NOW, THEREFORE, BE IT RESOLVED BY THE GOVERNING BOARD OF THE TRANSPORTATION PLANNING ORGANIZATION IN ITS ROLE AS THE MPO FOR THE MIAMI URBANIZED AREA, that this Board hereby selects the following locally preferred alternative for the Beach Corridor of the Strategic Miami Area Rapid Transit (SMART) Plan as recommended by the Beach Corridor Project Development and Environment (PD&E) Study:

- Section 1. For the Beach Corridor Trunkline, which extends from the existing Downtown Metromover Omni Extension along MacArthur Causeway to 5th Street near Washington Avenue, the selected technology is elevated rubber tire vehicles.
- Section 2. For the Miami Design District Extension, the selected technology is an extension of the existing Metromover in the median of Miami Avenue to NW 41st Street in the Design District.
- <u>Section 3.</u> For the Miami Beach Convention Center Extension, the selected technology is dedicated lanes for bus/trolleys along Washington Avenue.

The adoption of the foregoing resolution was moved by Board Member Eileen Higgins. The motion was seconded by Board Member Jose "Pepe" Diaz, and upon being put to a vote, the vote was as follows:

Chairman Oliver G. Gilbert III -Aye Vice Chairman Esteban L. Bovo, Jr. -Aye

Board Member Juan Carlos Bermudez	-Aye	Board Member Steven D. Losner -Aye
Board Member Philippe Bien-Aime	-Absent	Board Member Roberto Martell -Aye
Board Member Daniella Levine Cava	-Aye	Board Member Joe A. Martinez -Absent
Board Member Jose "Pepe" Diaz	-Aye	Board Member Jean Monestime -Aye
Board Member Audrey M. Edmonson	-Aye	Board Member Dennis C. Moss -Aye
Board Member Perla T. Hantman	-Absent	Board Member Rebeca Sosa -Aye
Board Member Carlos Hernandez	-Aye	Board Member Javier D. Souto -Absent
Board Member Sally A. Heyman	-Aye	Board Member Micky Steinberg -Aye
Board Member Eileen Higgins	-Aye	Board Member Francis Suarez - Absent
Board Member Barbara J. Jordan	-Aye	Board Member Xavier L. Suarez - Absent
Board Member Vince Lago	-Aye	

The Chairperson thereupon declared the resolution duly passed and approved this day of 30^{th} day of January, 2020.

TRANSPORTATION PLANNING ORGANIZATION

Зу <u>«</u>

Zainab Salim, Clerk Miami-Dade TPO IN ITS ROLE AS MIAMI-

Florida Department of

TRANSPORTATION

E-Updates | FL511 | Site Map | Translate

- Home About FDOT
- Contact Us

- Maps & Data
 Offices
 Performance
 Projects

Web Application

Office of Work Program and Budget Cynthia Lorenzo - Director

Updated: 2/26/2023 8

Five Year Work Program

Selection Criteria All in State 2023-2027 AD Item Number:447984-1

<u>Display current records in a Report Style</u> <u>Display current records in an Excel Document</u>

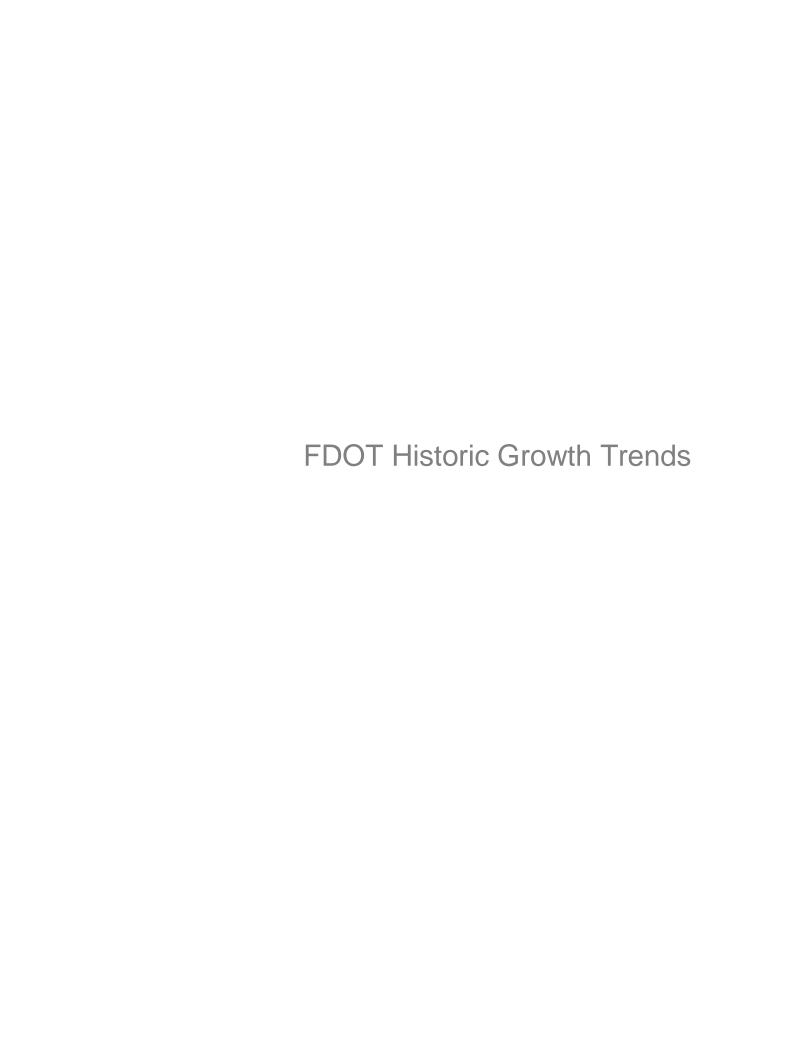
Project Summary											
Transportation System: NON-SYSTEM SPECIFICDistrict 06 - Miami-Dade County											
Description: CITY OF M	Description: CITY OF MIAMI BEACH - 17TH STREET BICYCLE LANE PROJECT										
Type of Work: BIKE LAN	NE/SIDEWA	LK	Vie	ew Schedul	ed Activities						
Item Number: 447984-1											
	Pr	oject Detail	i								
Fiscal Year:	2023	2024	2025	2026	2027						
Miscellaneous/Preliminar	y Engineerir	ng			(On-Going)						
Amount:	\$5,000										
Miscellaneous/Construction	on										
Amount: \$575,549 \$914,541											
Item Total:	\$5,000		\$575,549	\$914,541							

This site is maintained by the Office of Work Program and Budget, located at 605 Suwannee Street, MS 21, Tallahassee, Florida 32399.

View Contact Information for Office of Work Program and Budget

Application Home: Work Program
Office Home: Office of Work Program and Budget

- Contact Us Employment MyFlorida.com Performance
- Statement of Agency
 Web Policies & Notice


© 1996-2019 Florida Department of Transportation

Florida Department of Transportation

Consistent, Predictable, Repeatable

Appendix E

Growth Rate Calculations

FDOT Growth Rate Summary

Station	Location	Historic Growth- Linear		Historic Growth- Exponential			Historic Growth- Decaying Exponential						
Number		5-year	R-squared	10-year	R-squared	5-year	R-squared	10-year	R-squared	5-year	R-squared	10-year	R-squared
5159	SR A1A/Collins Avenue 200 feet North of 5th Street	-2.34%	21.98%	-1.35%	14.65%	-2.42%	22.66%	-1.36%	15.17%	-2.04%	18.61%	-0.71%	3.65%
5170	SR A1A/Collins Avenue North of 21st Street	-1.67%	22.50%	0.26%	1.60%	-1.81%	24.09%	0.22%	1.37%	-1.33%	13.38%	0.31%	2.09%
8414	Washington Avenue 200 feet North of 12th Street	2.51%	45.36%	-	-	2.29%	45.02%	-	-	1.94%	30.83%	-	-
8531	17th Street 200 feet East of Meridian Avenue	-0.66%	4.05%	-	-	-0.67%	4.48%	-	-	-0.93%	6.96%	-	-
8567	16th Street 200 feet East of Meridian Avenue	-9.02%	76.98%	-	-	-11.62%	72.71%	-	-	-9.07%	58.12%	-	-
	Total	-2.24%	34.17%	-0.55%	8.13%	-2.85%	33.79%	-0.57%	8.27%	-2.29%	25.58%	-0.20%	2.87%

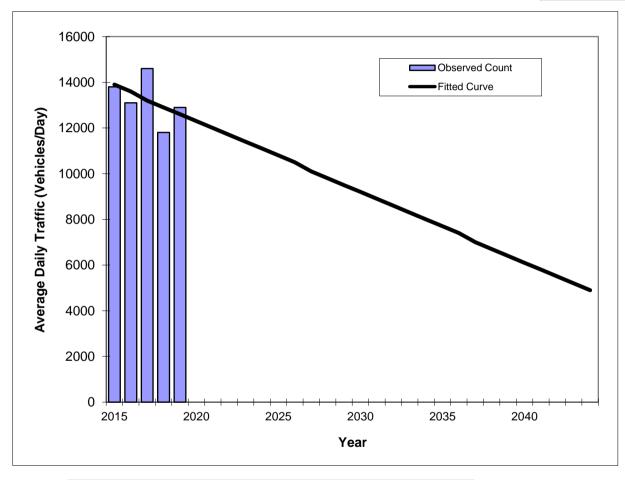
FLORIDA DEPARTMENT OF TRANSPORTATION TRANSPORTATION STATISTICS OFFICE 2021 HISTORICAL AADT REPORT

COUNTY: 87 - MIAMI-DADE

SITE: 5159 - SR AIA/COLLINS AV, 200' N 5 ST(MIAMI BEACH)

YEAR	AADT	DII	RECTION 1	DII	RECTION 2	*K FACTOR	D FACTOR	T FACTOR
2021	15700 C	N	9400	S	6300	9.00	54.30	5.40
2020	14500 C	N	6900	S	7600	9.00	54.20	9.20
2019	12900 C	N	6900	S	6000	9.00	54.60	5.00
2018	11800 C	N	6600	S	5200	9.00	54.30	5.60
2017	14600 C	N	8800	S	5800	9.00	55.00	5.30
2016	13100 C	N	6700	S	6400	9.00	54.50	7.80
2015	13800 C	N	5500	S	8300	9.00	54.70	4.60
2014	13400 C	N	6500	S	6900	9.00	54.50	5.10
2013	16400 C	N	7400	S	9000	9.00	52.40	6.10
2012	16700 C	N	7100	S	9600	9.00	55.70	8.40
2011	13600 C	N	6900	S	6700	9.00	55.10	7.50
2010	12900 C	N	6200	S	6700	8.98	54.08	8.80
2009	15300 C	N	7600	S	7700	8.99	53.24	8.40
2008	13600 C	N	6300	S	7300	9.09	55.75	5.30
2007	14300 C	N	6500	S	7800	8.01	54.34	4.90
2006	13100 C	N	5800	S	7300	7.97	54.22	2.20

AADT FLAGS: C = COMPUTED; E = MANUAL ESTIMATE; F = FIRST YEAR ESTIMATE

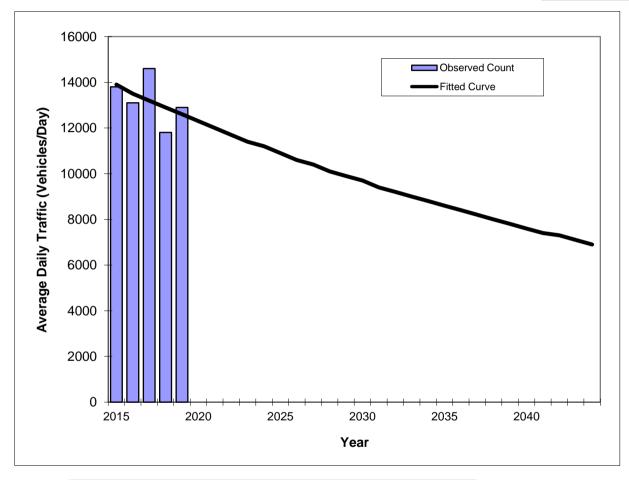

S = SECOND YEAR ESTIMATE; T = THIRD YEAR ESTIMATE; R = FOURTH YEAR ESTIMATE

V = FIFTH YEAR ESTIMATE; 6 = SIXTH YEAR ESTIMATE; X = UNKNOWN

*K FACTOR: STARTING WITH YEAR 2011 IS STANDARDK, PRIOR YEARS ARE K30 VALUES

Traffic Trends
SR A1A/COLLINS AVENUE -- 200 FEET NORTH OF 5TH STREET

County: Miami-Dade (87)
Station #: 5159
Highway: SR A1A/COLLINS AVENUE


	Traffic (AD	
Year	Count*	Trend**
2015	13800	13900
2016	13100	13600
2017	14600	13200
2018	11800	12900
2019	12900	12600
_0.0	000	000

Trend R-squared: 21.98%
Trend Annual Historic Growth Rate: -2.34%
Printed: 12-Sep-22
Straight Line Growth Option

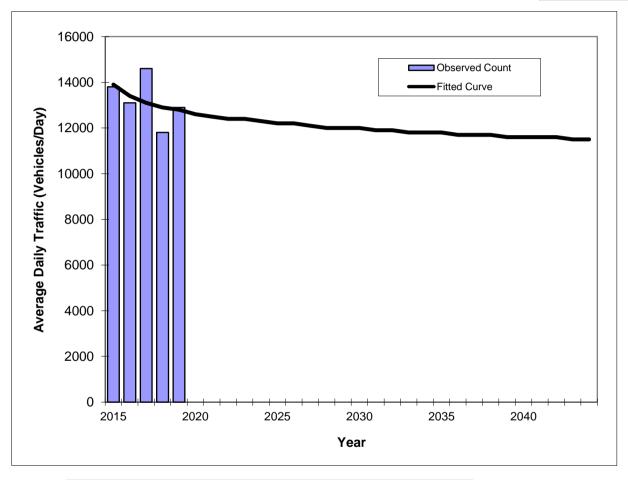
*Axle-Adjusted

Traffic Trends
SR A1A/COLLINS AVENUE -- 200 FEET NORTH OF 5TH STREET

County: Miami-Dade (87)
Station #: 5159
Highway: SR A1A/COLLINS AVENUE

	Traffic (AD	
Year	Count*	Trend**
2015	13800	13900
2016	13100	13500
2017	14600	13200
2018	11800	12900
2019	12900	12600

Trend R-squared: 22.66%
Compounded Annual Historic Growth Rate: -2.42%
Printed: 12-Sep-22

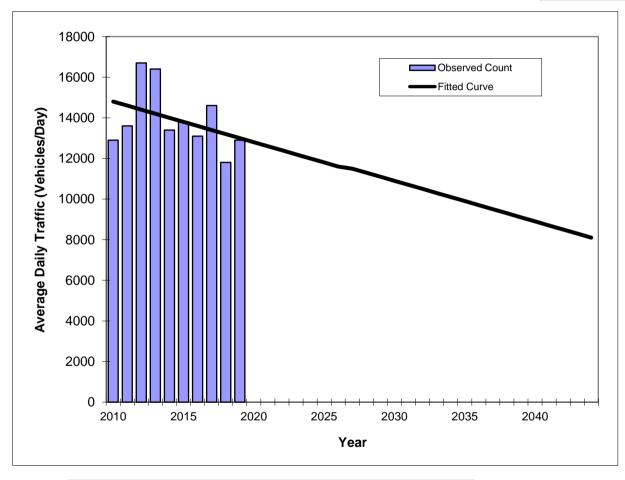

Exponential Growth Option

*Axle-Adjusted

 County:
 Miami-Dade (87)

 Station #:
 5159

 Highway:
 SR A1A/COLLINS AVENUE

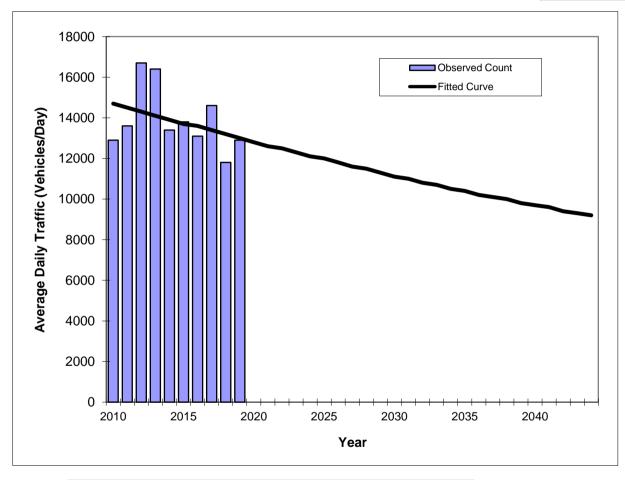


Traffic (AD Count* 13800 13100 14600 11800 12900	13900 13400 13100 12900 12800
13800 13100 14600 11800	13900 13400 13100 12900
13100 14600 11800	13400 13100 12900
14600 11800	13100 12900
11800	12900
12900	12800

Trend R-squared: 18.61%
Compounded Annual Historic Growth Rate: -2.04%
Printed: 12-Sep-22
Decaying Exponential Growth Option

*Axle-Adjusted

County: Miami-Dade (87)
Station #: 5159
Highway: SR A1A/COLLINS AVENUE

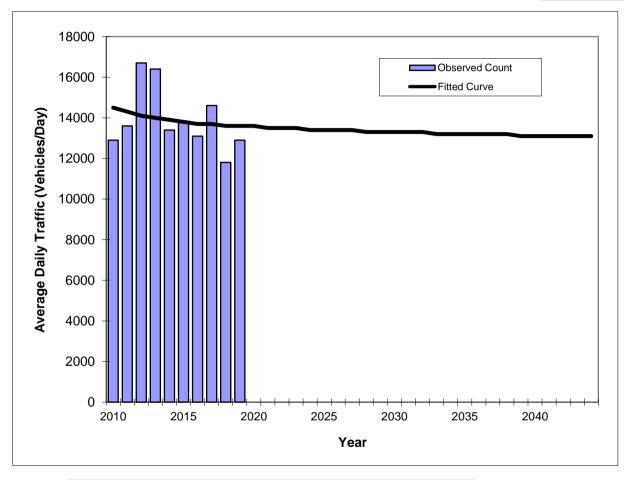


	Traffic (AD	T/AADT)
Year	Count*	Trend**
2010	12900	14800
2011	13600	14600
2012	16700	14400
2013	16400	14200
2014	13400	14000
2015	13800	13800
2016	13100	13600
2017	14600	13400
2018	11800	13200
2019	12900	13000

Trend R-squared: 14.65%
Trend Annual Historic Growth Rate: -1.35%
Printed: 12-Sep-22
Straight Line Growth Option

*Axle-Adjusted

County: Miami-Dade (87)
Station #: 5159
Highway: SR A1A/COLLINS AVENUE



	Traffic (AD	T/AADT)
Year	Count*	Trend**
2010	12900	14700
2011	13600	14500
2012	16700	14300
2013	16400	14100
2014	13400	13900
2015	13800	13700
2016	13100	13600
2017	14600	13400
2018	11800	13200
2019	12900	13000

Trend R-squared: 15.17%
Compounded Annual Historic Growth Rate: -1.36%
Printed: 12-Sep-22
Exponential Growth Option

*Axle-Adjusted

County: Miami-Dade (87)
Station #: 5159
Highway: SR A1A/COLLINS AVENUE

	Traffic (AD	T/AADT)
Year	Count*	Trend**
2010	12900	14500
2011	13600	14300
2012	16700	14100
2013	16400	14000
2014	13400	13900
2015	13800	13800
2016	13100	13700
2017	14600	13700
2018	11800	13600
2019	12900	13600

Trend R-squared: 3.65%
Compounded Annual Historic Growth Rate: -0.71%
Printed: 12-Sep-22
Decaying Exponential Growth Option

*Axle-Adjusted

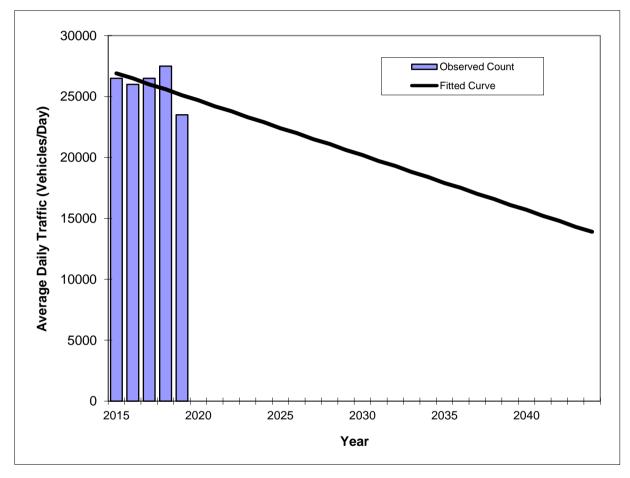
FLORIDA DEPARTMENT OF TRANSPORTATION TRANSPORTATION STATISTICS OFFICE 2021 HISTORICAL AADT REPORT

COUNTY: 87 - MIAMI-DADE

SITE: 5170 - SR A1A/COLLINS AV, N OF 21 ST (MIAMI BEACH)

YEAR	AADT	DIRECTION	1 DI	IRECTION 2	*K FACTOR	D FACTOR	T FACTOR
2021	18400 C	N 9300	s S	9100	9.00	54.30	8.40
2020	10400 C	N 5200	S	5200	9.00	54.20	31.10
2019	23500 C	N 12000	S	11500	9.00	54.60	10.00
2018	27500 C	N 13000	S	14500	9.00	54.30	7.90
2017	26500 C	N 13000	S	13500	9.00	55.00	6.60
2016	26000 C	N 13500	S	12500	9.00	54.50	20.20
2015	26500 C	N 12500	S	14000	9.00	54.70	4.20
2014	27000 C	N 12500	S	14500	9.00	54.50	4.10
2013	22500 C	N 10500	S	12000	9.00	52.40	9.00
2012	25000 C	N 12000	S	13000	9.00	55.70	4.30
2011	26500 C	N 13500	S	13000	9.00	55.10	2.80
2010	25000 C	N 12500	S	12500	8.98	54.08	2.80
2009	26500 C	N 13000	S	13500	8.99	53.24	2.70
2008	27000 C	N 13500	S	13500	9.09	55.75	4.60
2007	25500 C	N 12500	S	13000	8.01	54.34	5.10
2006	25500 C	N 12500	S	13000	7.97	54.22	2.70

AADT FLAGS: C = COMPUTED; E = MANUAL ESTIMATE; F = FIRST YEAR ESTIMATE

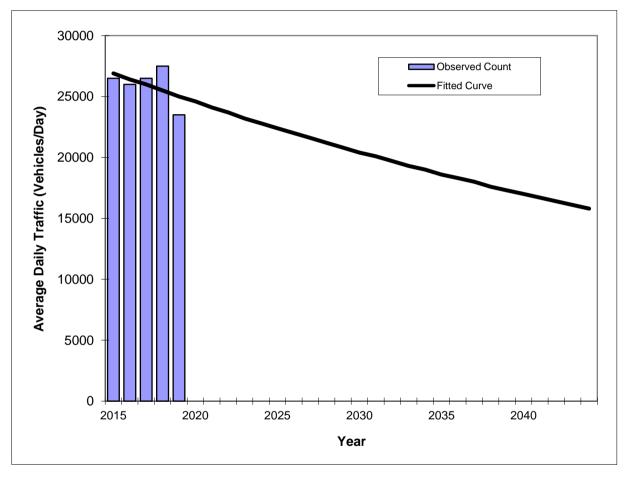

S = SECOND YEAR ESTIMATE; T = THIRD YEAR ESTIMATE; R = FOURTH YEAR ESTIMATE

V = FIFTH YEAR ESTIMATE; 6 = SIXTH YEAR ESTIMATE; X = UNKNOWN

*K FACTOR: STARTING WITH YEAR 2011 IS STANDARDK, PRIOR YEARS ARE K30 VALUES

Traffic Trends
SR A1A/COLLINS AVENUE -- NORTH OF 21ST STREET

County: Miami-Dade (87)
Station #: 5170
Highway: SR A1A/COLLINS AVENUE

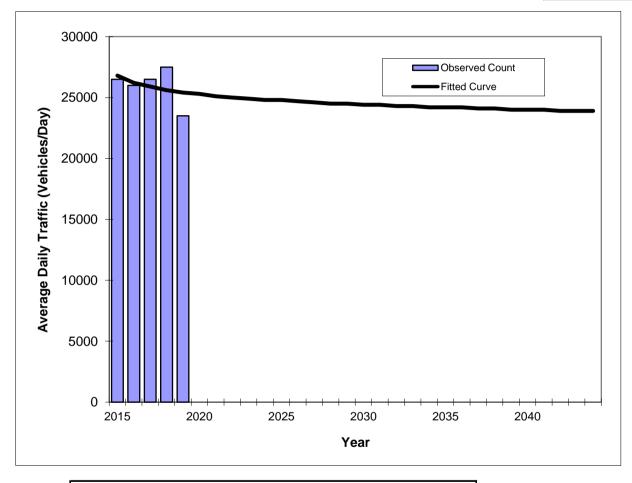

	Traffic (AD	
Year	Count*	Trend**
2015	26500	26900
2016	26000	26500
2017	26500	26000
2018	27500	25600
2019	23500	25100

Trend R-squared: 22.50%
Trend Annual Historic Growth Rate: -1.67%
Printed: 12-Sep-22
Straight Line Growth Option

*Axle-Adjusted

Traffic Trends
SR A1A/COLLINS AVENUE -- NORTH OF 21ST STREET

County: Miami-Dade (87)
Station #: 5170
Highway: SR A1A/COLLINS AVENUE

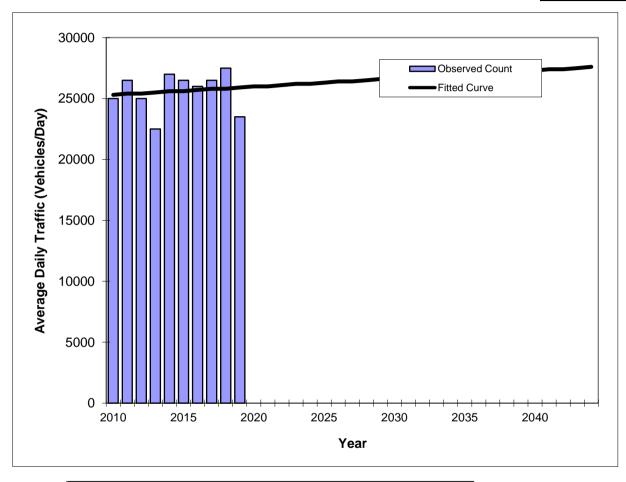


	Traffic (AD	
Year	Count*	Trend**
2015	26500	26900
2016	26000	26400
2017	26500	26000
2018	27500	25500
2019	23500	25000

Trend R-squared: 24.09%
Compounded Annual Historic Growth Rate: -1.81%
Printed: 12-Sep-22
Exponential Growth Option

*Axle-Adjusted

County: Miami-Dade (87)
Station #: 5170
Highway: SR A1A/COLLINS AVENUE

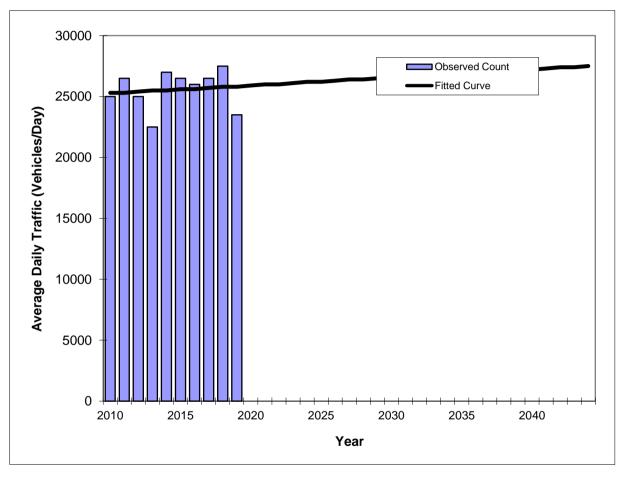

	Traffic (AD	
Year	Count*	Trend**
2015	26500	26800
2016	26000	26200
2017	26500	25900
2018	27500	25600
2019	23500	25400

Trend R-squared: 13.38%
Compounded Annual Historic Growth Rate: -1.33%
Printed: 12-Sep-22

Decaying Exponential Growth Option

*Axle-Adjusted

County: Miami-Dade (87)
Station #: 5170
Highway: SR A1A/COLLINS AVENUE

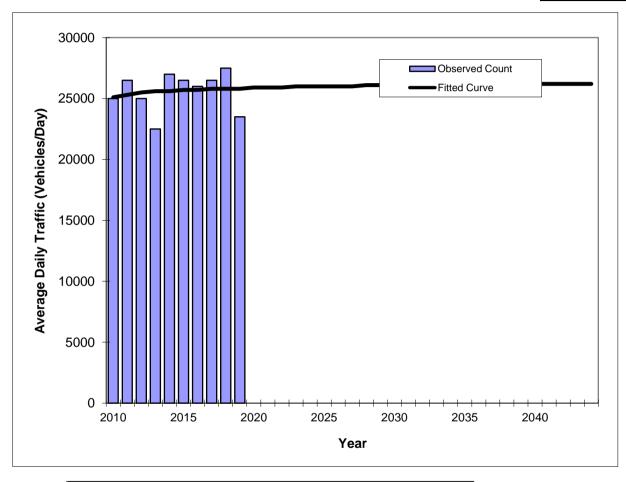


	Traffic (ADT/AADT)				
Year	Count*	Trend**			
2010	25000	25300			
2011	26500	25400			
2012	25000	25400			
2013	22500	25500			
2014	27000	25600			
2015	26500	25600			
2016	26000	25700			
2017	26500	25800			
2018	27500	25800			
2019	23500	25900			

Trend R-squared: 1.60%
Trend Annual Historic Growth Rate: 0.26%
Printed: 12-Sep-22
Straight Line Growth Option

*Axle-Adjusted

County: Miami-Dade (87)
Station #: 5170
Highway: SR A1A/COLLINS AVENUE



	Traffic (AD	T/AADT)
Year	Count*	Trend**
2010	25000	25300
2011	26500	25300
2012	25000	25400
2013	22500	25500
2014	27000	25500
2015	26500	25600
2016	26000	25600
2017 2018	26500 27500	25700 25800
2018	23500	25800
2019	23300	23000

Trend R-squared: 1.37%
Compounded Annual Historic Growth Rate: 0.22%
Printed: 12-Sep-22
Exponential Growth Option

*Axle-Adjusted

County: Miami-Dade (87)
Station #: 5170
Highway: SR A1A/COLLINS AVENUE

	Traffic (AD	T/AADT)
Year	Count*	Trend**
2010	25000	25100
2011	26500	25300
2012	25000	25500
2013	22500	25600
2014	27000	25600
2015	26500	25700
2016	26000	25700
2017	26500	25800
2018	27500	25800
2019	23500	25800

 Trend R-squared:
 2.09%

 Compounded Annual Historic Growth Rate:
 0.31%

 Printed:
 12-Sep-22

Decaying Exponential Growth Option

*Axle-Adjusted

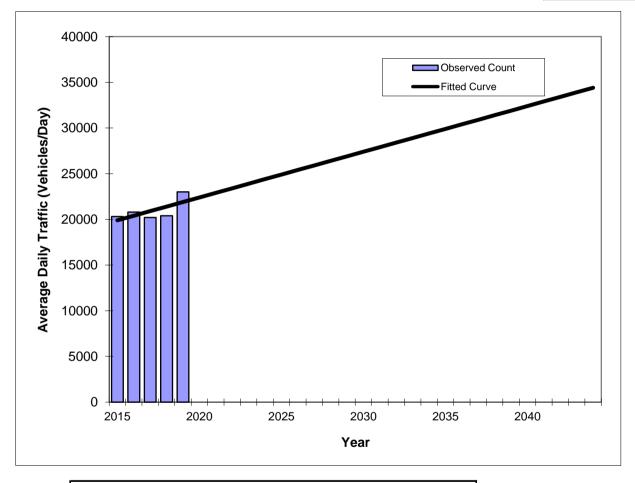
FLORIDA DEPARTMENT OF TRANSPORTATION TRANSPORTATION STATISTICS OFFICE 2021 HISTORICAL AADT REPORT

COUNTY: 87 - MIAMI-DADE

SITE: 8414 - WASHINGTON AVE, 200 FT N OF 12 ST (2011 OFF SYSTEM CYCLE)

YEAR	AADT	DI	RECTION 1	DI	RECTION 2	*K FACTOR	D FACTOR	T FACTOR
2021	14200 C	N	6500	S	7700	9.00	55.00	3.30
2020	14100 C	N	7100	S	7000	9.00	56.00	10.70
2019	23000 C	N	11000	S	12000	9.00	56.00	2.40
2018	20400 C	N	11500	S	8900	9.00	54.30	2.50
2017	20200 C	N	9200	S	11000	9.00	59.30	2.40
2016	20800 C	N	9800	S	11000	9.00	56.10	1.90
2015	20300 C	N	9800	S	10500	9.00	57.40	17.50
2014	21000 C	N	10000	S	11000	9.00	59.30	13.90
2013	18700 F	N	9200	S	9500	9.00	58.90	16.20
2012	18700 C	N	9200	S	9500	9.00	59.70	16.00

AADT FLAGS: C = COMPUTED; E = MANUAL ESTIMATE; F = FIRST YEAR ESTIMATE

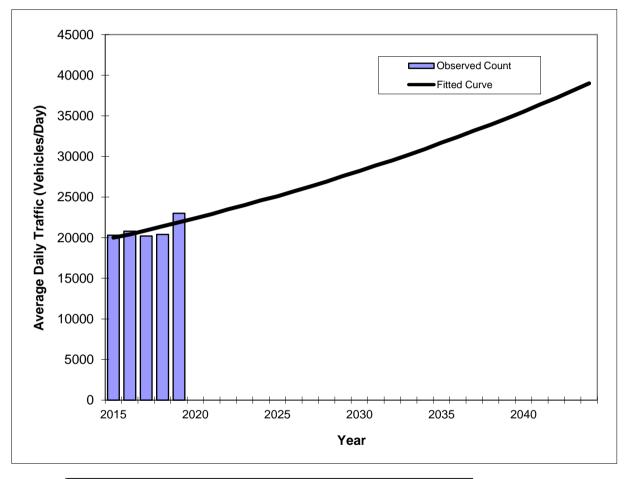

S = SECOND YEAR ESTIMATE; T = THIRD YEAR ESTIMATE; R = FOURTH YEAR ESTIMATE

V = FIFTH YEAR ESTIMATE; 6 = SIXTH YEAR ESTIMATE; X = UNKNOWN

*K FACTOR: STARTING WITH YEAR 2011 IS STANDARDK, PRIOR YEARS ARE K30 VALUES

Traffic TrendsWASHINGTON AVENUE -- 200 FEET NORTH OF 12TH STREET

County: Miami-Dade (87)
Station #: 8414
Highway: WASHINGTON AVENUE


Count*	Trend**
20300	19900
20800	20400
20200	20900
20400	21400
23000	21900
	20800 20200

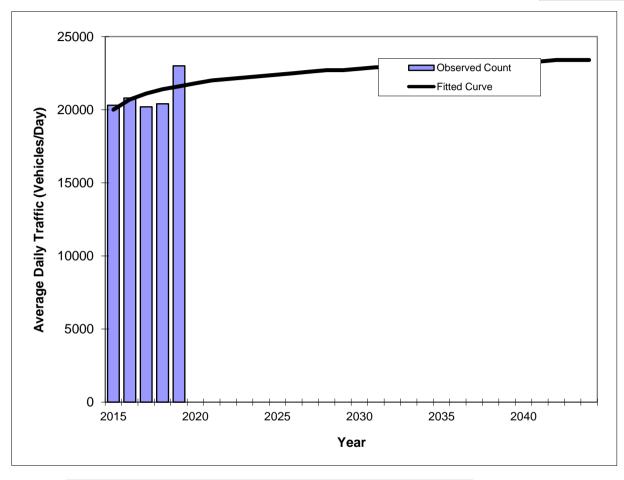
Trend R-squared: 45.36%
Trend Annual Historic Growth Rate: 2.51%
Printed: 12-Sep-22
Straight Line Growth Option

*Axle-Adjusted

Traffic TrendsWASHINGTON AVENUE -- 200 FEET NORTH OF 12TH STREET

County: Miami-Dade (87)
Station #: 8414
Highway: WASHINGTON AVENUE

	Tueffie /AD	T/A A D.T\
	Traffic (AD	
Year	Count*	Trend**
2015	20300	20000
2016	20800	20400
2017	20200	20900
2018	20400	21400
2019	23000	21900


| Trend R-squared: 45.02% | Compounded Annual Historic Growth Rate: 2.29% | Printed: 12-Sep-22

Exponential Growth Option

*Axle-Adjusted

Traffic TrendsWASHINGTON AVENUE -- 200 FEET NORTH OF 12TH STREET

County: Miami-Dade (87)
Station #: 8414
Highway: WASHINGTON AVENUE

	Traffic (ADT/AADT)				
Year	Count*	Trend**			
2015	20300	20000			
2016	20800	20700			
2017	20200	21100			
2018	20400	21400			
2019	23000	21600			

Trend R-squared: 30.83%
Compounded Annual Historic Growth Rate: 1.94%
Printed: 12-Sep-22

Decaying Exponential Growth Option

*Axle-Adjusted

FLORIDA DEPARTMENT OF TRANSPORTATION TRANSPORTATION STATISTICS OFFICE 2021 HISTORICAL AADT REPORT

COUNTY: 87 - MIAMI-DADE

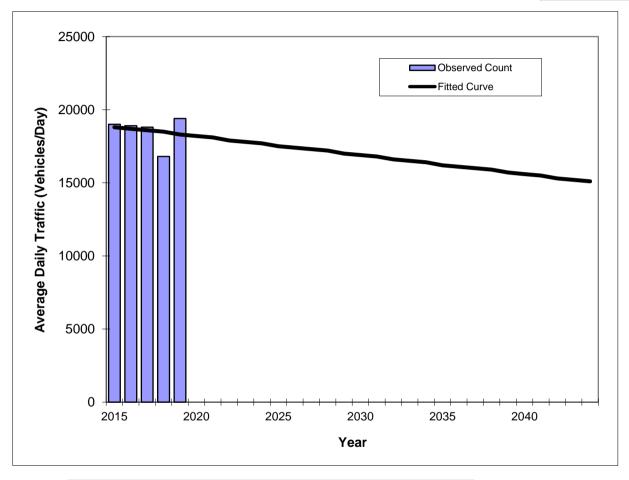
SITE: 8531 - 17TH ST, 200' EAST OF MERIDIAN AVE (2011 OFF SYSTEM CYCLE)

YEAR	AADT	DII	RECTION 1	DI	RECTION 2	*K FACTOR	D FACTOR	T FACTOR
2021	16500 S	E	8300	W	8200	9.00	55.00	2.90
2020	17300 F	E	8700	W	8600	9.00	56.00	4.40
2019	19400 C	E	9800	W	9600	9.00	56.00	4.00
2018	16800 T	E	7400	W	9400	9.00	54.30	3.00
2017	18800 S	E	8300	W	10500	9.00	59.30	2.50
2016	18900 F	E	8400	W	10500	9.00	56.10	5.10
2015	19000 C	E	8500	W	10500	9.00	57.40	7.10
2014	18700 S	E	9600	W	9100	9.00	59.30	10.70
2013	18900 F	E	9700	W	9200	9.00	58.90	16.20
2012	19000 C	E	9800	W	9200	9.00	59.70	16.00

AADT FLAGS: C = COMPUTED; E = MANUAL ESTIMATE; F = FIRST YEAR ESTIMATE

S = SECOND YEAR ESTIMATE; T = THIRD YEAR ESTIMATE; R = FOURTH YEAR ESTIMATE

V = FIFTH YEAR ESTIMATE; 6 = SIXTH YEAR ESTIMATE; X = UNKNOWN


*K FACTOR: STARTING WITH YEAR 2011 IS STANDARDK, PRIOR YEARS ARE K30 VALUES

Traffic Trends 17TH STREET -- 200 FEET EAST OF MERIDIAN AVENUE

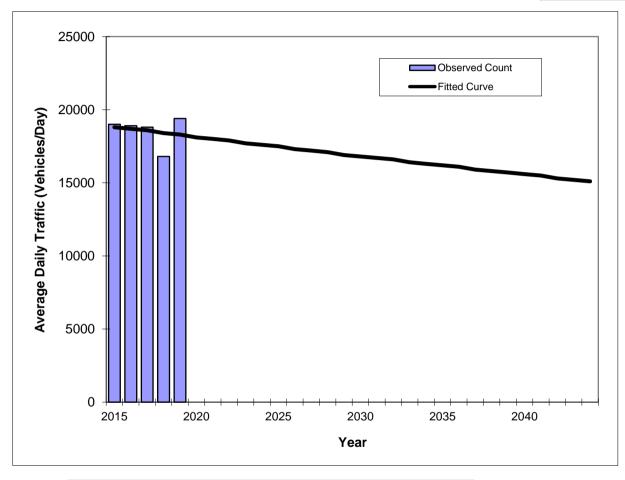
 County:
 Miami-Dade (87)

 Station #:
 8531

 Highway:
 17TH STREET

	Traffic (ADT/AADT)					
Year	Count*	Trend**				
2015	19000	18800				
2016	18900	18700				
2017	18800	18600				
2018	16800	18500				
2019	19400	18300				

Trend R-squared: 4.05%
Trend Annual Historic Growth Rate: -0.66%
Printed: 12-Sep-22
Straight Line Growth Option


*Axle-Adjusted

Traffic Trends 17TH STREET -- 200 FEET EAST OF MERIDIAN AVENUE

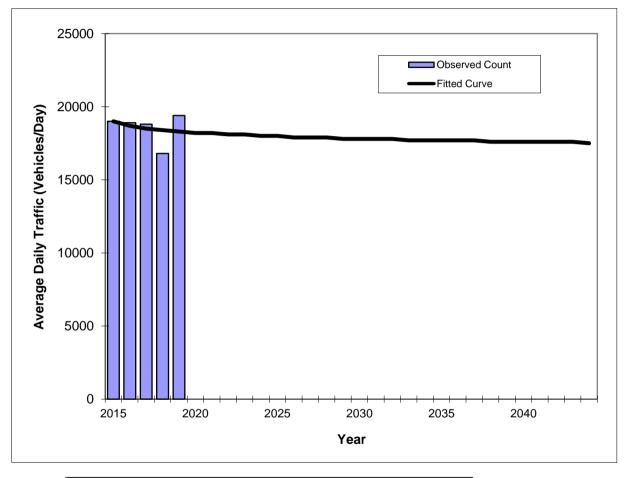
 County:
 Miami-Dade (87)

 Station #:
 8531

 Highway:
 17TH STREET

	Traffic (ADT/AADT)					
Year	Count*	Trend**				
2015	19000	18800				
2016	18900	18700				
2017	18800	18600				
2018	16800	18400				
2019	19400	18300				
1						

Trend R-squared: 4.48%
Compounded Annual Historic Growth Rate: -0.67%
Printed: 12-Sep-22
Exponential Growth Option


*Axle-Adjusted

Traffic Trends 17TH STREET -- 200 FEET EAST OF MERIDIAN AVENUE

 County:
 Miami-Dade (87)

 Station #:
 8531

 Highway:
 17TH STREET

	Tueffie (AD	T/4 ADT)
l	Traffic (AD	
Year	Count*	Trend**
2015	19000	19000
2016	18900	18700
2017	18800	18500
2018	16800	18400
2019	19400	18300
		1

Trend R-squared: 6.96%
Compounded Annual Historic Growth Rate: -0.93%
Printed: 12-Sep-22
Decaying Exponential Growth Option

*Axle-Adjusted

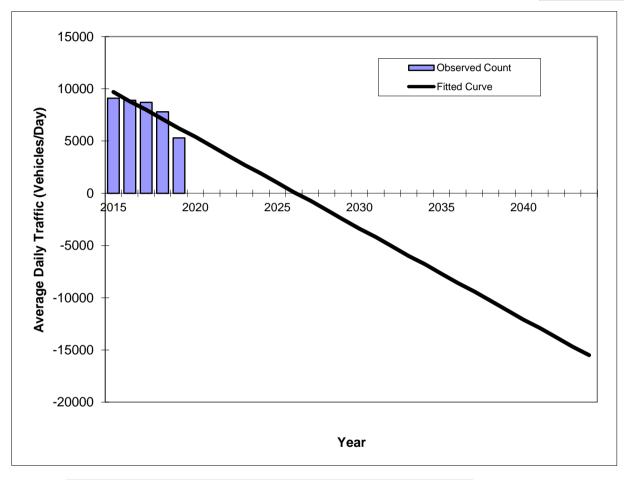
FLORIDA DEPARTMENT OF TRANSPORTATION TRANSPORTATION STATISTICS OFFICE 2021 HISTORICAL AADT REPORT

COUNTY: 87 - MIAMI-DADE

SITE: 8567 - 16 ST, 200' EAST OF MERIDIAN AVE (2011 OFF SYSTEM CYCLE)

YEAR	AADT	DIF	RECTION 1	DIE	RECTION 2	*K FACTOR	D FACTOR	T FACTOR
2021 2020	4500 S 4700 F	E	2200 2300	W W	2300 2400	9.00	55.00 56.00	2.90 4.40
2019	5300 C	E E	2600	W	2700	9.00	56.00	4.00
2018 2017	7800 T 8700 S	E E	3800 4200	W W	4000 4500	9.00 9.00	54.30 59.30	3.00 2.50
2016 2015	8900 F 9100 C	E E	4300 4400	W W	4600 4700	9.00 9.00	56.10 57.40	5.10 7.10
2014 2013	9700 S 9800 F		0		0	9.00 9.00	59.30 58.90	10.70 16.20
2012	9900 C	E	0	W	0	9.00	59.70	16.00

AADT FLAGS: C = COMPUTED; E = MANUAL ESTIMATE; F = FIRST YEAR ESTIMATE


S = SECOND YEAR ESTIMATE; T = THIRD YEAR ESTIMATE; R = FOURTH YEAR ESTIMATE

V = FIFTH YEAR ESTIMATE; 6 = SIXTH YEAR ESTIMATE; X = UNKNOWN

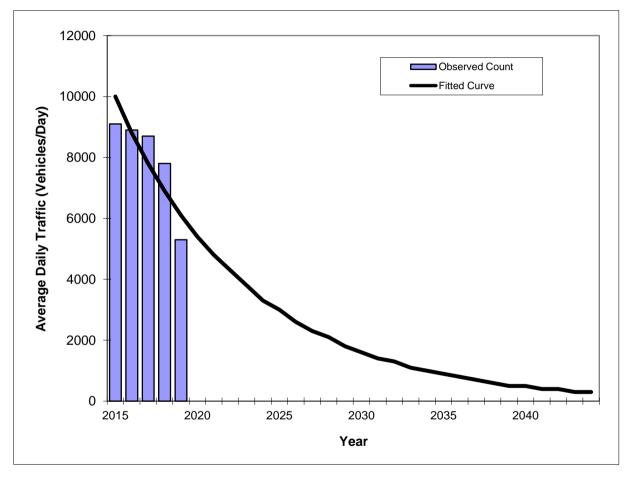
*K FACTOR: STARTING WITH YEAR 2011 IS STANDARDK, PRIOR YEARS ARE K30 VALUES

Traffic Trends 16TH STREET -- 200 FEET EAST OF MERIDIAN AVENUE

County: Miami-Dade (87)
Station #: 8567
Highway: 16TH STREET

	Traffic (AD	
Year	Count*	Trend**
2015	9100	9700
2016	8900	8800
2017	8700	8000
2018	7800	7100
2019	5300	6200
1		

Trend R-squared: 76.98%
Trend Annual Historic Growth Rate: -9.02%
Printed: 12-Sep-22
Straight Line Growth Option


*Axle-Adjusted

Traffic Trends 16TH STREET -- 200 FEET EAST OF MERIDIAN AVENUE

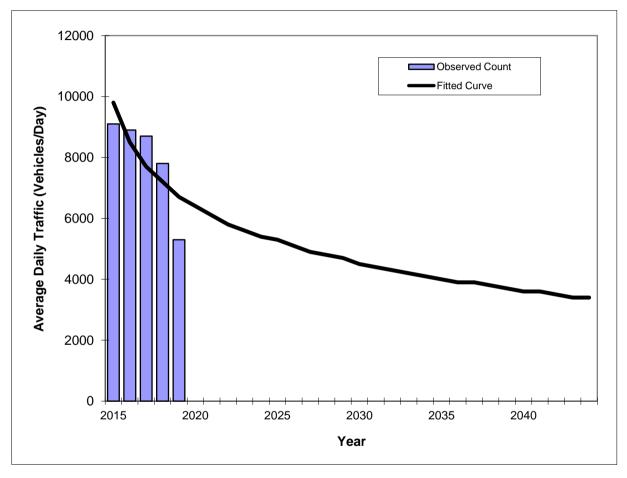
 County:
 Miami-Dade (87)

 Station #:
 8567

 Highway:
 16TH STREET

	Traffic (AD	T/AADT\
Year	Count*	Trend**
2015	9100	10000
2016	8900	8800
2017	8700	7800
2018	7800	6900
2019	5300	6100

Trend R-squared: 72.71%
Compounded Annual Historic Growth Rate: -11.62%
Printed: 12-Sep-22
Exponential Growth Option


*Axle-Adjusted

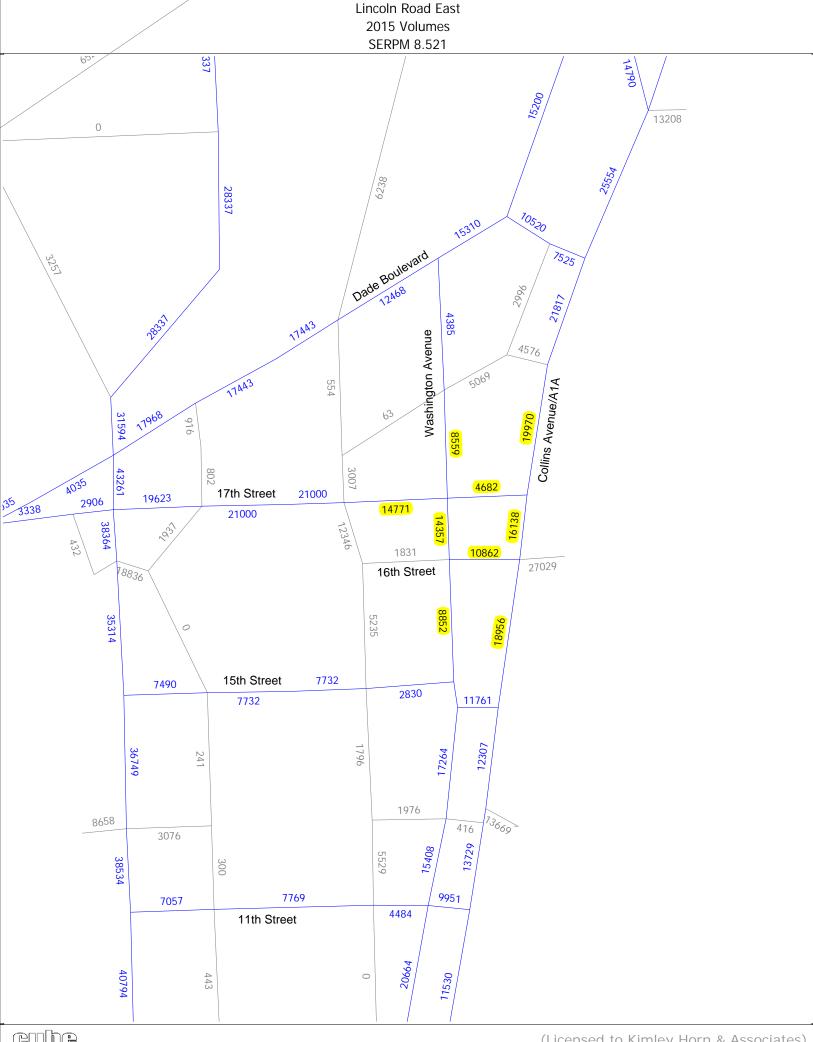
Traffic Trends 16TH STREET -- 200 FEET EAST OF MERIDIAN AVENUE

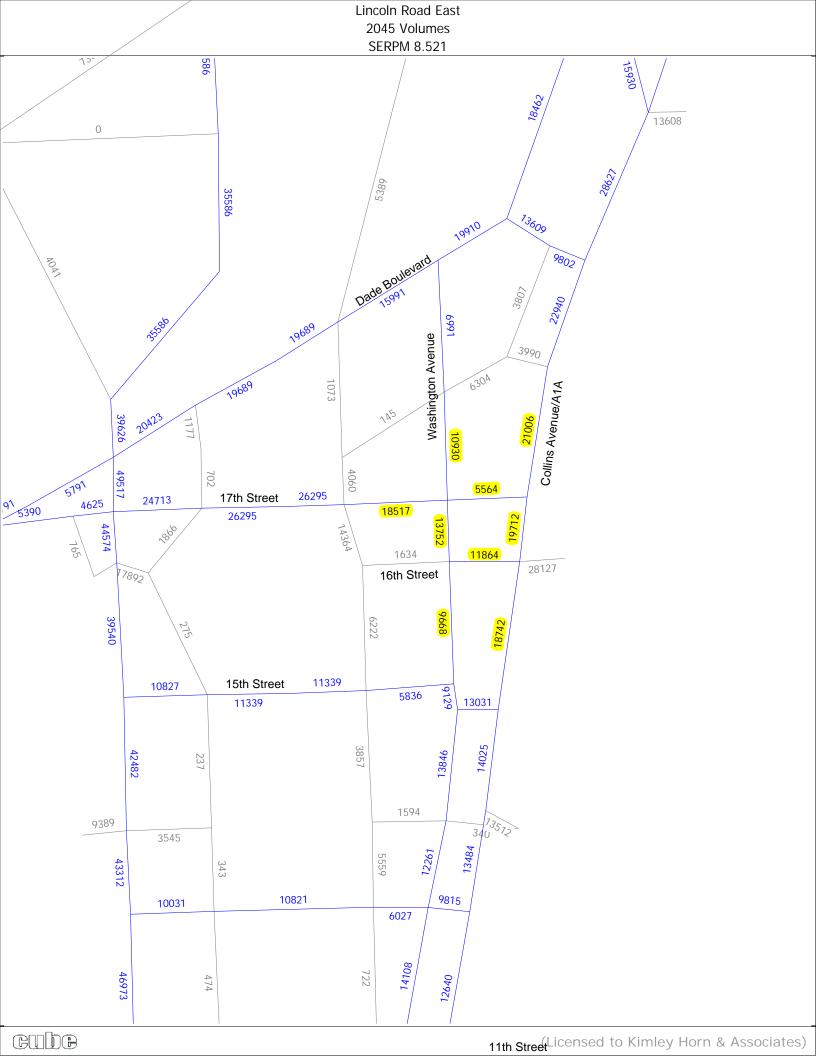
 County:
 Miami-Dade (87)

 Station #:
 8567

 Highway:
 16TH STREET

	Traffic (AD	T/AADT)
Year	Count*	Trend**
2015 2016 2017 2018 2019	9100 8900 8700 7800 5300	9800 8500 7700 7200 6700


Trend R-squared: 58.12%
Compounded Annual Historic Growth Rate: -9.07%
Printed: 12-Sep-22


Decaying Exponential Growth Option

*Axle-Adjusted

	SERPM Gro	wth Rate Su	mmary		
Street Name	2015	2045	Difference	Growth Rate	Annual Growth Rate
	8,559	10,930	2,371	27.70%	0.92%
Washington Avenue	14,357	13,752	-605	-4.21%	-0.14%
	8,852	9,668	816	9.22%	0.31%
	19,970	21,006	1,036	5.19%	0.17%
Collins Avenue/A1A	16,138	19,712	3,574	22.15%	0.74%
	18,956	18,742	-214	-1.13%	-0.04%
17th Street	14,771	18,517	3,746	25.36%	0.85%
17tii Street	4,682	5,564	882	18.84%	0.63%
16th Street	10,862	11,864	1,002	9.22%	0.31%
Total	117,147	129,755	12,608	10.76%	0.36%

Appendix F

Trip Generation Calculations

AM PEAK HOUR TRIP GENERATION COMPARISON

EXISTING WEEKDAY AM PEAK HOUR TRIP GENERATION

		ITE TRIP GENERATIO	N CHAR	ACTERIS	STICS		DIREC*		Е	BASELIN TRIPS	E	MULTIN REDU	_	GR	OSS TR	IPS	INTEI CAP1			XTERNA IICLE TI			S-BY TURE		NET NEV	
		Land Use	ITE Edition	ITE Code	Scale	ITE Units	Per In	cent Out	In	Out	Total	Percent	MR Trips	In	Out	Total	Percent	IC Trips	In	Out	Total	Percent	PB Trips	In	Out	Total
	1	Hotel	11	310	93	room	56%	44%	24	19	43	20.0%	9	19	15	34	0.0%	0	19	15	34	0.0%	0	19	15	34
	2	110.01	<u> </u>	0.0		100	0070	1170				20.070				Ŭ.	0.070	- Ŭ			<u> </u>	0.070				
	3					1																				
	4																									
G	5																									
R	6																									
0	7																									
U	8																									
Р	9																									
	10																									
1	11																									
	12																									
	13					ļ																				
	14																								<u> </u>	-
	15	ITEL III O				<u>.</u>			0.4	40	40	00.00/	_	10	45	0.4	0.00/	_	40	- 15	0.4	0.00/		40		- 24
		ITE Land Use Code	_		te or Equa			Total:	24	19	43	20.0%	9	19	15	34	0.0%	0	19	15	34	0.0%	0	19	15	34
		310			Y=0.46(X))																				

PROPOSED WEEKDAY AM PEAK HOUR TRIP GENERATION

		ITE TRIP GENERATIO	N CHAR	ACTERIS	STICS		DIREC	TIONAL BUTION	E	BASELIN TRIPS		MULTII REDU	MODAL CTION	GR	OSS TR	RIPS		RNAL TURE		XTERN/		PAS: CAPT			NET NEV	
		Land Use	ITE Edition	ITE Code	Scale	ITE Units	Per In	cent	ln	Out	Total	Percent	MR Trips	In	Out	Total	Percent	IC Trips	In	Out	Total	Percent	PB Trips	In	Out	Total
	1	Hotel	11	310	51	room	56%	44%	13	10	23	20.0%	5	10	8	18	0.0%	0	10	8	18	0.0%	0	10	8	18
	2	Multifamily Housing (Mid-Rise)	11	221	30	du	23%	77%	3	8	11	20.0%	2	2	7	9	0.0%	0	2	7	9	0.0%	0	2	7	9
	3																									
	4																									
G	5																									
R	6																									
0	7																									
U	8																									igwdot
Р	9																									igwdot
١.	10					-																				
2	11		_			1				1					ļ	1										\vdash
	12 13																									\vdash
	14				<u> </u>	†									1											\vdash
I	15					1																				\vdash
	13	ITE Land Use Code	1	Ra	te or Equa	ition	I	Total:	16	18	34	20.0%	7	12	15	27	0.0%	0	12	15	27	0.0%	0	12	15	27
		310	_		Y=0.46(X		-													•	•				•	

PM PEAK HOUR TRIP GENERATION COMPARISON

EXISTING WEEKDAY PM PEAK HOUR TRIP GENERATION

	Ī	ITE TRIP GENERATI	ON CHAR	ACTERIS	STICS			TIONAL BUTION	E	BASELIN TRIPS		MULTII REDU	-	GR	OSS TR	RIPS	INTE CAP	RNAL FURE		XTERN/ IICLE TI		PAS: CAPI			NET NEV	
		Land Use	ITE Edition	ITE Code	Scale	ITE Units	Per	cent Out	In	Out	Total	Percent	MR Trips	In	Out	Total	Percent	IC Trips	ln.	Out	Total	Percent	PB Trips	In	Out	Total
$\overline{}$	4	Hotel	11	310			E40/	49%	28	27	55	20.0%	11105	22	22		0.0%	111ps	22	22	44	0.0%	111ps		22	44
1	1	notei	- 11	310	93	room	51%	49%	20	21	55	20.0%	- 11	22	22	44	0.0%	U	22	22	44	0.0%	U	22	22	44
1	2																									-
1	3			<u> </u>											1											\vdash
۱ ـ ا	4			<u> </u>											1											\vdash
G	5			<u> </u>																						
R	6			1																						
0	/			-																						
U	8																									⊢
	9																									⊢
1.1	10														ļ											
1	11																									
1 1	12																									
	13														ļ											
	14			<u> </u>											ļ					ļ						
	15	<u> </u>		_																						
		ITE Land Use Code	_		ite or Equa			Total:	28	27	55	20.0%	11	22	22	44	0.0%	0	22	22	44	0.0%	0	22	22	44
		310			Y=0.59(X))																				

PROPOSED WEEKDAY PM PEAK HOUR TRIP GENERATION

		ITE TRIP GENERATIO	N CHAR	ACTERIS	STICS		_	TIONAL BUTION	E	BASELIN TRIPS	E	_	MODAL CTION	GR	OSS TR	RIPS		RNAL TURE		XTERNA IICLE TI		PAS: CAP	-		NET NEV ERNAL T	
		Land Use	ITE Edition	ITE Code	Scale	ITE Units	Per In	cent Out	ln	Out	Total	Percent	MR Trips	In	Out	Total	Percent	IC Trips	ln	Out	Total	Percent	PB Trips	ln	Out	Total
	1	Hotel	11	310	51	room	51%	49%	15	15	30	20.0%	6	12	12	24	0.0%	0	12	12	24	0.0%	0	12	12	24
	2	Multifamily Housing (Mid-Rise)	11	221	30	du	61%	39%	7	5	12	20.0%	2	6	4	10	0.0%	0	6	4	10	0.0%	0	6	4	10
	3	•																								
I F	4																									
G	5																									
R	6																									
0	7																									
υ	8																									
Р	9																									
	10																									
2	11																									
	12																									
	13																									
	14																									
	15	_																								
		ITE Land Use Code		Ra	te or Equa	tion		Total:	22	20	42	20.0%	8	18	16	34	0.0%	0	18	16	34	0.0%	0	18	16	34

310 Y=0.59(X) 221 Y=0.39*(X)+0.34

NET NEW TRIPS -4 -6 -10

MEANS OF TRANSPORTATION TO WORK

Note: This is a modified view of the original table produced by the U.S. Census Bureau. This download or printed version may have missing information from the original table.

(26+3+112)/(578-97)=29.3%	Census Tract 42.06, Miami-Dade Ce	ounty, Florida
abel	Estimate	Margin of Error
✓ Total:	578	±161
➤ Car, truck, or van:	323	±122
Drove alone	206	±104
✓ Carpooled:	117	±87
In 2-person carpool	105	±82
In 3-person carpool	0	±14
In 4-person carpool	0	±14
In 5- or 6-person carpool	0	±14
In 7-or-more-person carpool	12	±18
➤ Public transportation (excluding taxicab):	26	±31
Bus	14	±26
Subway or elevated rail	12	±15
Long-distance train or commuter rail	0	±14
Light rail, streetcar or trolley (carro público in Puerto Rico)	0	±14
Ferryboat	0	±14
Taxicab	0	±14
Motorcycle	5	±12
Bicycle	3	±8
Walked	112	±77
Other means	12	±19
Worked from home	97	±67

Table Notes

MEANS OF TRANSPORTATION TO WORK

Universe: Workers 16 years and over

Year: 2019
Estimates: 5-Year
Table ID: B08301

Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties.

Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section.

Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section.

Source: U.S. Census Bureau, 2015-2019 American Community Survey 5-Year Estimates

Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables.

Workers include members of the Armed Forces and civilians who were at work last week.

2019 ACS data products include updates to several categories of the existing means of transportation question. For more information, see: Change to Means of Transportation.

The 2015-2019 American Community Survey (ACS) data generally reflect the September 2018 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas. In certain instances, the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineation lists due to differences in the effective dates of the geographic entities.

Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization.

Explanation of Symbols:

An "**" entry in the margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.

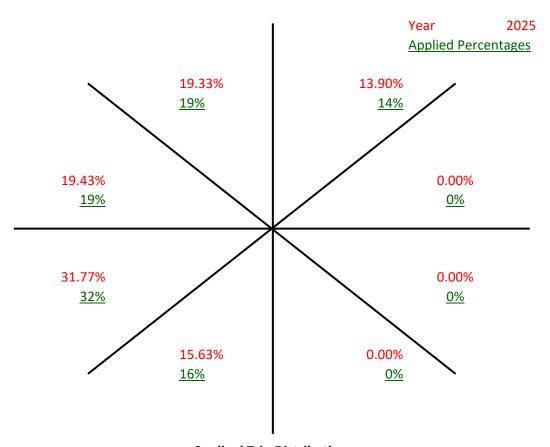
An "-" entry in the estimate column indicates that either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution, or the margin of error associated with a median was larger than the median itself.

An "-" following a median estimate means the median falls in the lowest interval of an open-ended distribution.

An "+" following a median estimate means the median falls in the upper interval of an open-ended distribution.

An "***" entry in the margin of error column indicates that the median falls in the lowest interval or upper interval of an open-ended distribution. A statistical test is not appropriate.

An "*****" entry in the margin of error column indicates that the estimate is controlled. A statistical test for sampling variability is not appropriate.


An "N" entry in the estimate and margin of error columns indicates that data for this geographic area cannot be displayed because the number of sample cases is too small.

An "(X)" means that the estimate is not applicable or not available.

Appendix G

Cardinal Distribution

Cardinal Distribution for TAZ 644

Cardinal Trip Distribution

Cardinal Direction	Percentag	ge of Trips	2025	2025
Cardinal Direction	2015	2045	Interpolated	Rounded
North-Northeast	14.8%	12.1%	13.9%	14.0%
East-Northeast	0.0%	0.0%	0.0%	0.0%
East-Southeast	0.0%	0.0%	0.0%	0.0%
South-Southeast	0.0%	0.0%	0.0%	0.0%
South-Southwest	16.5%	13.9%	15.6%	16.0%
West-Southwest	30.4%	34.5%	31.8%	32.0%
West-Northwest	19.0%	20.3%	19.4%	19.0%
North-Northwest	19.4%	19.2%	19.3%	19.0%
Total	100.1%	100.0%	100.07%	100.00%

MIAMI-DADE TRANSPORTATION PLANNING ORGANIZATION

DIRECTIONAL TRIP DISTRIBUTION REPORT

SEPTEMBER 2019

2@45LRTP

		N	/liami-Dade	2015 Base	Year Direc	tion Trip C	istributio	n Summary	/		
TAZ of	Origin	Tains (Cardinal D	irections				Tabal
County TAZ	Regional TAZ	Trips / Percent	NNE	ENE	ESE	SSE	SSW	wsw	WNW	NNW	Total Trips
625	3525	Trips	610	160	-	557	431	1,317	679	1,035	4,961
625	3525	Percent	12.7	3.3	-	11.6	9.0	27.5	14.2	21.6	
626	3526	Trips	122	-	-	-	2,090	2,277	1,198	2,942	9,399
626	3526	Percent	1.4	-	-	-	24.2	26.4	13.9	34.1	
627	3527	Trips	279	-	-	-	2,051	2,578	845	1,965	8,061
627	3527	Percent	3.6	-	-	-	26.6	33.4	11.0	25.5	
628	3528	Trips	298	-	49	79	984	902	332	679	3,579
628	3528	Percent	9.0	-	1.5	2.4	29.6	27.2	10.0	20.5	
629	3529	Trips	1,374	549	344	1,656	1,708	3,707	1,668	2,101	14,261
629	3529	Percent	10.5	4.2	2.6	12.6	13.0	28.3	12.7	16.0	
630	3530	Trips	952	-	210	347	1,696	2,375	794	1,114	8,135
630	3530	Percent	12.7	-	2.8	4.6	22.7	31.7	10.6	14.9	
631	3531	Trips	255	-	-	-	1,215	1,471	440	1,030	4,651
631	3531	Percent	5.8	-	-	-	27.6	33.4	10.0	23.4	
632	3532	Trips	309	-	-	-	1,242	1,751	750	635	4,880
632	3532	Percent	6.6	-	-	-	26.5	37.4	16.0	13.5	
633	3533	Trips	310	-	-	-	1,181	1,428	750	730	4,590
633	3533	Percent	7.0	-	-	-	26.9	32.5	17.1	16.6	
634	3534	Trips	1,502	112	240	837	1,718	1,928	976	1,727	9,998
634	3534	Percent	16.6	1.2	2.7	9.3	19.0	21.3	10.8	19.1	
635	3535	Trips	779	-	-	-	2,021	1,994	952	1,411	8,010
635	3535	Percent	10.9	-	-	-	28.2	27.9	13.3	19.7	
636	3536	Trips	1,041	-	-	686	1,152	2,072	911	1,071	7,384
636	3536	Percent	15.0	-	-	9.9	16.6	29.9	13.1	15.4	
637	3537	Trips	323	31	87	217	126	601	303	290	1,987
637	3537	Percent	16.4	1.6	4.4	11.0	6.4	30.4	15.3	14.7	
638	3538	Trips	152	35	87	86	114	218	162	126	999
638	3538	Percent	15.5	3.6	8.9	8.7	11.6	22.3	16.5	12.9	
639	3539	Trips	825	281	277	1,089	131	1,364	796	599	5,721
639	3539	Percent	15.4	5.2	5.2	20.3	2.4	25.4	14.9	11.2	
640	3540	Trips	344	247	868	104	43	685	405	274	3,053
640	3540	Percent	11.6	8.3	29.2	3.5	1.5	23.1	13.6	9.2	
641	3541	Trips	1,051	1,714	291	723	309	1,572	1,188	916	8,356
641	3541	Percent	13.5	22.1	3.7	9.3	4.0	20.3	15.3	11.8	
642	3542	Trips	1,849	1,404	115	1,263	457	2,697	1,962	1,518	12,299
642	3542	Percent	16.4	12.5	1.0	11.2	4.1	23.9	17.4	13.5	
643	3543	Trips	1,747	551	-	965	479	2,595	1,554	1,715	10,383
643	3543	Percent	18.2	5.7	-	10.1	5.0	27.0	16.2	17.9	
644	3544	Trips	2,022	-	-	-	2,250	4,141	2,585	2,646	15,224
644	3544	Percent	14.8	-	-	-	16.5	30.4	19.0	19.4	
645	3545	Trips	1,268	-	-	-	907	1,498	1,720	1,351	7,018
645	3545	Percent	18.8	-	-	-	13.5	22.2	25.5	20.0	
646	3546	Trips	986	-	156	520	250	1,081	1,094	1,181	5,470
646	3546	Percent	18.7	-	3.0	9.9	4.7	20.5	20.8	22.4	
647	3547	Trips	350	103	114	165	66	354	359	408	1,979
647	3547	Percent	18.2	5.4	5.9	8.6	3.5	18.5	18.7	21.2	
648	3548	Trips	1,027	434	254	401	48	903	1,001	514	4,747
648	3548	Percent	22.4	9.5	5.5	8.8	1.0	19.7	21.9	11.2	
649	3549	Trips	754	192	184	230	41	612	743	427	3,320
649	3549	Percent	23.7	6.0	5.8	7.2	1.3	19.2	23.3	13.4	
650	3550	Trips	45	80	104	0	14	155	304	133	850
650	3550	Percent	5.4	9.6	12.4	0.0	1.6	18.5	36.5	16.0	

2@45LRTP

		Mian	ni-Dade 204	5 Cost Fea:	sible Plan I	Direction T	rip Distrib	ution Sum	mary		
TAZ of	Origin	Tains (Cardinal D	Directions				Total
County TAZ	Regional TAZ	Trips / Percent	NNE	ENE	ESE	SSE	SSW	WSW	WNW	NNW	Total Trips
625	3525	Trips	515	114	-	541	802	1,791	829	1,096	5,972
625	3525	Percent	9.1	2.0	-	9.5	14.1	31.5	14.6	19.3	
626	3526	Trips	66	-	-	-	2,417	3,260	1,417	2,993	11,237
626	3526	Percent	0.7	-	-	-	23.8	32.1	14.0	29.5	
627	3527	Trips	174	-	-	-	2,276	3,212	1,138	1,885	9,055
627	3527	Percent	2.0	-	-	-	26.2	37.0	13.1	21.7	
628	3528	Trips	238	-	23	101	1,053	1,266	390	660	4,028
628	3528	Percent	6.4	-	0.6	2.7	28.2	33.9	10.5	17.7	
629	3529	Trips	1,686	621	373	1,692	1,801	6,032	2,362	2,490	18,425
629	3529	Percent	9.9	3.6	2.2	9.9	10.6	35.4	13.9	14.6	
630	3530	Trips	888	-	326	303	1,717	3,876	1,515	1,553	11,277
630	3530	Percent	8.7	-	3.2	3.0	16.9	38.1	14.9	15.3	
631	3531	Trips	296	-	-	-	1,351	2,360	838	1,324	6,591
631	3531	Percent	4.8	-	-	-	21.9	38.3	13.6	21.5	
632	3532	Trips	343	-	-	-	1,500	2,647	1,390	1,098	7,499
632	3532	Percent	4.9	-	-	-	21.5	37.9	19.9	15.7	
633	3533	Trips	368	-	-	-	1,052	1,986	859	841	5,391
633	3533	Percent	7.2	-	-	-	20.6	38.9	16.8	16.5	
634	3534	Trips	1,404	80	149	773	1,637	2,733	1,332	1,712	10,593
634	3534	Percent	14.3	0.8	1.5	7.9	16.7	27.8	13.6	17.4	•
635	3535	Trips	566	-	-	-	1,311	2,266	1,228	1,254	7,246
635	3535	Percent	8.5	-	-	-	19.8	34.2	18.5	18.9	, -
636	3536	Trips	1,066	-	_	607	978	3,045	1,398	1,193	8,805
636	3536	Percent	12.9	-	_	7.3	11.8	36.8	16.9	14.4	0,000
637	3537	Trips	468	44	144	315	198	868	501	309	2,865
637	3537	Percent	16.5	1.6	5.1	11.1	6.9	30.5	17.6	10.9	2,003
638	3538	Trips	127	33	78	94	79	401	285	185	1,342
638	3538	Percent	9.9	2.6	6.1	7.3	6.2	31.3	22.2	14.5	1,342
639	3539	Trips	944	303	253	1,068	176	2,395	1,085	905	7,569
639	3539	Percent	13.2	4.3	3.6	15.0	2.5	33.6	15.2	12.7	7,303
640	3540	Trips	119	74	216	10	30	177	13.2	147	1,166
640	3540	Percent	13.1	8.2	23.7	1.1	3.4	19.4	14.9	16.2	1,100
641	3541	Trips	1,145	1,056	206	569	242	2,378	1,724	1,142	9,066
641	3541		13.5	12.5	2.4	6.7	2.9	2,378	20.4	13.5	9,000
642		Percent									12 224
	3542	Trips	1,701	1,196	113	964	433	3,470	2,140	1,631	12,324
642	3542	Percent	14.6	10.3	1.0	8.3	3.7	29.8	18.4	14.0	12 102
643	3543	Trips	1,884	580		1,133	631	3,768	2,190	2,157	13,183
643	3543	Percent	15.3	4.7	-	9.2	5.1	30.5	17.7	17.5	17 700
644	3544	Trips	1,948	-	-	-	2,227	5,534	3,264	3,082	17,780
644	3544	Percent	12.1	-	-	-	13.9	34.5	20.3	19.2	0.075
645	3545	Trips	1,314	-	-	-	844	1,661	2,170	1,703	8,075
645	3545	Percent	17.1	-	125	- 406	11.0	21.6	28.2	22.1	C 07.0
646	3546	Trips	1,025	-	125	496	263	1,741	1,656	1,299	6,976
646	3546	Percent	15.5	-	1.9	7.5	4.0	26.4	25.1	19.7	
647	3547	Trips	296	122	96	109	79	582	661	405	2,490
647	3547	Percent	12.6	5.2	4.1	4.6	3.4	24.8	28.1	17.3	
648	3548	Trips	943	278	128	313	73	1,525	1,351	576	5,397
648	3548	Percent	18.2	5.4	2.5	6.0	1.4	29.4	26.0	11.1	
649	3549	Trips	643	120	121	216	43	873	952	508	3,661
649	3549	Percent	18.5	3.4	3.5	6.2	1.3	25.1	27.4	14.6	
650	3550	Trips	60	71	65	8	14	279	312	136	969
650	3550	Percent	6.4	7.5	6.9	0.9	1.5	29.5	33.0	14.4	

Appendix H

Volume Development Worksheets

TRAFFIC VOLUMES AT STUDY INTERSECTIONS

Collins Avenue/A1A and Lincoln Road March 2, 2023 & January 13, 2023

INTERSECTION: COUNT DATE: THURS MID-DAY PEAK HOUR FACTOR: 0.92 THURS PM PEAK HOUR FACTOR: FRI PM PEAK HOUR FACTOR: 0.91 0.95

"THURS	S MID-DAY EXISTING TRAFFIC"	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
	IID-DAY Raw Turning Movements		80	40	75		42	61	63		39	476	63		48	521	77
Pea	k Season Correction Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
THURS	MID-DAY EXISTING CONDITIONS		80	40	75		42	61	63		39	476	63		48	521	77
"ТЫ	URS PM EXISTING TRAFFIC"	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
	S PM Raw Turning Movements	T	71	52	52	1100	32	49	73		36	528	46	050	40	483	78
Pea	ak Season Correction Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
THUR	RS PM EXISTING CONDITIONS		71	52	52		32	49	73		36	528	46		40	483	78
	RI PM EXISTING TRAFFIC" PM Raw Turning Movements	EBU I	EBL 65	EBT 22	EBR 60	WBU	WBL 22	WBT 42	WBR 45	NBU	NBL 48	NBT 658	NBR 40	SBU	SBL 35	SBT 418	SBR 69
	ak Season Correction Factor	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04
FRI	PM EXISTING CONDITIONS		68	23	62		23	44	47	1	50	684	42		36	435	72
				•													<u> </u>
"THURS M	MID-DAY BACKGROUND TRAFFIC"	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
то	OTAL "VESTED" TRAFFIC		0	0	0		0	0	0		0	0	0		0	0	0
	Verse To Duildoor																
	Years To Buildout Yearly Growth Rate	2 0.50%	2 0.50%	2 0.50%	2 0.50%	2 0.50%	2 0.50%	2 0.50%	2 0.50%	2 0.50%	2 0.50%	2 0.50%	2 0.50%	2 0.50%	2 0.50%	2 0.50%	2 0.50%
THURS MID-DA	AY BACKGROUND TRAFFIC GROWTH		1	0	1	0.00,0	0	1	1		0	5	1		0	5	1
THURS M	MID-DAY NON-PROJECT TRAFFIC		81	40	76		42	62	64	1	39	481	64		48	526	78
THURS	S PM BACKGROUND TRAFFIC"	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
TO	OTAL "VESTED" TRAFFIC		0	0	0		0	0	0		0	0	0		0	0	0
	Verse To Duildoor																
	Years To Buildout Yearly Growth Rate	2 0.50%	2 0.50%	2 0.50%	2 0.50%	2 0.50%	2 0.50%	2 0.50%	2 0.50%	2 0.50%	2 0.50%	2 0.50%	2 0.50%	2 0.50%	2 0.50%	2 0.50%	2 0.50%
THURS PM	BACKGROUND TRAFFIC GROWTH	0.0070	1	1	1	0.0070	0	0	1	0.0070	0	5	0	0.0070	0	5	1
THURS	S PM NON-PROJECT TRAFFIC		72	53	53		32	49	74	1	36	533	46		40	488	79
	0 : III						•					- 000		L			
"FRI I	PM BACKGROUND TRAFFIC"	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
	PM BACKGROUND TRAFFIC" OTAL "VESTED" TRAFFIC	EBU	EBL	EBT	EBR 0	WBU	WBL 0	WBT 0	WBR 0	NBU	NBL 0	NBT	NBR	SBU	SBL 0	SBT 0	SBR 0
	OTAL "VESTED" TRAFFIC		0	0	0		0	0	0		0	0	0		0	0	0
		EBU 2 0.50%				WBU 2 0.50%				NBU 2 0.50%				\$BU 2 0.50%			
TO	OTAL "VESTED" TRAFFIC Years To Buildout	2	0	0	0	2	0	0 2	0 2	2	0	0	0	2	0 2	0 2	0
FRI PM B.	OTAL "VESTED" TRAFFIC Years To Buildout Yearly Growth Rate	2	0 2 0.50%	0 2 0.50%	0 2 0.50%	2	0 2 0.50%	0 2 0.50%	0 2 0.50%	2	0 2 0.50%	0 2 0.50%	0 2 0.50%	2	0 2 0.50%	0 2 0.50%	0 2 0.50%
FRI PM B	OTAL "VESTED" TRAFFIC Years To Buildout Yearly Growth Rate ACKGROUND TRAFFIC GROWTH PM NON-PROJECT TRAFFIC	2	0 2 0.50% 1	0 2 0.50% 0	0 2 0.50% 1	2	0 2 0.50% 0	0 2 0.50% 0	0 2 0.50% 0	2	0 2 0.50% 1	0 2 0.50% 7	0 2 0.50% 0	2	0 2 0.50% 0	0 2 0.50% 4	0 2 0.50% 1
FRI PM B. FRI I	OTAL "VESTED" TRAFFIC Years To Buildout Yearly Growth Rate ACKGROUND TRAFFIC GROWTH PM NON-PROJECT TRAFFIC	2 0.50%	0 2 0.50% 1 69	0 2 0.50% 0	0 2 0.50% 1	2 0.50%	0 2 0.50% 0	0 2 0.50% 0	0 2 0.50% 0	2 0.50%	0 2 0.50% 1	0 2 0.50% 7 691	0 2 0.50% 0	2 0.50%	0 2 0.50% 0	0 2 0.50% 4 439	0 2 0.50% 1
FRI PM B	OTAL "VESTED" TRAFFIC Years To Buildout Yearly Growth Rate ACKGROUND TRAFFIC GROWTH PM NON-PROJECT TRAFFIC	2	0 2 0.50% 1	0 2 0.50% 0	0 2 0.50% 1	2	0 2 0.50% 0	0 2 0.50% 0	0 2 0.50% 0	2	0 2 0.50% 1	0 2 0.50% 7	0 2 0.50% 0	2	0 2 0.50% 0	0 2 0.50% 4	0 2 0.50% 1
FRI PM B. FRI I	OTAL "VESTED" TRAFFIC Years To Buildout Yearly Growth Rate ACKGROUND TRAFFIC GROWTH PM NON-PROJECT TRAFFIC IIID-DAY PROJECT DISTRIBUTION" TYPE	2 0.50%	0 2 0.50% 1 69	0 2 0.50% 0	0 2 0.50% 1	2 0.50%	0 2 0.50% 0	0 2 0.50% 0	0 2 0.50% 0	2 0.50%	0 2 0.50% 1	0 2 0.50% 7 691	0 2 0.50% 0	2 0.50%	0 2 0.50% 0	0 2 0.50% 4 439	0 2 0.50% 1
FRI PM B. FRI I "THURS M LAND USE Pass-By Distribution Valet	OTAL "VESTED" TRAFFIC Years To Buildout Yearly Growth Rate ACKGROUND TRAFFIC GROWTH PM NON-PROJECT TRAFFIC IID-DAY PROJECT DISTRIBUTION" TYPE Entering Exiting Entering	2 0.50%	0 2 0.50% 1 69	0 2 0.50% 0	0 2 0.50% 1	2 0.50%	0 2 0.50% 0	0 2 0.50% 0	0 2 0.50% 0 47 WBR	2 0.50%	0 2 0.50% 1	0 2 0.50% 7 691	0 2 0.50% 0	2 0.50%	0 2 0.50% 0	0 2 0.50% 4 439	0 2 0.50% 1
FRI PM B. FRI I "THURS M LAND USE Pass-By Distribution Valet Distribution	OTAL "VESTED" TRAFFIC Years To Buildout Yearly Growth Rate ACKGROUND TRAFFIC GROWTH PM NON-PROJECT TRAFFIC IID-DAY PROJECT DISTRIBUTION" TYPE Entering Exiting Entering Exiting Exiting	2 0.50%	0 2 0.50% 1 69	0 2 0.50% 0	0 2 0.50% 1	2 0.50%	0 2 0.50% 0	0 2 0.50% 0	0 2 0.50% 0	2 0.50%	0 2 0.50% 1	0 2 0.50% 7 691	0 2 0.50% 0 42 NBR	2 0.50%	2 0.50% 0 36 SBL	0 2 0.50% 4 439	0 2 0.50% 1
FRI PM B. FRI I "THURS M LAND USE Pass-By Distribution Valet Distribution Net New	OTAL "VESTED" TRAFFIC Years To Buildout Yearly Growth Rate ACKGROUND TRAFFIC GROWTH PM NON-PROJECT TRAFFIC IID-DAY PROJECT DISTRIBUTION" TYPE Entering Exiting Entering Exiting Exiting Entering Exiting Entering	2 0.50%	0 2 0.50% 1 69	0 2 0.50% 0	0 2 0.50% 1	2 0.50%	0 2 0.50% 0 23 WBL	0 2 0.50% 0	0 2 0.50% 0 47 WBR	2 0.50%	0 2 0.50% 1	0 2 0.50% 7 691	0 2 0.50% 0	2 0.50%	0 2 0.50% 0 36 SBL	0 2 0.50% 4 439 SBT	0 2 0.50% 1
FRI PM B. FRI I "THURS M LAND USE Pass-By Distribution Valet Distribution	OTAL "VESTED" TRAFFIC Years To Buildout Yearly Growth Rate ACKGROUND TRAFFIC GROWTH PM NON-PROJECT TRAFFIC IID-DAY PROJECT DISTRIBUTION" TYPE Entering Exiting Entering Exiting Exiting	2 0.50%	0 2 0.50% 1 69	0 2 0.50% 0	0 2 0.50% 1	2 0.50%	0 2 0.50% 0	0 2 0.50% 0	0 2 0.50% 0 47 WBR	2 0.50%	0 2 0.50% 1	0 2 0.50% 7 691	0 2 0.50% 0 42 NBR	2 0.50%	2 0.50% 0 36 SBL	0 2 0.50% 4 439	0 2 0.50% 1
FRI PM B. FRI I "THURS M LAND USE Pass-By Distribution Valet Distribution Net New Distribution "THURS	Years To Buildout Yearly Growth Rate ACKGROUND TRAFFIC GROWTH PM NON-PROJECT TRAFFIC IID-DAY PROJECT DISTRIBUTION" TYPE Entering Exiting Entering	2 0.50%	0 2 0.50% 1 69 EBL	0 2 0.50% 0 23 EBT	0 2 0.50% 1 63 EBR	2 0.50% WBU	0 2 0.50% 0 23 WBL	0 2 0.50% 0 44 WBT	0 2 0.50% 0 47 WBR 100.0% 52.0%	2 0.50%	0 2 0.50% 1 51 NBL	0 2 0.50% 7 691 NBT	0 2 0.50% 0 42 NBR	2 0.50%	0 2 0.50% 0 36 SBL 100.0%	0 2 0.50% 4 439 SBT	0 2 0.50% 1 73 SBR
FRI PM B. FRI I "THURS M LAND USE Pass-By Distribution Valet Distribution Net New Distribution "THURS LAND USE	Years To Buildout Yearly Growth Rate ACKGROUND TRAFFIC GROWTH PM NON-PROJECT TRAFFIC IID-DAY PROJECT DISTRIBUTION" TYPE Entering Exiting Exiting Exiting Exiting	2 0.50%	0 2 0.50% 1 69	0 2 0.50% 0	0 2 0.50% 1	2 0.50%	0 2 0.50% 0 23 WBL	0 2 0.50% 0 44 WBT	0 2 0.50% 0 47 WBR 100.0% 52.0%	2 0.50%	0 2 0.50% 1	0 2 0.50% 7 691	0 2 0.50% 0 42 NBR	2 0.50%	2 0.50% 0 36 SBL	0 2 0.50% 4 439 SBT	0 2 0.50% 1
FRI PM B. FRI PM B. "THURS M LAND USE Pass-By Distribution Valet Distribution Net New Distribution "THURS LAND USE	OTAL "VESTED" TRAFFIC Years To Buildout Yearly Growth Rate ACKGROUND TRAFFIC GROWTH PM NON-PROJECT TRAFFIC IID-DAY PROJECT DISTRIBUTION" TYPE Entering Exiting Entering Exiting Entering Exiting Entering Exiting Setting Entering Exiting	2 0.50%	0 2 0.50% 1 69 EBL	0 2 0.50% 0 23 EBT	0 2 0.50% 1 63 EBR	2 0.50% WBU	0 2 0.50% 0 23 WBL	0 2 0.50% 0 44 WBT	0 2 0.50% 0 47 WBR 100.0% 52.0%	2 0.50%	0 2 0.50% 1 51 NBL	0 2 0.50% 7 691 NBT	0 2 0.50% 0 42 NBR	2 0.50%	0 2 0.50% 0 36 SBL 100.0%	0 2 0.50% 4 439 SBT	0 2 0.50% 1 73 SBR
FRI PM B. FRI I PM B. "THURS M LAND USE Pass-By Distribution Valet Distribution Net New Distribution "THURS LAND USE Pass-By Distribution	Years To Buildout Yearly Growth Rate ACKGROUND TRAFFIC GROWTH PM NON-PROJECT TRAFFIC IID-DAY PROJECT DISTRIBUTION" TYPE Entering Exiting Entering Exiting Entering Exiting	2 0.50%	0 2 0.50% 1 69 EBL	0 2 0.50% 0 23 EBT	0 2 0.50% 1 63 EBR	2 0.50% WBU	0 2 0.50% 0 23 WBL	0 2 0.50% 0 44 WBT	0 2 0.50% 0 47 WBR 100.0% 52.0%	2 0.50%	0 2 0.50% 1 51 NBL	0 2 0.50% 7 691 NBT	0 2 0.50% 0 42 NBR	2 0.50%	0 2 0.50% 0 36 SBL 100.0% SBL	0 2 0.50% 4 439 SBT	0 2 0.50% 1 73 SBR
FRI PM B. FRI I "THURS M LAND USE Pass-By Distribution Valet Distribution Net New Distribution "THURS LAND USE Pass-By Distribution Valet Valet Valet Valet	Years To Buildout Yearly Growth Rate ACKGROUND TRAFFIC GROWTH PM NON-PROJECT TRAFFIC IID-DAY PROJECT DISTRIBUTION" TYPE Entering Exiting Entering Exiting Entering Exiting Entering Exiting Entering	2 0.50%	0 2 0.50% 1 69 EBL	0 2 0.50% 0 23 EBT	0 2 0.50% 1 63 EBR	2 0.50% WBU	0 2 0.50% 0 23 WBL	0 2 0.50% 0 44 WBT	0 2 0.50% 0 47 WBR 100.0% WBR	2 0.50%	0 2 0.50% 1 51 NBL	0 2 0.50% 7 691 NBT	0 2 0.50% 0 42 NBR	2 0.50%	0 2 0.50% 0 36 SBL 100.0%	0 2 0.50% 4 439 SBT	0 2 0.50% 1 73 SBR
FRI PM B. FRI I PM B. "THURS M LAND USE Pass-By Distribution Valet Distribution Net New Distribution "THURS LAND USE Pass-By Distribution	Years To Buildout Yearly Growth Rate ACKGROUND TRAFFIC GROWTH PM NON-PROJECT TRAFFIC IID-DAY PROJECT DISTRIBUTION" TYPE Entering Exiting Entering Exiting Entering Exiting	2 0.50%	0 2 0.50% 1 69 EBL	0 2 0.50% 0 23 EBT	0 2 0.50% 1 63 EBR	2 0.50% WBU	0 2 0.50% 0 23 WBL	0 2 0.50% 0 44 WBT	0 2 0.50% 0 47 WBR 100.0% 52.0%	2 0.50%	0 2 0.50% 1 51 NBL	0 2 0.50% 7 691 NBT	0 2 0.50% 0 42 NBR	2 0.50%	0 2 0.50% 0 36 SBL 100.0% SBL	0 2 0.50% 4 439 SBT	0 2 0.50% 1 73 SBR
FRI PM B. FRI I PM B. "THURS M LAND USE Pass-By Distribution Valet Distribution Net New Distribution "THURS LAND USE Pass-By Distribution Valet Distribution Valet Distribution	Years To Buildout Yearly Growth Rate ACKGROUND TRAFFIC GROWTH PM NON-PROJECT TRAFFIC IID-DAY PROJECT DISTRIBUTION" TYPE Entering Exiting Exiting Entering Exiting Exiting Entering Exiting Exiting Exiting Entering Exiting	2 0.50%	0 2 0.50% 1 69 EBL	0 2 0.50% 0 23 EBT	0 2 0.50% 1 63 EBR	2 0.50% WBU	0 2 0.50% 0 23 WBL	0 2 0.50% 0 44 WBT	0 2 0.50% 0 47 WBR 100.0% WBR	2 0.50%	0 2 0.50% 1 51 NBL	0 2 0.50% 7 691 NBT	0 2 0.50% 0 42 NBR	2 0.50%	0 2 0.50% 0 36 SBL 100.0% SBL	0 2 0.50% 4 439 SBT	0 2 0.50% 1 73 SBR
FRI PM B. FRI I PM B. "THURS M LAND USE Pass-By Distribution Valet Distribution Net New Distribution "THURS LAND USE Pass-By Distribution Valet Distribution Valet Distribution Net New Distribution	Years To Buildout Yearly Growth Rate ACKGROUND TRAFFIC GROWTH PM NON-PROJECT TRAFFIC IID-DAY PROJECT DISTRIBUTION" TYPE Entering Exiting Exiting Entering Exiting Exiting Entering Exiting Exiting Entering Exiting Exiting	2 0.50%	0 2 0.50% 1 69 EBL	0 2 0.50% 0 23 EBT	0 2 0.50% 1 63 EBR	2 0.50% WBU	0 2 0.50% 0 23 WBL 45.0%	0 2 0.50% 0 44 WBT	0 2 0.50% 0 47 WBR 100.0%	2 0.50%	0 2 0.50% 1 51 NBL	0 2 0.50% 7 691 NBT	0 2 0.50% 0 42 NBR	2 0.50%	0 2 0.50% 0 36 SBL 100.0% SBL	0 2 0.50% 4 439 SBT 3.0%	0 2 0.50% 1 73 SBR
FRI PM B. FRI I PM B. "THURS M LAND USE Pass-By Distribution Valet Distribution Net New Distribution "THURS LAND USE Pass-By Distribution Valet Distribution Valet Distribution Net New Distribution	Years To Buildout Yearly Growth Rate ACKGROUND TRAFFIC GROWTH PM NON-PROJECT TRAFFIC IID-DAY PROJECT DISTRIBUTION" TYPE Entering Exiting Entering	2 0.50%	0 2 0.50% 1 69 EBL	0 2 0.50% 0 23 EBT	0 2 0.50% 1 63 EBR	2 0.50% WBU	0 2 0.50% 0 23 WBL 45.0%	0 2 0.50% 0 44 WBT	0 2 0.50% 0 47 WBR 100.0%	2 0.50%	0 2 0.50% 1 51 NBL	0 2 0.50% 7 691 NBT	0 2 0.50% 0 42 NBR	2 0.50%	0 2 0.50% 0 36 SBL 100.0% SBL	0 2 0.50% 4 439 SBT 3.0%	0 2 0.50% 1 73 SBR
FRI PM B. FRI PM B. "THURS M LAND USE Pass-By Distribution Valet Distribution Net New Distribution "THURS LAND USE Pass-By Distribution Valet Distribution Valet Distribution FRI F LAND USE Pass-By Distribution	Years To Buildout Yearly Growth Rate ACKGROUND TRAFFIC GROWTH PM NON-PROJECT DISTRIBUTION" TYPE Entering Exiting SPM PROJECT DISTRIBUTION" TYPE Entering Exiting Entering Exiting Exiting Entering Exiting Exiting Entering Exiting Exiting Entering Exiting	EBU	0 2 0.50% 1 69 EBL	0 2 0.50% 0 23 EBT	0 2 0.50% 1 63 EBR	2 0.50% WBU	0 2 0.50% 0 23 WBL 45.0%	0 2 0.50% 0 44 WBT	0 2 0.50% 0 47 WBR 100.0% 52.0%	2 0.50% NBU	0 2 0.50% 1 51 NBL	0 2 0.50% 7 691 NBT 3.0%	0 2 0.50% 0 42 NBR 45.0%	\$BU	0 2 0.50% 0 36 SBL 100.0% 52.0%	0 2 0.50% 4 439 SBT 3.0%	0 2 0.50% 1 73 SBR
FRI PM B. FRI PM B. FRI I "THURS M LAND USE Pass-By Distribution Valet Distribution Net New Distribution "THURS LAND USE Pass-By Distribution Valet Distribution Valet Distribution FRI F LAND USE Pass-By Distribution	Years To Buildout Yearly Growth Rate ACKGROUND TRAFFIC GROWTH PM NON-PROJECT DISTRIBUTION" TYPE Entering Exiting Entering Exiting Exiting Entering Exiting Exiting Entering Exiting Exiting	EBU	0 2 0.50% 1 69 EBL	0 2 0.50% 0 23 EBT	0 2 0.50% 1 63 EBR	2 0.50% WBU	0 2 0.50% 0 23 WBL 45.0%	0 2 0.50% 0 44 WBT	0 2 0.50% 0 47 WBR 100.0% 52.0%	2 0.50% NBU	0 2 0.50% 1 51 NBL	0 2 0.50% 7 691 NBT 3.0%	0 2 0.50% 0 42 NBR 45.0%	\$BU	2 0.50% 0 36 SBL 100.0% 52.0%	0 2 0.50% 4 439 SBT 3.0%	0 2 0.50% 1 73 SBR
FRI PM B. FRI I PM B. FRI I PM B. "THURS M. LAND USE Pass-By Distribution Valet Distribution Net New Distribution "THURS LAND USE Pass-By Distribution Valet Distribution Valet Distribution Net New Distribution "FRI F. LAND USE Pass-By Distribution Valet Valet	Years To Buildout Yearly Growth Rate ACKGROUND TRAFFIC GROWTH PM NON-PROJECT TRAFFIC IID-DAY PROJECT DISTRIBUTION" TYPE Entering Exiting Exiting Entering Exiting Entering Exiting Entering Exiting Entering Exiting Entering Exiting Fire Fire Fire Fire Fire Fire Fire Fire	EBU	0 2 0.50% 1 69 EBL	0 2 0.50% 0 23 EBT	0 2 0.50% 1 63 EBR	2 0.50% WBU	0 2 0.50% 0 23 WBL 45.0%	0 2 0.50% 0 44 WBT	0 2 0.50% 0 47 WBR 100.0% WBR 100.0% WBR	2 0.50% NBU	0 2 0.50% 1 51 NBL	0 2 0.50% 7 691 NBT 3.0%	0 2 0.50% 0 42 NBR 45.0%	\$BU	0 2 0.50% 0 36 SBL 100.0% 52.0%	0 2 0.50% 4 439 SBT 3.0%	0 2 0.50% 1 73 SBR
FRI PM B. FRI IM B. "THURS M. LAND USE Pass-By Distribution "THURS LAND USE Pass-By Distribution Valet Distribution "THURS LAND USE Pass-By Distribution Valet Distribution FRI F. LAND USE Pass-By Distribution "FRI F. LAND USE Pass-By Distribution Valet Distribution Valet Distribution Valet Distribution Valet Distribution	Years To Buildout Yearly Growth Rate ACKGROUND TRAFFIC GROWTH PM NON-PROJECT TRAFFIC IID-DAY PROJECT DISTRIBUTION" TYPE Entering Exiting Exiting Entering Exiting Entering Exiting Entering Exiting Entering Exiting Entering Exiting Finering Exiting Entering Exiting Entering Exiting Finering Exiting Entering Exiting	EBU	0 2 0.50% 1 69 EBL	0 2 0.50% 0 23 EBT	0 2 0.50% 1 63 EBR	2 0.50% WBU	0 2 0.50% 0 23 WBL 45.0%	0 2 0.50% 0 44 WBT	0 2 0.50% 0 47 WBR 100.0% 52.0%	2 0.50% NBU	0 2 0.50% 1 51 NBL	0 2 0.50% 7 691 NBT 3.0% NBT	0 2 0.50% 0 42 NBR 45.0%	\$BU	2 0.50% 0 36 SBL 100.0% 52.0%	0 2 0.50% 4 439 SBT 3.0%	0 2 0.50% 1 73 SBR
FRI PM B. FRI I PM B. FRI I PM B. "THURS M. LAND USE Pass-By Distribution Valet Distribution Net New Distribution "THURS LAND USE Pass-By Distribution Valet Distribution Valet Distribution Net New Distribution "FRI F. LAND USE Pass-By Distribution Valet Valet	Years To Buildout Yearly Growth Rate ACKGROUND TRAFFIC GROWTH PM NON-PROJECT TRAFFIC IID-DAY PROJECT DISTRIBUTION" TYPE Entering Exiting Exiting Entering Exiting Entering Exiting Entering Exiting Entering Exiting Entering Exiting Fire Fire Fire Fire Fire Fire Fire Fire	EBU	0 2 0.50% 1 69 EBL	0 2 0.50% 0 23 EBT	0 2 0.50% 1 63 EBR	2 0.50% WBU	0 2 0.50% 0 23 WBL 45.0%	0 2 0.50% 0 44 WBT	0 2 0.50% 0 47 WBR 100.0% WBR 100.0% WBR	2 0.50% NBU	0 2 0.50% 1 51 NBL	0 2 0.50% 7 691 NBT 3.0%	0 2 0.50% 0 42 NBR 45.0%	\$BU	2 0.50% 0 36 SBL 100.0% 52.0%	0 2 0.50% 4 439 SBT 3.0%	0 2 0.50% 1 73 SBR

TRAFFIC VOLUMES AT STUDY INTERSECTIONS

INTERSECTION: COUNT DATE:

Collins Avenue/A1A and Lincoln Road March 2, 2023 & January 13, 2023

"THURS MID-DAY PROJECT TRAFFIC"

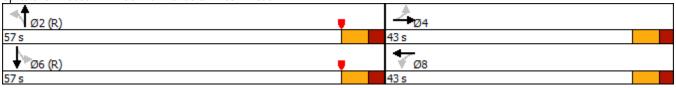
"THURS	S MID-DAY PROJECT TRAFFIC"																
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
THURS	MID-DAY TRAFFIC DIVERSIONS																
Project	Pass - By																
•	Valet								0						1		
Trips	Net New						7		9			1	8		9	0	
THURS MII	D-DAY TOTAL PROJECT TRAFFIC		0	0	0		7	0	9		0	1	8		10	0	0
THUR	RS MID-DAY TOTAL TRAFFIC		81	40	76		49	62	73		39	482	72	1	58	526	78
"THU LAND USE	JRS PM PROJECT TRAFFIC" TYPE	EBU	EBL	ЕВТ	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
THUR	RS PM TRAFFIC DIVERSIONS																
Dunings	Pass - By																
Project	Valet								0						1		
Trips	Net New						7		9			1	8		9	0	
THURS	PM TOTAL PROJECT TRAFFIC		0	0	0		7	0	9		0	1	8		10	0	0
TH	IURS PM TOTAL TRAFFIC		72	53	53		39	49	83	1	36	534	54		50	488	79
	RI PM PROJECT TRAFFIC"	•															
LAND USE	TYPE	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
FRI	PM TRAFFIC DIVERSIONS																
Project	Pass - By																
Trips	Valet								0						1		
·	Net New						7		9			1	8		9	0	
FRI PI	M TOTAL PROJECT TRAFFIC		<u> </u>				7		9		l	1	8		10	<u> </u>	<u> </u>
	FRI PM TOTAL TRAFFIC		69	23	63		30	44	56		51	692	50	ı	46	439	73

Appendix I

Intersection Capacity Analysis Worksheets

Existing
Thursday Mid-Day Peak Hour

	۶	→	•	←	4	†	>	↓	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	ሻ	₽		4		414		414	
Traffic Volume (vph)	80	40	42	61	39	476	48	521	
Future Volume (vph)	80	40	42	61	39	476	48	521	
Lane Group Flow (vph)	87	125	0	180	0	627	0	702	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Protected Phases		4		8		2		6	
Permitted Phases	4		8		2		6		
Detector Phase	4	4	8	8	2	2	6	6	
Switch Phase									
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	
Minimum Split (s)	28.2	28.2	28.2	28.2	35.5	35.5	35.5	35.5	
Total Split (s)	43.0	43.0	43.0	43.0	57.0	57.0	57.0	57.0	
Total Split (%)	43.0%	43.0%	43.0%	43.0%	57.0%	57.0%	57.0%	57.0%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	2.2	2.2	2.2	2.2	2.5	2.5	2.5	2.5	
Lost Time Adjust (s)	0.0	0.0		0.0		0.0		0.0	
Total Lost Time (s)	6.2	6.2		6.2		6.5		6.5	
Lead/Lag									
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	C-Max	C-Max	C-Max	C-Max	
v/c Ratio	0.65	0.50		0.76		0.40		0.45	
Control Delay	55.5	26.0		47.9		9.9		10.6	
Queue Delay	0.0	0.0		0.0		0.0		0.0	
Total Delay	55.5	26.0		47.9		9.9		10.6	
Queue Length 50th (ft)	51	41		88		85		101	
Queue Length 95th (ft)	95	88		149		158		185	
Internal Link Dist (ft)		525		285		534		505	
Turn Bay Length (ft)									
Base Capacity (vph)	225	390		375		1583		1557	
Starvation Cap Reductn	0	0		0		0		0	
Spillback Cap Reductn	0	0		0		0		0	
Storage Cap Reductn	0	0		0		0		0	
Reduced v/c Ratio	0.39	0.32		0.48		0.40		0.45	
Intersection Summary									


Cycle Length: 100

Actuated Cycle Length: 100

Offset: 68 (68%), Referenced to phase 2:NBTL and 6:SBTL, Start of Yellow

Natural Cycle: 65

Control Type: Actuated-Coordinated

	۶	→	•	†	↓
Lane Group	EBL	EBT	WBT	NBT	SBT
Lane Group Flow (vph)	87	125	180	627	702
v/c Ratio	0.65	0.50	0.76	0.40	0.45
Control Delay	55.5	26.0	47.9	9.9	10.6
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	55.5	26.0	47.9	9.9	10.6
Queue Length 50th (ft)	51	41	88	85	101
Queue Length 95th (ft)	95	88	149	158	185
Internal Link Dist (ft)		525	285	534	505
Turn Bay Length (ft)					
Base Capacity (vph)	225	390	375	1583	1557
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.39	0.32	0.48	0.40	0.45
Intersection Summary					

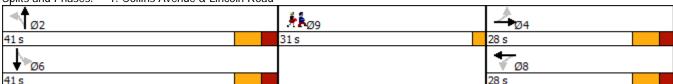
	۶	→	•	•	←	•	4	†	/	>	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	₽			4			4 14			€ि	
Traffic Volume (veh/h)	80	40	75	42	61	63	39	476	63	48	521	77
Future Volume (veh/h)	80	40	75	42	61	63	39	476	63	48	521	77
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	0.99		0.68	0.83		0.68	0.93		0.75	0.92		0.75
Parking Bus, Adj	1.00	1.00	0.90	1.00	1.00	0.90	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	4
Adj Sat Flow, veh/h/ln	1630	1630	1630	1643	1643	1643	1657	1657	1657	1670	1670	1670
Adj Flow Rate, veh/h	87	43	82	46	66	68	42	517	68	52	566	84
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	6	6	6	5	5	5	4	4	4	3	3	3
Cap, veh/h	210	84	160	80	91	77	128	1460	189	141	1426	208
Arrive On Green	0.25	0.25	0.25	0.25	0.25	0.25	0.83	0.83	0.83	0.83	0.83	0.83
Sat Flow, veh/h	1080	341	651	143	372	312	139	2328	301	159	2274	332
Grp Volume(v), veh/h	87	0	125	180	0	0	326	0	301	366	0	336
Grp Sat Flow(s), veh/h/ln	1080	0	993	827	0	0	1436	0	1332	1438	0	1327
Q Serve(g_s), s	0.0	0.0	10.9	10.9	0.0	0.0	0.0	0.0	5.3	0.0	0.0	6.3
Cycle Q Clear(g_c), s	16.1	0.0	10.9	21.7	0.0	0.0	4.4	0.0	5.3	5.1	0.0	6.3
Prop In Lane	1.00	0	0.66	0.26	0	0.38	0.13	0	0.23	0.14	0	0.25
Lane Grp Cap(c), veh/h	210	0	244	249	0	0	941	0	836	943	0	832
V/C Ratio(X)	0.41	0.00	0.51	0.72	0.00	0.00	0.35	0.00	0.36	0.39	0.00	0.40
Avail Cap(c_a), veh/h	342	0	365	371	1.00	0	941	1 22	836	943	0	832
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.33	1.33	1.33	1.33	1.33	1.33
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	0.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	34.5	0.0	32.5 1.2	37.0	0.0	0.0	3.5	0.0	3.5 1.2	3.5 1.2	0.0	3.6
Incr Delay (d2), s/veh	1.0	0.0		3.0	0.0	0.0	1.0	0.0			0.0	1.5
Initial Q Delay(d3),s/veh	0.0 2.0	0.0	0.0 2.7	0.0 4.5	0.0 0.0	0.0	0.0 1.5	0.0 0.0	0.0 1.4	0.0 1.7	0.0 0.0	0.0 1.6
%ile BackOfQ(50%),veh/ln Unsig. Movement Delay, s/veh		0.0	2.1	4.5	0.0	0.0	1.5	0.0	1.4	1.7	0.0	1.0
9	35.5	0.0	33.8	40.0	0.0	0.0	4.5	0.0	4.7	4.7	0.0	5.1
LnGrp Delay(d),s/veh LnGrp LOS	33.5 D	0.0 A	33.0 C	40.0 D	0.0 A	0.0 A	4.5 A	0.0 A	4.7 A	4.7 A	0.0 A	3.1 A
Approach Vol, veh/h	D	212	C	D	180	A	A	627	A		702	^
Approach Delay, s/veh		34.5			40.0			4.6			4.9	
Approach LOS		34.3 C			40.0 D			4.0 A			4.9 A	
• •					D	,					A	
Timer - Assigned Phs Phs Puretion (C. V. Pa) c		2		20.0		6		30.0				
Phs Duration (G+Y+Rc), s Change Period (Y+Rc), s		69.2		30.8 * 6.2		69.2		30.8 * 6.2				
Max Green Setting (Gmax), s		6.5 50.5		* 37		6.5 50.5		* 37				
Max Q Clear Time (q_c+l1), s		7.3		18.1		8.3		23.7				
Green Ext Time (p_c), s		1.3 1.7		1.0		0.3 1.9		0.8				
Intersection Summary												
HCM 6th Ctrl Delay			12.1									
HCM 6th LOS			12.1 B									
Notes			U									

^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Existing
Thursday P.M. Peak Hour

	•	→	•	←	4	†	/	ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	Ø9
Lane Configurations	7	f)		4		414		414	
Traffic Volume (vph)	71	52	32	49	36	528	40	483	
Future Volume (vph)	71	52	32	49	36	528	40	483	
Lane Group Flow (vph)	78	114	0	169	0	671	0	661	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Protected Phases		4		8		2		6	9
Permitted Phases	4		8		2		6		
Detector Phase	4	4	8	8	2	2	6	6	
Switch Phase									
Minimum Initial (s)	7.0	7.0	7.0	7.0	16.0	16.0	16.0	16.0	1.0
Minimum Split (s)	22.5	22.5	22.5	22.5	22.5	22.5	22.5	22.5	31.0
Total Split (s)	28.0	28.0	28.0	28.0	41.0	41.0	41.0	41.0	31.0
Total Split (%)	28.0%	28.0%	28.0%	28.0%	41.0%	41.0%	41.0%	41.0%	31%
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	2.0
All-Red Time (s)	2.2	2.2	2.2	2.2	2.5	2.5	2.5	2.5	0.0
Lost Time Adjust (s)	0.0	0.0		0.0		0.0		0.0	
Total Lost Time (s)	6.2	6.2		6.2		6.5		6.5	
Lead/Lag									
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	Max	Max	Max	Max	None
v/c Ratio	0.74	0.52		0.82		0.65		0.68	
Control Delay	75.1	31.2		58.2		29.0		29.7	
Queue Delay	0.0	0.0		0.0		0.0		0.0	
Total Delay	75.1	31.2		58.2		29.0		29.7	
Queue Length 50th (ft)	45	37		76		187		185	
Queue Length 95th (ft)	#115	92		#177		268		268	
Internal Link Dist (ft)		525		285		534		505	
Turn Bay Length (ft)									
Base Capacity (vph)	148	290		272		1032		978	
Starvation Cap Reductn	0	0		0		0		0	
Spillback Cap Reductn	0	0		0		0		0	
Storage Cap Reductn	0	0		0		0		0	
Reduced v/c Ratio	0.53	0.39		0.62		0.65		0.68	
Intersection Summary									

Cycle Length: 100 Actuated Cycle Length: 89


Natural Cycle: 90

Control Type: Actuated-Uncoordinated

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	•	→	•	†	ļ
Lane Group	EBL	EBT	WBT	NBT	SBT
Lane Group Flow (vph)	78	114	169	671	661
v/c Ratio	0.74	0.52	0.82	0.65	0.68
Control Delay	75.1	31.2	58.2	29.0	29.7
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	75.1	31.2	58.2	29.0	29.7
Queue Length 50th (ft)	45	37	76	187	185
Queue Length 95th (ft)	#115	92	#177	268	268
Internal Link Dist (ft)		525	285	534	505
Turn Bay Length (ft)					
Base Capacity (vph)	148	290	272	1032	978
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.53	0.39	0.62	0.65	0.68
Intersection Summary					

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

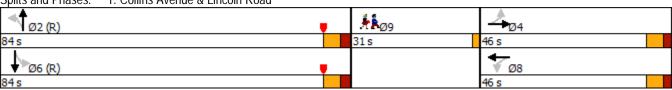
	•	→	•	•	•	•	•	†	/	\	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	î,			4			414			4T+	
Traffic Volume (vph)	71	52	52	32	49	73	36	528	46	40	483	78
Future Volume (vph)	71	52	52	32	49	73	36	528	46	40	483	78
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	11	11	11	11	11	11	11	11	11	11	11	12
Total Lost time (s)	6.2	6.2			6.2			6.5			6.5	
Lane Util. Factor	1.00	1.00			1.00			0.95			0.95	
Frpb, ped/bikes	1.00	0.80			0.81			0.97			0.93	
Flpb, ped/bikes	0.74	1.00			0.93			0.99			0.99	
Frt	1.00	0.93			0.94			0.99			0.98	
Flt Protected	0.95	1.00			0.99			1.00			1.00	
Satd. Flow (prot)	936	978			1007			2881			2753	
Flt Permitted	0.58	1.00			0.91			0.87			0.86	
Satd. Flow (perm)	568	978			921			2522			2375	
Peak-hour factor, PHF	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Adj. Flow (vph)	78	57	57	35	54	80	40	580	51	44	531	86
RTOR Reduction (vph)	0	37	0	0	33	0	0	5	0	0	11	0
Lane Group Flow (vph)	78	77	0	0	136	0	0	666	0	0	650	0
Confl. Peds. (#/hr)	474		490	490		474	434		315	315		434
Confl. Bikes (#/hr)			13	.,,		13			14	0.0		10
Heavy Vehicles (%)	12%	12%	12%	3%	3%	3%	3%	3%	3%	3%	3%	3%
Parking (#/hr)	0	0	0	0	0	0	0,0	0,0	0,0	0,0	0,0	0.0
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases	1 01111	4		1 01111	8		1 01111	2		1 01111	6	
Permitted Phases	4	•		8	J		2	_		6	J	
Actuated Green, G (s)	16.5	16.5		J	16.5		_	36.4		Ü	36.4	
Effective Green, g (s)	16.5	16.5			16.5			36.4			36.4	
Actuated g/C Ratio	0.19	0.19			0.19			0.41			0.41	
Clearance Time (s)	6.2	6.2			6.2			6.5			6.5	
Vehicle Extension (s)	2.5	2.5			2.5			1.0			1.0	
Lane Grp Cap (vph)	105	181			171			1033			973	
v/s Ratio Prot	103	0.08			171			1033			713	
v/s Ratio Prot v/s Ratio Perm	0.14	0.00			c0.15			0.26			c0.27	
v/c Ratio	0.74	0.42			0.79			0.64			0.67	
Uniform Delay, d1	34.1	31.9			34.5			21.0			21.3	
Progression Factor	1.00	1.00			1.00			1.00			1.00	
Incremental Delay, d2	23.3	1.00			21.2			3.1			3.6	
Delay (s)	23.3 57.4	33.1			55.7			24.1			24.9	
Level of Service	57. 4 E	33.1 C			55.7 E			24.1 C			24.9 C	
Approach Delay (s)	L	43.0			55.7			24.1			24.9	
Approach LOS		43.0 D			55.7 E			24.1 C			24.9 C	
Intersection Summary		D			_			Ü			Ü	
HCM 2000 Control Delay			29.7	Ц	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	acity ratio		0.50	П	CIVI 2000	FCACI OI	OCI VICE		C			
Actuated Cycle Length (s)	ucity ratio		88.8	C	um of los	t time (s)			14.7			
Intersection Capacity Utiliz	ation		00.0 76.9%			of Service	د		14.7 D			
Analysis Period (min)	atiOH		15	iC	O LCACI	or activity	,		D			
c Critical Lane Group			13									
c Cinical Lane Group												

Existing Friday P.M. Peak Hour

	•	→	•	←	•	†	/	ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	Ø9
Lane Configurations	7	£		4		414		413-	
Traffic Volume (vph)	68	23	23	44	50	684	36	435	
Future Volume (vph)	68	23	23	44	50	684	36	435	
Lane Group Flow (vph)	72	89	0	119	0	817	0	572	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Protected Phases		4		8		2		6	9
Permitted Phases	4		8		2		6		
Detector Phase	4	4	8	8	2	2	6	6	
Switch Phase									
Minimum Initial (s)	7.0	7.0	7.0	7.0	16.0	16.0	16.0	16.0	1.0
Minimum Split (s)	13.2	13.2	13.2	13.2	22.5	22.5	22.5	22.5	31.0
Total Split (s)	46.0	46.0	46.0	46.0	84.0	84.0	84.0	84.0	31.0
Total Split (%)	28.6%	28.6%	28.6%	28.6%	52.2%	52.2%	52.2%	52.2%	19%
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	2.0
All-Red Time (s)	2.2	2.2	2.2	2.2	2.5	2.5	2.5	2.5	0.0
Lost Time Adjust (s)	0.0	0.0		0.0		0.0		0.0	
Total Lost Time (s)	6.2	6.2		6.2		6.5		6.5	
Lead/Lag									
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	C-Max	C-Max	C-Max	C-Max	None
v/c Ratio	0.91	0.48		0.72		0.56		0.42	
Control Delay	146.0	28.2		75.2		23.8		20.5	
Queue Delay	0.0	0.0		0.0		0.0		0.0	
Total Delay	146.0	28.2		75.2		23.8		20.5	
Queue Length 50th (ft)	76	23		100		268		164	
Queue Length 95th (ft)	#134	77		163		399		254	
Internal Link Dist (ft)		525		285		534		505	
Turn Bay Length (ft)									
Base Capacity (vph)	135	268		268		1470		1359	
Starvation Cap Reductn	0	0		0		0		0	
Spillback Cap Reductn	0	0		0		0		0	
Storage Cap Reductn	0	0		0		0		0	
Reduced v/c Ratio	0.53	0.33		0.44		0.56		0.42	
Intersection Summary									

Cycle Length: 161

Actuated Cycle Length: 161


Offset: 81 (50%), Referenced to phase 2:NBTL and 6:SBTL, Start of Yellow

Natural Cycle: 90

Control Type: Actuated-Coordinated

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

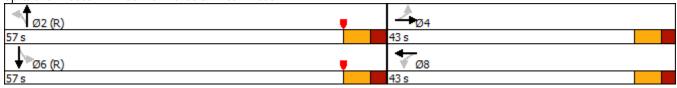
	•	→	•	†	↓
Lane Group	EBL	EBT	WBT	NBT	SBT
Lane Group Flow (vph)	72	89	119	817	572
v/c Ratio	0.91	0.48	0.72	0.56	0.42
Control Delay	146.0	28.2	75.2	23.8	20.5
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	146.0	28.2	75.2	23.8	20.5
Queue Length 50th (ft)	76	23	100	268	164
Queue Length 95th (ft)	#134	77	163	399	254
Internal Link Dist (ft)		525	285	534	505
Turn Bay Length (ft)					
Base Capacity (vph)	135	268	268	1470	1359
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.53	0.33	0.44	0.56	0.42
Intersection Summary					

^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

	٠	→	•	•	←	4	4	†	/	\	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	f)			4			414			414	
Traffic Volume (vph)	68	23	62	23	44	47	50	684	42	36	435	72
Future Volume (vph)	68	23	62	23	44	47	50	684	42	36	435	72
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	11	11	11	11	11	11	11	11	11	11	11	12
Total Lost time (s)	6.2	6.2			6.2			6.5			6.5	
Lane Util. Factor	1.00	1.00			1.00			0.95			0.95	
Frpb, ped/bikes	1.00	0.70			0.84			0.99			0.95	
Flpb, ped/bikes	0.74	1.00			0.93			0.99			1.00	
Frt	1.00	0.89			0.94			0.99			0.98	
Flt Protected	0.95	1.00			0.99			1.00			1.00	
Satd. Flow (prot)	940	832			1061			2945			2812	
Flt Permitted	0.55	1.00			0.92			0.86			0.83	
Satd. Flow (perm)	540	832			986			2528			2345	
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	72	24	65	24	46	49	53	720	44	38	458	76
RTOR Reduction (vph)	0	56	0	0	18	0	0	2	0	0	6	0
Lane Group Flow (vph)	72	33	0	0	101	0	0	815	0	0	566	0
Confl. Peds. (#/hr)	315		378	378		315	435		249	249		435
Confl. Bikes (#/hr)			10			5			14			12
Heavy Vehicles (%)	12%	12%	12%	3%	3%	3%	3%	3%	3%	3%	3%	3%
Parking (#/hr)	0	0	0	0	0	0						
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)	23.3	23.3			23.3			94.0			94.0	
Effective Green, g (s)	23.3	23.3			23.3			94.0			94.0	
Actuated g/C Ratio	0.14	0.14			0.14			0.58			0.58	
Clearance Time (s)	6.2	6.2			6.2			6.5			6.5	
Vehicle Extension (s)	2.5	2.5			2.5			1.0			1.0	
Lane Grp Cap (vph)	78	120			142			1475			1369	
v/s Ratio Prot		0.04										
v/s Ratio Perm	c0.13				0.10			c0.32			0.24	
v/c Ratio	0.92	0.28			0.71			0.55			0.41	
Uniform Delay, d1	68.0	61.4			65.6			20.6			18.4	
Progression Factor	1.00	1.00			1.00			1.00			1.00	
Incremental Delay, d2	75.7	0.9			14.5			1.5			0.9	
Delay (s)	143.7	62.3			80.2			22.1			19.3	
Level of Service	F	Ε			F			С			В	
Approach Delay (s)		98.7			80.2			22.1			19.3	
Approach LOS		F			F			С			В	
Intersection Summary												
HCM 2000 Control Delay			32.7	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Cap	acity ratio		0.50	''	OIVI 2000	LCVCI UI	OCI VICE		C			
Actuated Cycle Length (s)	aony rano		161.0	ς	um of los	t time (s)			14.7			
Intersection Capacity Utiliz	ation		76.3%			of Service	7		14.7 D			
Analysis Period (min)	.utiOi1		15	10	O LOVEI		,		D			
c Critical Lane Group			10									
o Ontical Lane Group												

Future Background
Thursday Mid-Day Peak Hour

	٠	→	•	←	4	†	>	↓	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	ሻ	ĵ₃		- 4		414		€1 }	
Traffic Volume (vph)	81	40	42	62	39	481	48	526	
Future Volume (vph)	81	40	42	62	39	481	48	526	
Lane Group Flow (vph)	88	126	0	183	0	635	0	709	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Protected Phases		4		8		2		6	
Permitted Phases	4		8		2		6		
Detector Phase	4	4	8	8	2	2	6	6	
Switch Phase									
Minimum Initial (s)	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	
Minimum Split (s)	28.2	28.2	28.2	28.2	35.5	35.5	35.5	35.5	
Total Split (s)	43.0	43.0	43.0	43.0	57.0	57.0	57.0	57.0	
Total Split (%)	43.0%	43.0%	43.0%	43.0%	57.0%	57.0%	57.0%	57.0%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	2.2	2.2	2.2	2.2	2.5	2.5	2.5	2.5	
Lost Time Adjust (s)	0.0	0.0		0.0		0.0		0.0	
Total Lost Time (s)	6.2	6.2		6.2		6.5		6.5	
Lead/Lag									
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	C-Max	C-Max	C-Max	C-Max	
v/c Ratio	0.64	0.49		0.77		0.40		0.46	
Control Delay	54.4	25.5		48.7		10.3		11.0	
Queue Delay	0.0	0.0		0.0		0.0		0.0	
Total Delay	54.4	25.5		48.7		10.3		11.0	
Queue Length 50th (ft)	51	42		90		87		102	
Queue Length 95th (ft)	95	87		151		165		192	
Internal Link Dist (ft)		525		285		534		505	
Turn Bay Length (ft)									
Base Capacity (vph)	225	389		369		1570		1545	
Starvation Cap Reductn	0	0		0		0		0	
Spillback Cap Reductn	0	0		0		0		0	
Storage Cap Reductn	0	0		0		0		0	
Reduced v/c Ratio	0.39	0.32		0.50		0.40		0.46	
Intersection Summary									


Cycle Length: 100

Actuated Cycle Length: 100

Offset: 68 (68%), Referenced to phase 2:NBTL and 6:SBTL, Start of Yellow

Natural Cycle: 65

Control Type: Actuated-Coordinated

	•	→	•	†	ļ
Lane Group	EBL	EBT	WBT	NBT	SBT
Lane Group Flow (vph)	88	126	183	635	709
v/c Ratio	0.64	0.49	0.77	0.40	0.46
Control Delay	54.4	25.5	48.7	10.3	11.0
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	54.4	25.5	48.7	10.3	11.0
Queue Length 50th (ft)	51	42	90	87	102
Queue Length 95th (ft)	95	87	151	165	192
Internal Link Dist (ft)		525	285	534	505
Turn Bay Length (ft)					
Base Capacity (vph)	225	389	369	1570	1545
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.39	0.32	0.50	0.40	0.46
Intersection Summary					

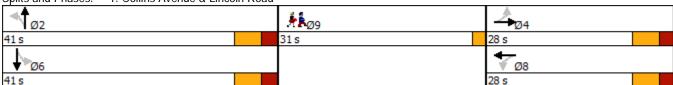
	۶	→	•	•	+	•	•	†	/	/	Ţ	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ħ	₽			4			4T)			4Te	
Traffic Volume (veh/h)	81	40	76	42	62	64	39	481	64	48	526	78
Future Volume (veh/h)	81	40	76	42	62	64	39	481	64	48	526	78
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.68	0.83		0.69	0.93		0.75	0.92		0.75
Parking Bus, Adj	1.00	1.00	0.90	1.00	1.00	0.90	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1630	1630	1630	1643	1643	1643	1657	1657	1657	1670	1670	1670
Adj Flow Rate, veh/h	88	43	83	46	67	70	42	523	70	52	572	85
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	6	6	6	5	5	5	4	4	4	3	3	3
Cap, veh/h	211	84	162	80	92	79	126	1453	191	139	1423	208
Arrive On Green	0.25	0.25	0.25	0.25	0.25	0.25	0.83	0.83	0.83	0.83	0.83	0.83
Sat Flow, veh/h	1088	339	655	141	373	319	137	2324	306	157	2276	333
Grp Volume(v), veh/h	88	0	126	183	0	0	331	0	304	370	0	339
Grp Sat Flow(s), veh/h/ln	1088	0	994	833	0	0	1438	0	1329	1439	0	1326
Q Serve(g_s), s	0.0	0.0	10.9	11.0	0.0	0.0	0.0	0.0	5.5	0.0	0.0	6.5
Cycle Q Clear(g_c), s	16.4	0.0	10.9	21.9	0.0	0.0	4.6	0.0	5.5	5.3	0.0	6.5
Prop In Lane	1.00		0.66	0.25		0.38	0.13		0.23	0.14		0.25
Lane Grp Cap(c), veh/h	211	0	246	251	0	0	940	0	831	941	0	829
V/C Ratio(X)	0.42	0.00	0.51	0.73	0.00	0.00	0.35	0.00	0.37	0.39	0.00	0.41
Avail Cap(c_a), veh/h	342	0	366	372	0	0	940	0	831	941	0	829
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.33	1.33	1.33	1.33	1.33	1.33
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	0.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	34.4	0.0	32.4	36.9	0.0	0.0	3.5	0.0	3.6	3.6	0.0	3.7
Incr Delay (d2), s/veh	1.0	0.0	1.2	3.0	0.0	0.0	1.0	0.0	1.2	1.2	0.0	1.5
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	2.0	0.0	2.7	4.6	0.0	0.0	1.5	0.0	1.4	1.7	0.0	1.6
Unsig. Movement Delay, s/vel												
LnGrp Delay(d),s/veh	35.4	0.0	33.6	39.9	0.0	0.0	4.6	0.0	4.9	4.8	0.0	5.2
LnGrp LOS	D	Α	С	D	Α	Α	Α	Α	Α	Α	Α	Α
Approach Vol, veh/h		214			183			635			709	
Approach Delay, s/veh		34.4			39.9			4.7			5.0	
Approach LOS		С			D			Α			Α	
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		69.0		31.0		69.0		31.0				
Change Period (Y+Rc), s		6.5		* 6.2		6.5		* 6.2				
Max Green Setting (Gmax), s		50.5		* 37		50.5		* 37				
Max Q Clear Time (q_c+l1), s		7.5		18.4		8.5		23.9				
Green Ext Time (p_c), s		1.7		1.0		1.9		0.8				
Intersection Summary												
HCM 6th Ctrl Delay			12.2									
HCM 6th LOS			В									
Notes												

^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Future Background
Thursday P.M. Peak Hour

	•	→	•	←	4	†	/	ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	Ø9
Lane Configurations	7	f)		4		414		414	
Traffic Volume (vph)	72	53	32	49	36	533	40	488	
Future Volume (vph)	72	53	32	49	36	533	40	488	
Lane Group Flow (vph)	79	116	0	170	0	677	0	667	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Protected Phases		4		8		2		6	9
Permitted Phases	4		8		2		6		
Detector Phase	4	4	8	8	2	2	6	6	
Switch Phase									
Minimum Initial (s)	7.0	7.0	7.0	7.0	16.0	16.0	16.0	16.0	1.0
Minimum Split (s)	22.5	22.5	22.5	22.5	22.5	22.5	22.5	22.5	31.0
Total Split (s)	28.0	28.0	28.0	28.0	41.0	41.0	41.0	41.0	31.0
Total Split (%)	28.0%	28.0%	28.0%	28.0%	41.0%	41.0%	41.0%	41.0%	31%
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	2.0
All-Red Time (s)	2.2	2.2	2.2	2.2	2.5	2.5	2.5	2.5	0.0
Lost Time Adjust (s)	0.0	0.0		0.0		0.0		0.0	
Total Lost Time (s)	6.2	6.2		6.2		6.5		6.5	
Lead/Lag									
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	Max	Max	Max	Max	None
v/c Ratio	0.75	0.52		0.82		0.66		0.68	
Control Delay	76.4	31.7		58.7		29.2		30.0	
Queue Delay	0.0	0.0		0.0		0.0		0.0	
Total Delay	76.4	31.7		58.7		29.2		30.0	
Queue Length 50th (ft)	46	38		76		191		188	
Queue Length 95th (ft)	#117	94		#180		272		#273	
Internal Link Dist (ft)		525		285		534		505	
Turn Bay Length (ft)									
Base Capacity (vph)	147	290		271		1032		977	
Starvation Cap Reductn	0	0		0		0		0	
Spillback Cap Reductn	0	0		0		0		0	
Storage Cap Reductn	0	0		0		0		0	
Reduced v/c Ratio	0.54	0.40		0.63		0.66		0.68	
Intersection Summary									

Cycle Length: 100


Actuated Cycle Length: 89.1

Natural Cycle: 90

Control Type: Actuated-Uncoordinated

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

			•		
	۶	→	←	†	↓
Lane Group	EBL	EBT	WBT	NBT	SBT
Lane Group Flow (vph)	79	116	170	677	667
v/c Ratio	0.75	0.52	0.82	0.66	0.68
Control Delay	76.4	31.7	58.7	29.2	30.0
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	76.4	31.7	58.7	29.2	30.0
Queue Length 50th (ft)	46	38	76	191	188
Queue Length 95th (ft)	#117	94	#180	272	#273
Internal Link Dist (ft)		525	285	534	505
Turn Bay Length (ft)					
Base Capacity (vph)	147	290	271	1032	977
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.54	0.40	0.63	0.66	0.68
Intersection Summary					

^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

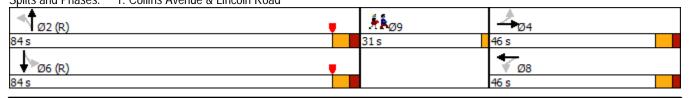
1. Comins Avenue			<u>. </u>		_							aik Flour
	•	→	•	•	•	•	1	Ť	~	-	¥	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	₽			ቆ			414			4î.	
Traffic Volume (vph)	72	53	53	32	49	74	36	533	46	40	488	79
Future Volume (vph)	72	53	53	32	49	74	36	533	46	40	488	79
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	11	11	11	11	11	11	11	11	11	11	11	12
Total Lost time (s)	6.2	6.2			6.2			6.5			6.5	
Lane Util. Factor	1.00	1.00			1.00			0.95			0.95	
Frpb, ped/bikes	1.00	0.80			0.81			0.97			0.93	
Flpb, ped/bikes	0.74	1.00			0.93			0.99			0.99	
Frt	1.00	0.93			0.93			0.99			0.98	
Flt Protected	0.95	1.00			0.99			1.00			1.00	
Satd. Flow (prot)	937	979			1000			2883			2752	
Flt Permitted	0.58	1.00			0.91			0.87			0.86	
Satd. Flow (perm)	568	979			915			2523			2374	
Peak-hour factor, PHF	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Adj. Flow (vph)	79	58	58	35	54	81	40	586	51	44	536	87
RTOR Reduction (vph)	0	37	0	0	34	0	0	5	0	0	11	0
Lane Group Flow (vph)	79	79	0	0	136	0	0	672	0	0	656	0
Confl. Peds. (#/hr)	474		490	490		474	434		315	315		434
Confl. Bikes (#/hr)			13			13			14			10
Heavy Vehicles (%)	12%	12%	12%	3%	3%	3%	3%	3%	3%	3%	3%	3%
Parking (#/hr)	0	0	0	0	0	0						
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)	16.6	16.6			16.6			36.4			36.4	
Effective Green, g (s)	16.6	16.6			16.6			36.4			36.4	
Actuated g/C Ratio	0.19	0.19			0.19			0.41			0.41	
Clearance Time (s)	6.2	6.2			6.2			6.5			6.5	
Vehicle Extension (s)	2.5	2.5			2.5			1.0			1.0	
Lane Grp Cap (vph)	106	182			170			1033			972	
v/s Ratio Prot		0.08										
v/s Ratio Perm	0.14				c0.15			0.27			c0.28	
v/c Ratio	0.75	0.43			0.80			0.65			0.68	
Uniform Delay, d1	34.2	32.0			34.6			21.1			21.4	
Progression Factor	1.00	1.00			1.00			1.00			1.00	
Incremental Delay, d2	23.3	1.2			21.8			3.2			3.8	
Delay (s)	57.4	33.2			56.4			24.3			25.2	
Level of Service	Е	С			Е			С			С	
Approach Delay (s)		43.0			56.4			24.3			25.2	
Approach LOS		D			Е			С			С	
Intersection Summary												
HCM 2000 Control Delay			30.0	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	acity ratio		0.51									
Actuated Cycle Length (s)			88.9	S	um of los	t time (s)			14.7			
Intersection Capacity Utiliza	ation		77.3%	IC	CU Level	of Service	9		D			
Analysis Period (min)			15									
c Critical Lane Group												

Future Background Friday P.M. Peak Hour

	•	→	•	←	•	†	/	ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	Ø9
Lane Configurations	7	£		4		414		€Î }	
Traffic Volume (vph)	69	23	23	44	51	691	36	439	
Future Volume (vph)	69	23	23	44	51	691	36	439	
Lane Group Flow (vph)	73	90	0	119	0	825	0	577	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Protected Phases		4		8		2		6	9
Permitted Phases	4		8		2		6		
Detector Phase	4	4	8	8	2	2	6	6	
Switch Phase									
Minimum Initial (s)	7.0	7.0	7.0	7.0	16.0	16.0	16.0	16.0	1.0
Minimum Split (s)	13.2	13.2	13.2	13.2	22.5	22.5	22.5	22.5	31.0
Total Split (s)	46.0	46.0	46.0	46.0	84.0	84.0	84.0	84.0	31.0
Total Split (%)	28.6%	28.6%	28.6%	28.6%	52.2%	52.2%	52.2%	52.2%	19%
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	2.0
All-Red Time (s)	2.2	2.2	2.2	2.2	2.5	2.5	2.5	2.5	0.0
Lost Time Adjust (s)	0.0	0.0		0.0		0.0		0.0	
Total Lost Time (s)	6.2	6.2		6.2		6.5		6.5	
Lead/Lag									
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	C-Max	C-Max	C-Max	C-Max	None
v/c Ratio	0.91	0.49		0.72		0.56		0.43	
Control Delay	144.8	27.9		75.5		24.2		20.8	
Queue Delay	0.0	0.0		0.0		0.0		0.0	
Total Delay	144.8	27.9		75.5		24.2		20.8	
Queue Length 50th (ft)	77	23		100		273		167	
Queue Length 95th (ft)	#133	78		163		407		260	
Internal Link Dist (ft)		525		285		534		505	
Turn Bay Length (ft)									
Base Capacity (vph)	135	268		264		1463		1353	
Starvation Cap Reductn	0	0		0		0		0	
Spillback Cap Reductn	0	0		0		0		0	
Storage Cap Reductn	0	0		0		0		0	
Reduced v/c Ratio	0.54	0.34		0.45		0.56		0.43	
Intersection Summary									

Cycle Length: 161

Actuated Cycle Length: 161


Offset: 81 (50%), Referenced to phase 2:NBTL and 6:SBTL, Start of Yellow

Natural Cycle: 90

Control Type: Actuated-Coordinated

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	۶	→	←	†	↓
Lane Group	EBL	EBT	WBT	NBT	SBT
Lane Group Flow (vph)	73	90	119	825	577
v/c Ratio	0.91	0.49	0.72	0.56	0.43
Control Delay	144.8	27.9	75.5	24.2	20.8
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	144.8	27.9	75.5	24.2	20.8
Queue Length 50th (ft)	77	23	100	273	167
Queue Length 95th (ft)	#133	78	163	407	260
Internal Link Dist (ft)		525	285	534	505
Turn Bay Length (ft)					
Base Capacity (vph)	135	268	264	1463	1353
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.54	0.34	0.45	0.56	0.43
Intersection Summary					

^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SI Lane Configurations 1 1 4 4 47 51 691 42 36 439 Future Volume (vph) 69 23 63 23 44 47 51 691 42 36 439 Ideal Flow (vphpl) 1900
Lane Configurations Traffic Volume (vph) 69 23 63 23 44 47 51 691 42 36 439 Future Volume (vph) 69 23 63 23 44 47 51 691 42 36 439 Ideal Flow (vphpl) 1900
Traffic Volume (vph) 69 23 63 23 44 47 51 691 42 36 439 Future Volume (vph) 69 23 63 23 44 47 51 691 42 36 439 Ideal Flow (vphpl) 1900
Traffic Volume (vph) 69 23 63 23 44 47 51 691 42 36 439 Future Volume (vph) 69 23 63 23 44 47 51 691 42 36 439 Ideal Flow (vphpl) 1900
Ideal Flow (vphpl) 1900
Lane Width 11
Total Lost time (s) 6.2 6.2 6.2 6.5 6.5 Lane Util. Factor 1.00 1.00 1.00 0.95 0.95 Frpb, ped/bikes 1.00 0.70 0.84 0.99 0.95 Flpb, ped/bikes 0.75 1.00 0.93 0.99 1.00 Frt 1.00 0.89 0.93 0.99 0.98 Flt Protected 0.95 1.00 0.99 1.00 1.00 Satd. Flow (prot) 940 831 1046 2946 2811 Flt Permitted 0.55 1.00 0.92 0.85 0.83 Satd. Flow (perm) 541 831 972 2521 2342
Lane Util. Factor 1.00 1.00 1.00 0.95 0.95 Frpb, ped/bikes 1.00 0.70 0.84 0.99 0.95 Flpb, ped/bikes 0.75 1.00 0.93 0.99 1.00 Frt 1.00 0.89 0.93 0.99 0.98 Flt Protected 0.95 1.00 0.99 1.00 1.00 Satd. Flow (prot) 940 831 1046 2946 2811 Flt Permitted 0.55 1.00 0.92 0.85 0.83 Satd. Flow (perm) 541 831 972 2521 2342
Frpb, ped/bikes 1.00 0.70 0.84 0.99 0.95 Flpb, ped/bikes 0.75 1.00 0.93 0.99 1.00 Frt 1.00 0.89 0.93 0.99 0.98 Flt Protected 0.95 1.00 0.99 1.00 1.00 Satd. Flow (prot) 940 831 1046 2946 2811 Flt Permitted 0.55 1.00 0.92 0.85 0.83 Satd. Flow (perm) 541 831 972 2521 2342
Flpb, ped/bikes 0.75 1.00 0.93 0.99 1.00 Frt 1.00 0.89 0.93 0.99 0.98 Flt Protected 0.95 1.00 0.99 1.00 1.00 Satd. Flow (prot) 940 831 1046 2946 2811 Flt Permitted 0.55 1.00 0.92 0.85 0.83 Satd. Flow (perm) 541 831 972 2521 2342
Flpb, ped/bikes 0.75 1.00 0.93 0.99 1.00 Frt 1.00 0.89 0.93 0.99 0.98 Flt Protected 0.95 1.00 0.99 1.00 1.00 Satd. Flow (prot) 940 831 1046 2946 2811 Flt Permitted 0.55 1.00 0.92 0.85 0.83 Satd. Flow (perm) 541 831 972 2521 2342
Frt 1.00 0.89 0.93 0.99 0.98 Flt Protected 0.95 1.00 0.99 1.00 1.00 Satd. Flow (prot) 940 831 1046 2946 2811 Flt Permitted 0.55 1.00 0.92 0.85 0.83 Satd. Flow (perm) 541 831 972 2521 2342
Satd. Flow (prot) 940 831 1046 2946 2811 Flt Permitted 0.55 1.00 0.92 0.85 0.83 Satd. Flow (perm) 541 831 972 2521 2342
Flt Permitted 0.55 1.00 0.92 0.85 0.83 Satd. Flow (perm) 541 831 972 2521 2342
Flt Permitted 0.55 1.00 0.92 0.85 0.83 Satd. Flow (perm) 541 831 972 2521 2342
Satd. Flow (perm) 541 831 972 2521 2342
1 0411 140101 1111
Adj. Flow (vph) 73 24 66 24 46 49 54 727 44 38 462
RTOR Reduction (vph) 0 56 0 0 18 0 0 2 0 0 6
Lane Group Flow (vph) 73 34 0 0 101 0 0 823 0 0 571
Confl. Peds. (#/hr) 315 378 378 315 435 249 249 4
Confl. Bikes (#/hr) 10 5 14
Heavy Vehicles (%) 12% 12% 12% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3%
Parking (#/hr) 0 0 0 0 0 0
Turn Type Perm NA Perm NA Perm NA Perm NA
Protected Phases 4 8 2 6
Permitted Phases 4 8 2 6
Actuated Green, G (s) 23.5 23.5 23.5 93.8 93.8
Effective Green, g (s) 23.5 23.5 23.5 93.8 93.8
Actuated g/C Ratio 0.15 0.15 0.58 0.58
Clearance Time (s) 6.2 6.2 6.5 6.5
Vehicle Extension (s) 2.5 2.5 2.5 1.0 1.0
Lane Grp Cap (vph) 78 121 141 1468 1364
v/s Ratio Prot 0.04
v/s Ratio Perm c0.13 0.10 c0.33 0.24
v/c Ratio 0.94 0.28 0.72 0.56 0.42
Uniform Delay, d1 68.0 61.2 65.6 20.8 18.5
Progression Factor 1.00 1.00 1.00 1.00 1.00
Incremental Delay, d2 79.6 0.9 14.9 1.6 0.9
Delay (s) 147.6 62.1 80.5 22.4 19.5
Level of Service F E F C B
Approach Delay (s) 100.4 80.5 22.4 19.5
Approach LOS F F C B
Intersection Summary
HCM 2000 Control Delay 33.0 HCM 2000 Level of Service C
HCM 2000 Volume to Capacity ratio 0.51
Actuated Cycle Length (s) 161.0 Sum of lost time (s) 14.7
Intersection Capacity Utilization 76.8% ICU Level of Service D
Analysis Period (min) 15
c Critical Lane Group

Future Total
Thursday Mid-Day Peak Hour

	ၨ	→	•	←	4	†	>	↓
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Lane Configurations	ሻ	₽	ሻ	₽		€17∌		414
Traffic Volume (vph)	81	40	49	62	39	482	58	526
Future Volume (vph)	81	40	49	62	39	482	58	526
Lane Group Flow (vph)	88	126	53	146	0	644	0	720
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA
Protected Phases		4		8		2		6
Permitted Phases	4		8		2		6	
Detector Phase	4	4	8	8	2	2	6	6
Switch Phase								
Minimum Initial (s)	7.0	7.0	7.0	7.0	16.0	16.0	16.0	16.0
Minimum Split (s)	28.2	28.2	28.2	28.2	35.5	35.5	35.5	35.5
Total Split (s)	38.0	38.0	38.0	38.0	62.0	62.0	62.0	62.0
Total Split (%)	38.0%	38.0%	38.0%	38.0%	62.0%	62.0%	62.0%	62.0%
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.2	2.2	2.2	2.2	2.5	2.5	2.5	2.5
Lost Time Adjust (s)	0.0	0.0	0.0	0.0		0.0		0.0
Total Lost Time (s)	6.2	6.2	6.2	6.2		6.5		6.5
Lead/Lag								
Lead-Lag Optimize?								
Recall Mode	None	None	None	None	C-Max	C-Max	C-Max	C-Max
v/c Ratio	0.67	0.51	0.38	0.55		0.39		0.46
Control Delay	58.9	24.0	40.0	27.3		8.9		9.9
Queue Delay	0.0	0.0	0.0	0.0		0.0		0.0
Total Delay	58.9	24.0	40.0	27.3		8.9		9.9
Queue Length 50th (ft)	51	33	29	46		87		105
Queue Length 95th (ft)	99	83	62	101		147		178
Internal Link Dist (ft)		525		285		534		505
Turn Bay Length (ft)								
Base Capacity (vph)	207	353	217	379		1648		1555
Starvation Cap Reductn	0	0	0	0		0		0
Spillback Cap Reductn	0	0	0	0		0		0
Storage Cap Reductn	0	0	0	0		0		0
Reduced v/c Ratio	0.43	0.36	0.24	0.39		0.39		0.46
Intersection Summary								
0 1 1 11 100								

Cycle Length: 100

Actuated Cycle Length: 100

Offset: 68 (68%), Referenced to phase 2:NBTL and 6:SBTL, Start of Yellow

Natural Cycle: 65

Control Type: Actuated-Coordinated

	•	-		•	†	1
Lane Group	EBL	EBT	▼ WBL	WBT	NBT	▼ SBT
Lane Group Flow (vph)	88	126	53	146	644	720
v/c Ratio	0.67	0.51	0.38	0.55	0.39	0.46
Control Delay	58.9	24.0	40.0	27.3	8.9	9.9
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	58.9	24.0	40.0	27.3	8.9	9.9
Queue Length 50th (ft)	51	33	29	46	87	105
Queue Length 95th (ft)	99	83	62	101	147	178
Internal Link Dist (ft)		525		285	534	505
Turn Bay Length (ft)						
Base Capacity (vph)	207	353	217	379	1648	1555
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.43	0.36	0.24	0.39	0.39	0.46
Intersection Summary						

	ၨ	→	•	•	+	•	•	†	/	/	Ţ	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	₽		Ť	1•			€1 }			4 14	
Traffic Volume (veh/h)	81	40	76	49	62	73	39	482	72	58	526	78
Future Volume (veh/h)	81	40	76	49	62	73	39	482	72	58	526	78
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	0.84		0.68	0.82		0.68	0.93		0.85	0.95		0.75
Parking Bus, Adj	1.00	1.00	0.90	1.00	1.00	0.90	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1630	1630	1630	1643	1643	1643	1657	1657	1657	1670	1670	1670
Adj Flow Rate, veh/h	88	43	83	53	67	79	42	524	78	63	572	85
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	6	6	6	5	5	5	4	4	4	3	3	3
Cap, veh/h	182	82	158	193	118	139	127	1470	216	164	1394	204
Arrive On Green	0.24	0.24	0.24	0.24	0.24	0.24	0.84	0.84	0.84	0.84	0.84	0.84
Sat Flow, veh/h	906	337	650	915	486	573	137	2332	342	194	2212	324
Grp Volume(v), veh/h	88	0	126	53	0	146	331	0	313	370	0	350
Grp Sat Flow(s), veh/h/ln	906	0	987	915	0	1058	1438	0	1374	1398	0	1332
Q Serve(g_s), s	9.5	0.0	11.1	5.3	0.0	12.1	0.0	0.0	5.3	0.0	0.0	6.5
Cycle Q Clear(g_c), s	21.6	0.0	11.1	16.4	0.0	12.1	4.4	0.0	5.3	5.1	0.0	6.5
Prop In Lane	1.00		0.66	1.00		0.54	0.13		0.25	0.17		0.24
Lane Grp Cap(c), veh/h	182	0	240	193	0	257	947	0	866	923	0	840
V/C Ratio(X)	0.48	0.00	0.53	0.28	0.00	0.57	0.35	0.00	0.36	0.40	0.00	0.42
Avail Cap(c_a), veh/h	250	0	314	262	0	336	947	0	866	923	0	840
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.33	1.33	1.33	1.33	1.33	1.33
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	42.7	0.0	32.9	40.0	0.0	33.3	3.3	0.0	3.4	3.4	0.0	3.5
Incr Delay (d2), s/veh	1.5	0.0	1.3	0.6	0.0	1.5	1.0	0.0	1.2	1.3	0.0	1.5
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	2.2	0.0	2.7	1.2	0.0	3.2	1.4	0.0	1.4	1.7	0.0	1.6
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	44.2	0.0	34.2	40.6	0.0	34.7	4.4	0.0	4.6	4.7	0.0	5.0
LnGrp LOS	D	Α	С	D	Α	С	Α	Α	Α	Α	Α	Α
Approach Vol, veh/h		214			199			644			720	
Approach Delay, s/veh		38.3			36.3			4.5			4.9	
Approach LOS		D			D			Α			Α	
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		69.5		30.5		69.5		30.5				
Change Period (Y+Rc), s		6.5		* 6.2		6.5		* 6.2				
Max Green Setting (Gmax), s		55.5		* 32		55.5		* 32				
Max Q Clear Time (q_c+l1), s		7.3		23.6		8.5		18.4				
Green Ext Time (p_c), s		1.7		0.7		2.0		0.9				
Intersection Summary												
HCM 6th Ctrl Delay			12.3									
HCM 6th LOS			12.3 B									
Notes			D									

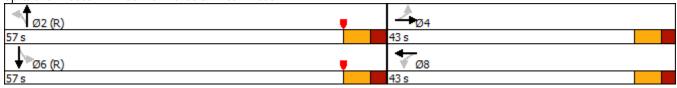
^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Timings

1: Collins Avenue & Lincoln Road

	•	→	•	•	4	†	>	ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	ሻ	ĵ»		- 4		414		€ 1₽	
Traffic Volume (vph)	81	40	49	62	39	482	58	526	
Future Volume (vph)	81	40	49	62	39	482	58	526	
Lane Group Flow (vph)	88	126	0	199	0	644	0	720	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Protected Phases		4		8		2		6	
Permitted Phases	4		8		2		6		
Detector Phase	4	4	8	8	2	2	6	6	
Switch Phase									
Minimum Initial (s)	7.0	7.0	7.0	7.0	16.0	16.0	16.0	16.0	
Minimum Split (s)	28.2	28.2	28.2	28.2	35.5	35.5	35.5	35.5	
Total Split (s)	43.0	43.0	43.0	43.0	57.0	57.0	57.0	57.0	
Total Split (%)	43.0%	43.0%	43.0%	43.0%	57.0%	57.0%	57.0%	57.0%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	2.2	2.2	2.2	2.2	2.5	2.5	2.5	2.5	
Lost Time Adjust (s)	0.0	0.0		0.0		0.0		0.0	
Total Lost Time (s)	6.2	6.2		6.2		6.5		6.5	
Lead/Lag									
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	C-Max	C-Max	C-Max	C-Max	
v/c Ratio	0.63	0.48		0.80		0.42		0.49	
Control Delay	51.9	24.3		51.1		11.0		12.0	
Queue Delay	0.0	0.0		0.0		0.0		0.0	
Total Delay	51.9	24.3		51.1		11.0		12.0	
Queue Length 50th (ft)	51	42		100		88		106	
Queue Length 95th (ft)	93	85		161		176		211	
Internal Link Dist (ft)		525		285		534		505	
Turn Bay Length (ft)									
Base Capacity (vph)	221	389		369		1539		1478	
Starvation Cap Reductn	0	0		0		0		0	
Spillback Cap Reductn	0	0		0		0		0	
Storage Cap Reductn	0	0		0		0		0	
Reduced v/c Ratio	0.40	0.32		0.54		0.42		0.49	
Intersection Summary									

Cycle Length: 100


Actuated Cycle Length: 100

Offset: 68 (68%), Referenced to phase 2:NBTL and 6:SBTL, Start of Yellow

Natural Cycle: 65

Control Type: Actuated-Coordinated

Splits and Phases: 1: Collins Avenue & Lincoln Road

	۶	→	←	†	↓
Lane Group	EBL	EBT	WBT	NBT	SBT
Lane Group Flow (vph)	88	126	199	644	720
v/c Ratio	0.63	0.48	0.80	0.42	0.49
Control Delay	51.9	24.3	51.1	11.0	12.0
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	51.9	24.3	51.1	11.0	12.0
Queue Length 50th (ft)	51	42	100	88	106
Queue Length 95th (ft)	93	85	161	176	211
Internal Link Dist (ft)		525	285	534	505
Turn Bay Length (ft)					
Base Capacity (vph)	221	389	369	1539	1478
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.40	0.32	0.54	0.42	0.49
Intersection Summary					

	۶	→	•	•	←	•	4	†	/	>	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	₽			4			€î₽			€1₽	
Traffic Volume (veh/h)	81	40	76	49	62	73	39	482	72	58	526	78
Future Volume (veh/h)	81	40	76	49	62	73	39	482	72	58	526	78
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.70	0.84		0.70	0.93		0.74	0.92		0.74
Parking Bus, Adj	1.00	1.00	0.90	1.00	1.00	0.90	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1630	1630	1630	1643	1643	1643	1657	1657	1657	1670	1670	1670
Adj Flow Rate, veh/h	88	43	83	53	67	79	42	524	78	63	572	85
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	6	6	6	5	5	5	4	4	4	3	3	3
Cap, veh/h	220	91	175	88	92	88	121	1396	204	159	1343	197
Arrive On Green	0.26	0.26	0.26	0.26	0.26	0.26	0.81	0.81	0.81	0.81	0.81	0.81
Sat Flow, veh/h	1082	346	667	161	348	335	133	2287	334	191	2201	322
Grp Volume(v), veh/h	88	0	126	199	0	0	339	0	305	370	0	350
Grp Sat Flow(s), veh/h/ln	1082	0	1013	845	0	0	1446	0	1308	1386	0	1328
Q Serve(g_s), s	0.0	0.0	10.5	12.9	0.0	0.0	0.0	0.0	6.4	0.0	0.0	7.7
Cycle Q Clear(g_c), s	15.7	0.0	10.5	23.4	0.0	0.0	5.3	0.0	6.4	5.9	0.0	7.7
Prop In Lane	1.00	0	0.66	0.27	0	0.40	0.12	0	0.26	0.17	0	0.24
Lane Grp Cap(c), veh/h	220	0	266	268	0	0	923	0	798	888	0	810
V/C Ratio(X)	0.40	0.00	0.47	0.74	0.00	0.00	0.37	0.00	0.38	0.42	0.00	0.43
Avail Cap(c_a), veh/h	334	0	373	373	1.00	0	923	1 22	798	888	0	810
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.33	1.33	1.33	1.33	1.33	1.33
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	0.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	33.0	0.0	31.0 1.0	36.4	0.0	0.0	4.2 1.1	0.0	4.3 1.4	4.2 1.4	0.0	4.4
Incr Delay (d2), s/veh	0.9	0.0		4.1	0.0	0.0	0.0	0.0			0.0	1.7
Initial Q Delay(d3),s/veh	0.0 2.0	0.0	0.0 2.6	0.0 5.0	0.0	0.0	1.7	0.0 0.0	0.0 1.6	0.0 1.9	0.0 0.0	0.0 1.9
%ile BackOfQ(50%),veh/ln Unsig. Movement Delay, s/veh		0.0	2.0	5.0	0.0	0.0	1.7	0.0	1.0	1.9	0.0	1.9
9	33.8	0.0	32.0	40.4	0.0	0.0	5.3	0.0	5.7	5.7	0.0	6.1
LnGrp Delay(d),s/veh LnGrp LOS	33.0 C	0.0 A	32.0 C	40.4 D	0.0 A	0.0 A	5.5 A	0.0 A	5.7 A	5.7 A	0.0 A	0.1 A
Approach Vol, veh/h		214		<u> </u>	199			644			720	
Approach Delay, s/veh		32.7			40.4			5.5			5.9	
Approach LOS		32. <i>1</i>			40.4 D			5.5 A			3.9 A	
• •					D	,					A	
Timer - Assigned Phs Phs Puretion (C. V. Pa) c		2		22.5		6		32.5				
Phs Duration (G+Y+Rc), s Change Period (Y+Rc), s		67.5		32.5 * 6.2		67.5		32.5 * 6.2				
Max Green Setting (Gmax), s		6.5 50.5		* 37		6.5 50.5		* 37				
Max Q Clear Time (g_c+l1), s		30.3 8.4		3 <i>1</i> 17.7		9.7		25.4				
Green Ext Time (p_c), s		1.7		1.0		2.0		0.9				
Intersection Summary												
HCM 6th Ctrl Delay			12.8									
HCM 6th LOS			12.0 B									
Notes			D									

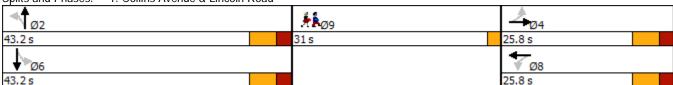
^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Future Total
Thursday P.M. Peak Hour

	•	→	•	•	4	†	/	ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	Ø9
Lane Configurations	7	f)	ሻ	f)		414		414	
Traffic Volume (vph)	72	53	39	49	36	534	50	488	
Future Volume (vph)	72	53	39	49	36	534	50	488	
Lane Group Flow (vph)	79	116	43	145	0	686	0	678	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Protected Phases		4		8		2		6	9
Permitted Phases	4		8		2		6		
Detector Phase	4	4	8	8	2	2	6	6	
Switch Phase									
Minimum Initial (s)	7.0	7.0	7.0	7.0	16.0	16.0	16.0	16.0	1.0
Minimum Split (s)	22.5	22.5	22.5	22.5	22.5	22.5	22.5	22.5	31.0
Total Split (s)	25.8	25.8	25.8	25.8	43.2	43.2	43.2	43.2	31.0
Total Split (%)	25.8%	25.8%	25.8%	25.8%	43.2%	43.2%	43.2%	43.2%	31%
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	2.0
All-Red Time (s)	2.2	2.2	2.2	2.2	2.5	2.5	2.5	2.5	0.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0		0.0		0.0	
Total Lost Time (s)	6.2	6.2	6.2	6.2		6.5		6.5	
Lead/Lag									
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	Max	Max	Max	Max	None
v/c Ratio	0.76	0.56	0.38	0.62		0.63		0.69	
Control Delay	80.4	34.9	45.5	31.9		27.3		29.2	
Queue Delay	0.0	0.0	0.0	0.0		0.0		0.0	
Total Delay	80.4	34.9	45.5	31.9		27.3		29.2	
Queue Length 50th (ft)	47	40	24	39		193		195	
Queue Length 95th (ft)	#122	98	59	107		264		272	
Internal Link Dist (ft)		525		285		534		505	
Turn Bay Length (ft)									
Base Capacity (vph)	136	258	149	282		1090		989	
Starvation Cap Reductn	0	0	0	0		0		0	
Spillback Cap Reductn	0	0	0	0		0		0	
Storage Cap Reductn	0	0	0	0		0		0	
Reduced v/c Ratio	0.58	0.45	0.29	0.51		0.63		0.69	
Intersection Summary									

Cycle Length: 100

Actuated Cycle Length: 90.4


Natural Cycle: 90

Control Type: Actuated-Uncoordinated

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 1: Collins Avenue & Lincoln Road

	•	→	•	•	†	ļ
Lane Group	EBL	EBT	WBL	WBT	NBT	SBT
Lane Group Flow (vph)	79	116	43	145	686	678
v/c Ratio	0.76	0.56	0.38	0.62	0.63	0.69
Control Delay	80.4	34.9	45.5	31.9	27.3	29.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	80.4	34.9	45.5	31.9	27.3	29.2
Queue Length 50th (ft)	47	40	24	39	193	195
Queue Length 95th (ft)	#122	98	59	107	264	272
Internal Link Dist (ft)		525		285	534	505
Turn Bay Length (ft)						
Base Capacity (vph)	136	258	149	282	1090	989
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.58	0.45	0.29	0.51	0.63	0.69
Intersection Summary						

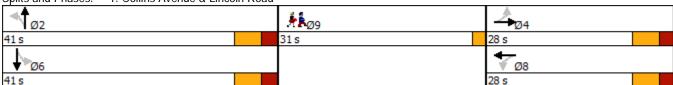
^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

	•	→	•	•	←	•	4	†	/	\	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	f)		, M	£			र्सी के			4T+	
Traffic Volume (vph)	72	53	53	39	49	83	36	534	54	50	488	79
Future Volume (vph)	72	53	53	39	49	83	36	534	54	50	488	79
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	11	11	11	11	11	11	11	11	11	11	11	12
Total Lost time (s)	6.2	6.2		6.2	6.2			6.5			6.5	
Lane Util. Factor	1.00	1.00		1.00	1.00			0.95			0.95	
Frpb, ped/bikes	1.00	0.79		1.00	0.74			0.98			0.93	
Flpb, ped/bikes	0.67	1.00		0.65	1.00			0.99			0.99	
Frt	1.00	0.93		1.00	0.91			0.99			0.98	
Flt Protected	0.95	1.00		0.95	1.00			1.00			1.00	
Satd. Flow (prot)	851	973		896	970			2910			2764	
Flt Permitted	0.65	1.00		0.68	1.00			0.87			0.83	
Satd. Flow (perm)	583	973		643	970			2547			2299	
Peak-hour factor, PHF	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Adj. Flow (vph)	79	58	58	43	54	91	40	587	59	55	536	87
RTOR Reduction (vph)	0	37	0	0	62	0	0	6	0	0	10	0
Lane Group Flow (vph)	79	79	0	43	83	0	0	680	0	0	668	0
Confl. Peds. (#/hr)	474		490	490		474	434		315	315		434
Confl. Bikes (#/hr)			13			13			14			10
Heavy Vehicles (%)	12%	12%	12%	3%	3%	3%	3%	3%	3%	3%	3%	3%
Parking (#/hr)	0	0	0	0	0	0						
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)	15.8	15.8		15.8	15.8			38.5			38.5	
Effective Green, g (s)	15.8	15.8		15.8	15.8			38.5			38.5	
Actuated g/C Ratio	0.18	0.18		0.18	0.18			0.43			0.43	
Clearance Time (s)	6.2	6.2		6.2	6.2			6.5			6.5	
Vehicle Extension (s)	2.5	2.5		2.5	2.5			1.0			1.0	
Lane Grp Cap (vph)	102	170		112	169			1087			981	
v/s Ratio Prot	102	0.08		112	0.09			1007			701	
v/s Ratio Perm	c0.14	0.00		0.07	0.07			0.27			c0.29	
v/c Ratio	0.77	0.46		0.38	0.49			0.63			0.68	
Uniform Delay, d1	35.5	33.4		32.9	33.6			20.2			20.9	
Progression Factor	1.00	1.00		1.00	1.00			1.00			1.00	
Incremental Delay, d2	28.9	1.5		1.6	1.6			2.7			3.8	
Delay (s)	64.4	34.9		34.5	35.2			22.9			24.7	
Level of Service	E	C		C	55.2 D			C			C C	
Approach Delay (s)	_	46.8		O	35.0			22.9			24.7	
Approach LOS		70.0 D			55.0 D			C			C C	
Intersection Summary												
HCM 2000 Control Delay			27.6	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	acity ratio		0.51	• • • • • • • • • • • • • • • • • • • •	J 2000	_0.000	_ 0. 1100		J			
Actuated Cycle Length (s)			90.2	S	um of los	t time (s)			14.7			
Intersection Capacity Utiliz	ation		82.5%			of Service	j		E			
Analysis Period (min)	G.1011		15	10	. 5 25001	O 01 V100	•		_			
c Critical Lane Group			10									
o officar Larie Group												

	ၨ	→	•	←	•	†	/	ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	Ø9
Lane Configurations	7	f)		4		414		414	
Traffic Volume (vph)	72	53	39	49	36	534	50	488	
Future Volume (vph)	72	53	39	49	36	534	50	488	
Lane Group Flow (vph)	79	116	0	188	0	686	0	678	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Protected Phases		4		8		2		6	9
Permitted Phases	4		8		2		6		
Detector Phase	4	4	8	8	2	2	6	6	
Switch Phase									
Minimum Initial (s)	7.0	7.0	7.0	7.0	16.0	16.0	16.0	16.0	1.0
Minimum Split (s)	22.5	22.5	22.5	22.5	22.5	22.5	22.5	22.5	31.0
Total Split (s)	28.0	28.0	28.0	28.0	41.0	41.0	41.0	41.0	31.0
Total Split (%)	28.0%	28.0%	28.0%	28.0%	41.0%	41.0%	41.0%	41.0%	31%
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	2.0
All-Red Time (s)	2.2	2.2	2.2	2.2	2.5	2.5	2.5	2.5	0.0
Lost Time Adjust (s)	0.0	0.0		0.0		0.0		0.0	
Total Lost Time (s)	6.2	6.2		6.2		6.5		6.5	
Lead/Lag									
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	Max	Max	Max	Max	None
v/c Ratio	0.70	0.49		0.86		0.69		0.75	
Control Delay	68.8	29.9		63.5		30.6		33.6	
Queue Delay	0.0	0.0		0.0		0.0		0.0	
Total Delay	68.8	29.9		63.5		30.6		33.6	
Queue Length 50th (ft)	46	38		89		202		205	
Queue Length 95th (ft)	#118	94		#211		277		#313	
Internal Link Dist (ft)		525		285		534		505	
Turn Bay Length (ft)									
Base Capacity (vph)	142	285		262		1001		902	
Starvation Cap Reductn	0	0		0		0		0	
Spillback Cap Reductn	0	0		0		0		0	
Storage Cap Reductn	0	0		0		0		0	
Reduced v/c Ratio	0.56	0.41		0.72		0.69		0.75	
Intersection Summary									

Cycle Length: 100

Actuated Cycle Length: 90.6


Natural Cycle: 90

Control Type: Actuated-Uncoordinated

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 1: Collins Avenue & Lincoln Road

	•	→	•	†	ļ
Lane Group	EBL	EBT	WBT	NBT	SBT
Lane Group Flow (vph)	79	116	188	686	678
v/c Ratio	0.70	0.49	0.86	0.69	0.75
Control Delay	68.8	29.9	63.5	30.6	33.6
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	68.8	29.9	63.5	30.6	33.6
Queue Length 50th (ft)	46	38	89	202	205
Queue Length 95th (ft)	#118	94	#211	277	#313
Internal Link Dist (ft)		525	285	534	505
Turn Bay Length (ft)					
Base Capacity (vph)	142	285	262	1001	902
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.56	0.41	0.72	0.69	0.75
Intersection Summary					

^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

	۶	→	•	•	+	4	•	†	<u> </u>	\	 	√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^			4			414			4T>	
Traffic Volume (vph)	72	53	53	39	49	83	36	534	54	50	488	79
Future Volume (vph)	72	53	53	39	49	83	36	534	54	50	488	79
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	11	11	11	11	11	11	11	11	11	11	11	12
Total Lost time (s)	6.2	6.2	• •		6.2			6.5			6.5	
Lane Util. Factor	1.00	1.00			1.00			0.95			0.95	
Frpb, ped/bikes	1.00	0.80			0.81			0.96			0.93	
Flpb, ped/bikes	0.76	1.00			0.93			0.99			0.99	
Frt	1.00	0.93			0.93			0.99			0.98	
Flt Protected	0.95	1.00			0.99			1.00			1.00	
Satd. Flow (prot)	958	987			1002			2864			2748	
Flt Permitted	0.56	1.00			0.89			0.87			0.81	
Satd. Flow (perm)	560	987			907			2503			2238	
Peak-hour factor, PHF	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Adj. Flow (vph)	79	58	58	43	54	91	40	587	59	55	536	87
RTOR Reduction (vph)	0	37	0	0	34	0	0	7	0	0	11	0
Lane Group Flow (vph)	79	79	0	0	154	0	0	679	0	0	667	0
Confl. Peds. (#/hr)	474	17	490	490	134	474	434	017	315	315	007	434
Confl. Bikes (#/hr)	4/4		13	470		13	434		14	313		10
Heavy Vehicles (%)	12%	12%	12%	3%	3%	3%	3%	3%	3%	3%	3%	3%
Parking (#/hr)	0	0	0	0	0	0	370	370	370	370	370	370
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases	FCIIII	4		FCIIII	8		FCIIII	2		r Cilli	6	
Permitted Phases	4	4		8	U		2	۷		6	U	
Actuated Green, G (s)	18.4	18.4		U	18.4		2	36.2		U	36.2	
Effective Green, g (s)	18.4	18.4			18.4			36.2			36.2	
Actuated g/C Ratio	0.20	0.20			0.20			0.40			0.40	
Clearance Time (s)	6.2	6.2			6.2			6.5			6.5	
Vehicle Extension (s)	2.5	2.5			2.5			1.0			1.0	
Lane Grp Cap (vph)	113	200			184			1001			895	
v/s Ratio Prot	113	0.08			104			1001			073	
v/s Ratio Perm	0.14	0.00			c0.17			0.27			c0.30	
v/c Ratio	0.70	0.40			0.84			0.68			0.75	
Uniform Delay, d1	33.5	31.2			34.6			22.4			23.2	
Progression Factor	1.00	1.00			1.00			1.00			1.00	
Incremental Delay, d2	16.0	0.9			26.2			3.7			5.6	
Delay (s)	49.4	32.2			60.8			26.1			28.8	
Level of Service	T7T	02.2 C			60.6 E			20.1 C			20.0 C	
Approach Delay (s)	Ь	39.2			60.8			26.1			28.8	
Approach LOS		57.2 D			60.6 E			20.1 C			20.0 C	
Intersection Summary		_			_							
HCM 2000 Control Delay			32.3	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capac	ity ratio		0.56	• •	0111 2000	2010.01	0011100		Ŭ			
Actuated Cycle Length (s)	,		90.5	S	um of los	t time (s)			14.7			
Intersection Capacity Utilizat	tion		79.2%			of Service	9		D			
Analysis Period (min)			15		2 = 2.01	5			_			
c Critical Lane Group												

Future Total Friday P.M. Peak Hour

	•	→	•	←	4	†	>	ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	Ø9
Lane Configurations	ሻ	f.	ሻ	₽		€ 1Ъ		414	
Traffic Volume (vph)	69	23	30	44	51	692	46	439	
Future Volume (vph)	69	23	30	44	51	692	46	439	
Lane Group Flow (vph)	73	90	32	105	0	835	0	587	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Protected Phases		4		8		2		6	9
Permitted Phases	4		8		2		6		
Detector Phase	4	4	8	8	2	2	6	6	
Switch Phase									
Minimum Initial (s)	7.0	7.0	7.0	7.0	16.0	16.0	16.0	16.0	1.0
Minimum Split (s)	13.2	13.2	13.2	13.2	22.5	22.5	22.5	22.5	31.0
Total Split (s)	44.0	44.0	44.0	44.0	86.0	86.0	86.0	86.0	31.0
Total Split (%)	27.3%	27.3%	27.3%	27.3%	53.4%	53.4%	53.4%	53.4%	19%
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	2.0
All-Red Time (s)	2.2	2.2	2.2	2.2	2.5	2.5	2.5	2.5	0.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0		0.0		0.0	
Total Lost Time (s)	6.2	6.2	6.2	6.2		6.5		6.5	
Lead/Lag									
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	C-Max	C-Max	C-Max	C-Max	None
v/c Ratio	0.85	0.49	0.33	0.56		0.57		0.45	
Control Delay	126.3	28.4	66.8	50.4		24.1		21.2	
Queue Delay	0.0	0.0	0.0	0.0		0.0		0.0	
Total Delay	126.3	28.4	66.8	50.4		24.1		21.2	
Queue Length 50th (ft)	76	23	31	67		276		173	
Queue Length 95th (ft)	130	78	62	125		411		268	
Internal Link Dist (ft)		525		285		534		505	
Turn Bay Length (ft)									
Base Capacity (vph)	140	257	159	281		1472		1297	
Starvation Cap Reductn	0	0	0	0		0		0	
Spillback Cap Reductn	0	0	0	0		0		0	
Storage Cap Reductn	0	0	0	0		0		0	
Reduced v/c Ratio	0.52	0.35	0.20	0.37		0.57		0.45	
Intersection Summary									

Cycle Length: 161 Actuated Cycle Length: 161

Offset: 81 (50%), Referenced to phase 2:NBTL and 6:SBTL, Start of Yellow

Natural Cycle: 90

Control Type: Actuated-Coordinated

Splits and Phases: 1: Collins Avenue & Lincoln Road

	۶	→	•	←	†	ļ
Lane Group	EBL	EBT	WBL	WBT	NBT	SBT
Lane Group Flow (vph)	73	90	32	105	835	587
v/c Ratio	0.85	0.49	0.33	0.56	0.57	0.45
Control Delay	126.3	28.4	66.8	50.4	24.1	21.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	126.3	28.4	66.8	50.4	24.1	21.2
Queue Length 50th (ft)	76	23	31	67	276	173
Queue Length 95th (ft)	130	78	62	125	411	268
Internal Link Dist (ft)		525		285	534	505
Turn Bay Length (ft)						
Base Capacity (vph)	140	257	159	281	1472	1297
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.52	0.35	0.20	0.37	0.57	0.45
Intersection Summary						

Lane Configurations		٠	→	•	•	←	4	4	†	~	/		1
Traffic Volume (γνρh) 69 23 63 30 44 56 51 692 50 46 439 Ideal Flow (γνρρh) 1900 1900 1900 1900 1900 1900 1900 190	Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Future Volume (vph)	Lane Configurations	ħ	f)		, j	4î			414			र्सी	
Ideal Flow (vphph)	Traffic Volume (vph)	69	23	63	30	44	56	51	692	50	46	439	73
Lane Width	Future Volume (vph)	69	23	63	30	44	56	51	692	50	46	439	73
Total Lost time (s)	Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor 1.00 1.00 1.00 1.00 0.70 0.99 0.95 Frpb, ped/bikes 1.00 0.70 1.00 0.79 0.99 0.95 Frpb, ped/bikes 1.00 0.89 1.00 0.92 0.99 0.98 Fil Protected 0.95 1.00 0.95 1.00 1.00 1.00 Satd. Flow (prot) 877 830 902 1041 2953 2816 Fil Permitted 0.62 1.00 0.67 1.00 0.85 0.79 Satd. Flow (prot) 572 830 633 1041 2525 2231 Peak-hour factor, PHF 0.95	Lane Width		11	11	11		11	11	11	11	11	11	12
Frpb, ped/bikes 1.00 0.70 1.00 0.79 0.99 0.95 Flpb, ped/bikes 0.70 1.00 0.66 1.00 0.99 1.00 Flph, ped/bikes 0.70 1.00 0.89 1.00 0.99 0.98 Flt Protected 0.95 1.00 0.95 1.00 1.00 1.00 1.00 Sald, Flow (pror) 877 830 902 1041 2953 2816 Flt Permitted 0.62 1.00 0.67 1.00 0.88 0.79 Sald, Flow (perm) 572 830 633 1041 2525 2231 Peak-hour factor, PHF 0.95 <t< td=""><td></td><td>6.2</td><td>6.2</td><td></td><td>6.2</td><td>6.2</td><td></td><td></td><td>6.5</td><td></td><td></td><td>6.5</td><td></td></t<>		6.2	6.2		6.2	6.2			6.5			6.5	
Fipb. ped/bikes	Lane Util. Factor	1.00	1.00		1.00	1.00			0.95			0.95	
Fri	Frpb, ped/bikes	1.00	0.70		1.00	0.79			0.99			0.95	
Fit Protected 0.95 1.00 0.95 1.00	Flpb, ped/bikes	0.70	1.00		0.66	1.00			0.99			1.00	
Satd, Flow (prot) 877 830 902 1041 2953 2816 Fil Permitted 0.62 1.00 0.67 1.00 0.85 0.79 Satd, Flow (perm) 572 830 633 1041 2525 2231 Peak-hour factor, PHF 0.95 </td <td>Frt</td> <td>1.00</td> <td>0.89</td> <td></td> <td>1.00</td> <td>0.92</td> <td></td> <td></td> <td>0.99</td> <td></td> <td></td> <td>0.98</td> <td></td>	Frt	1.00	0.89		1.00	0.92			0.99			0.98	
Fit Permitted	Flt Protected	0.95	1.00		0.95	1.00			1.00			1.00	
Satd. Flow (perm) 572 830 633 1041 2525 2231 Peak-hour factor, PHF 0.95 <	Satd. Flow (prot)	877	830		902	1041						2816	
Peak-hour factor, PHF	Flt Permitted	0.62	1.00		0.67	1.00						0.79	
Adj. Flow (vph) 73 24 66 32 46 59 54 728 53 48 462 RTOR Reduction (vph) 0 56 0 0 0 32 0 0 0 2 0 0 6 Lane Group Flow (vph) 73 34 0 32 73 0 0 833 0 0 581 Confl. Peats. (#/hr) 315 378 378 315 435 249 249 4 66	Satd. Flow (perm)	572	830		633	1041			2525			2231	
RTOR Reduction (vph) 0 56 0 0 32 0 0 2 0 0 6 Lane Group Flow (vph) 73 34 0 32 73 0 0 833 0 0 581 Confl. Peds. (#/hr) 315 378 378 315 435 249 249 4 Confl. Bikes (#/hr) 10 5 14	Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Lane Group Flow (vph) 73 34 0 32 73 0 0 833 0 0 581 Confl. Peds. (#/hr) 315 378 378 378 315 435 249 249 4 Confl. Bikes (#/hr) 10 5 14	Adj. Flow (vph)	73	24	66	32	46	59	54	728	53	48	462	77
Confl. Peds. (#/hr) 315 378 378 315 435 249 249 44 Confl. Bikes (#/hr) 12% 12% 12% 33% 3% <td< td=""><td>RTOR Reduction (vph)</td><td>0</td><td>56</td><td>0</td><td>0</td><td>32</td><td>0</td><td>0</td><td>2</td><td>0</td><td>0</td><td>6</td><td>0</td></td<>	RTOR Reduction (vph)	0	56	0	0	32	0	0	2	0	0	6	0
Confl. Bikes (#/hr) 10 5 14 Heavy Vehicles (%) 12% 12% 12% 3%	Lane Group Flow (vph)	73	34	0	32	73	0	0	833	0	0	581	0
Heavy Vehicles (%)	Confl. Peds. (#/hr)	315		378	378		315	435		249	249		435
Parking (#/hr) 0 0 0 0 0 0 Turn Type Perm NA Perm N4 1 Pet Pet Pet Pet N1 <td>Confl. Bikes (#/hr)</td> <td></td> <td></td> <td>10</td> <td></td> <td></td> <td>5</td> <td></td> <td></td> <td>14</td> <td></td> <td></td> <td>12</td>	Confl. Bikes (#/hr)			10			5			14			12
Parking (#/hr) 0 0 0 0 0 0 Turn Type Perm NA Perm A 6 Perm A Perm A Perm NA Perm NA Perm A Perm A Perm A Perm A 1 Perm A 1 Perm A 1	Heavy Vehicles (%)	12%	12%	12%	3%	3%	3%	3%	3%	3%	3%	3%	3%
Protected Phases 4 8 2 6 Permitted Phases 4 8 2 6 Actuated Green, G (s) 23.2 23.2 23.2 23.2 94.1 94.1 Effective Green, g (s) 23.2 23.2 23.2 23.2 94.1 94.1 Actuated g/C Ratio 0.14 0.14 0.14 0.14 0.14 0.14 94.1 Actuated g/C Ratio 0.14 0.14 0.14 0.14 0.14 0.14 0.15 0.58 Clearance Time (s) 6.2 6.2 6.2 6.5 6.5 0.58 Clearance Time (s) 6.2 6.2 6.2 6.5 6.5 0.58 Clearance Time (s) 6.2 6.2 6.2 6.5 6.5 0.58 Clearance Time (s) 6.2 6.2 6.2 6.5 6.5 0.5 Vehicle Extension (s) 2.5 2.5 2.5 2.5 2.5 2.5 2.5 0.5 0.5		0	0	0	0	0	0						
Protected Phases 4 8 2 6 Permitted Phases 4 8 2 6 Actuated Green, G (s) 23.2 23.2 23.2 23.2 29.2 94.1 94.1 Effective Green, g (s) 23.2 23.2 23.2 23.2 94.1 94.1 Actuated g/C Ratio 0.14 0.14 0.14 0.14 0.158 0.58 Clearance Time (s) 6.2 6.2 6.2 6.2 6.5 6.5 Vehicle Extension (s) 2.5 2.5 2.5 2.5 1.0 1.0 Lane Grp Cap (vph) 82 119 91 150 1475 1303 v/s Ratio Perm c0.13 0.04 0.07 0.07 0.05 0.033 0.26 v/c Ratio 0.89 0.28 0.35 0.49 0.56 0.45 Uniform Delay, d1 67.6 61.5 62.1 63.4 20.7 18.8 Progression Factor 1.00 <td< td=""><td>Turn Type</td><td>Perm</td><td>NA</td><td></td><td>Perm</td><td>NA</td><td></td><td>Perm</td><td>NA</td><td></td><td>Perm</td><td>NA</td><td></td></td<>	Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Actuated Green, G (s) 23.2 23.2 23.2 23.2 94.1 94.1 Effective Green, g (s) 23.2 23.2 23.2 23.2 94.1 94.1 Actuated g/C Ratio 0.14 0.14 0.14 0.14 0.58 0.58 Clearance Time (s) 6.2 6.2 6.2 6.2 6.5 6.5 Vehicle Extension (s) 2.5 2.5 2.5 2.5 1.0 1.0 Lane Grp Cap (vph) 82 119 91 150 1475 1303 v/s Ratio Prot 0.04 0.07 v/s Ratio Perm 0.13 0.05 0.33 0.26 v/c Ratio 0.89 0.28 0.35 0.49 0.56 0.45 Uniform Delay, d1 67.6 61.5 62.1 63.4 20.7 18.8 Progression Factor 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 63.8 0.9 1.7 1.8 1.6 1.1 Delay (s) 131.5 62.4 63.8 65.3 22.3 19.9 Level of Service F E E E E C B Approach Delay (s) 93.3 64.9 22.3 19.9 Approach LOS F E C B Intersection Summary HCM 2000 Control Delay 31.6 HCM 2000 Level of Service C													
Effective Green, g (s) 23.2 23.2 23.2 23.2 94.1 94.1 Actuated g/C Ratio 0.14 0.14 0.14 0.14 0.58 0.58 Clearance Time (s) 6.2 6.2 6.2 6.5 6.5 Vehicle Extension (s) 2.5 2.5 2.5 2.5 1.0 1.0 Lane Grp Cap (vph) 82 119 91 150 1475 1303 v/s Ratio Prot 0.04 0.07 0.07 0.07 0.07 0.07 0.07 0.05 0.033 0.26 0.26 0.45	Permitted Phases	4			8			2			6		
Actuated g/C Ratio 0.14 0.14 0.14 0.14 0.58 0.58 Clearance Time (s) 6.2 6.2 6.2 6.2 6.5 6.5 6.5 Vehicle Extension (s) 2.5 2.5 2.5 2.5 1.0 1.0 1.0 Lane Grp Cap (vph) 82 119 91 150 1475 1303 V/S Ratio Prot 0.04 0.07 V/S Ratio Perm 0.013 0.05 0.05 0.33 0.26 V/C Ratio 0.89 0.28 0.35 0.49 0.56 0.45 Uniform Delay, d1 67.6 61.5 62.1 63.4 20.7 18.8 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 63.8 0.9 1.7 1.8 1.6 1.1 Delay (s) 131.5 62.4 63.8 65.3 22.3 19.9 Level of Service F E E E C B Approach Delay (s) 93.3 64.9 22.3 19.9 Approach LOS F E C B Intersection Summary	Actuated Green, G (s)	23.2	23.2		23.2	23.2			94.1			94.1	
Actuated g/C Ratio 0.14 0.14 0.14 0.14 0.58 0.58 Clearance Time (s) 6.2 6.2 6.2 6.2 6.2 6.5 6.5 Vehicle Extension (s) 2.5 2.5 2.5 2.5 1.0 1.0 1.0 Lane Grp Cap (vph) 82 119 91 150 1475 1303 V/s Ratio Prot 0.04 0.07 V/s Ratio Perm 0.013 0.05 0.33 0.26 V/c Ratio 0.89 0.28 0.35 0.49 0.56 0.45 Uniform Delay, d1 67.6 61.5 62.1 63.4 20.7 18.8 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 63.8 0.9 1.7 1.8 1.6 1.1 Delay (s) 131.5 62.4 63.8 65.3 22.3 19.9 Level of Service F E E E C B Approach Delay (s) 93.3 64.9 22.3 19.9 Approach LOS F E E E C B C B Intersection Summary	Effective Green, g (s)	23.2	23.2		23.2	23.2			94.1			94.1	
Vehicle Extension (s) 2.5 2.5 2.5 2.5 2.5 1.0 1.0 Lane Grp Cap (vph) 82 119 91 150 1475 1303 v/s Ratio Prot 0.04 0.07 0.07 0.033 0.26 v/s Ratio Perm c0.13 0.05 c0.33 0.26 v/c Ratio 0.89 0.28 0.35 0.49 0.56 0.45 Uniform Delay, d1 67.6 61.5 62.1 63.4 20.7 18.8 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 63.8 0.9 1.7 1.8 1.6 1.1 Delay (s) 131.5 62.4 63.8 65.3 22.3 19.9 Level of Service F E E C B Approach LOS F E E C B Intersection Summary 31.6 HCM 2000 Level of Service C C <td>Actuated g/C Ratio</td> <td>0.14</td> <td>0.14</td> <td></td> <td>0.14</td> <td>0.14</td> <td></td> <td></td> <td>0.58</td> <td></td> <td></td> <td>0.58</td> <td></td>	Actuated g/C Ratio	0.14	0.14		0.14	0.14			0.58			0.58	
Lane Grp Cap (vph) 82 119 91 150 1475 1303 v/s Ratio Prot 0.04 0.07 0.07 0.07 0.07 v/s Ratio Perm c0.13 0.05 c0.33 0.26 v/c Ratio 0.89 0.28 0.35 0.49 0.56 0.45 Uniform Delay, d1 67.6 61.5 62.1 63.4 20.7 18.8 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 63.8 0.9 1.7 1.8 1.6 1.1 Delay (s) 131.5 62.4 63.8 65.3 22.3 19.9 Level of Service F E E C B Approach LOS F E E C B Intersection Summary 31.6 HCM 2000 Level of Service C C	Clearance Time (s)	6.2	6.2		6.2	6.2			6.5			6.5	
v/s Ratio Prot 0.04 0.05 c0.33 0.26 v/s Ratio Perm c0.13 0.05 c0.33 0.26 v/c Ratio 0.89 0.28 0.35 0.49 0.56 0.45 Uniform Delay, d1 67.6 61.5 62.1 63.4 20.7 18.8 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 63.8 0.9 1.7 1.8 1.6 1.1 1.1 1.1 1.00	Vehicle Extension (s)	2.5	2.5		2.5	2.5			1.0			1.0	
v/s Ratio Prot 0.04 0.05 c0.33 0.26 v/s Ratio Perm c0.13 0.05 c0.33 0.26 v/c Ratio 0.89 0.28 0.35 0.49 0.56 0.45 Uniform Delay, d1 67.6 61.5 62.1 63.4 20.7 18.8 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 63.8 0.9 1.7 1.8 1.6 1.1 Delay (s) 131.5 62.4 63.8 65.3 22.3 19.9 Level of Service F E E C B Approach Delay (s) 93.3 64.9 22.3 19.9 Approach LOS F E C B Intersection Summary 31.6 HCM 2000 Level of Service C	Lane Grp Cap (vph)	82	119		91	150			1475			1303	
v/s Ratio Perm c0.13 0.05 c0.33 0.26 v/c Ratio 0.89 0.28 0.35 0.49 0.56 0.45 Uniform Delay, d1 67.6 61.5 62.1 63.4 20.7 18.8 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 63.8 0.9 1.7 1.8 1.6 1.1 Delay (s) 131.5 62.4 63.8 65.3 22.3 19.9 Level of Service F E E C B Approach Delay (s) 93.3 64.9 22.3 19.9 Approach LOS F E C B Intersection Summary 31.6 HCM 2000 Level of Service C													
v/c Ratio 0.89 0.28 0.35 0.49 0.56 0.45 Uniform Delay, d1 67.6 61.5 62.1 63.4 20.7 18.8 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 63.8 0.9 1.7 1.8 1.6 1.1 Delay (s) 131.5 62.4 63.8 65.3 22.3 19.9 Level of Service F E E C B Approach Delay (s) 93.3 64.9 22.3 19.9 Approach LOS F E C B Intersection Summary HCM 2000 Control Delay 31.6 HCM 2000 Level of Service C	v/s Ratio Perm	c0.13			0.05				c0.33			0.26	
Uniform Delay, d1 67.6 61.5 62.1 63.4 20.7 18.8 Progression Factor 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 63.8 0.9 1.7 1.8 1.6 1.1 Delay (s) 131.5 62.4 63.8 65.3 22.3 19.9 Level of Service F E E C B Approach Delay (s) 93.3 64.9 22.3 19.9 Approach LOS F E C B Intersection Summary 31.6 HCM 2000 Level of Service C			0.28			0.49							
Progression Factor 1.00 1.1 1.1 1.1 1.1 1.00 1.00 1.00 1.00 1.00 1.1 1.1 1.00 1.00 1.00 1.1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	Uniform Delay, d1					63.4							
Incremental Delay, d2													
Delay (s) 131.5 62.4 63.8 65.3 22.3 19.9 Level of Service F E E E C B Approach Delay (s) 93.3 64.9 22.3 19.9 Approach LOS F E C B Intersection Summary HCM 2000 Control Delay 31.6 HCM 2000 Level of Service C	o e				1.7				1.6				
Level of Service F E E E E C B Approach Delay (s) 93.3 64.9 22.3 19.9 Approach LOS F E C B Intersection Summary B HCM 2000 Level of Service C C					63.8				22.3			19.9	
Approach Delay (s) 93.3 64.9 22.3 19.9 Approach LOS F E C B Intersection Summary HCM 2000 Control Delay 31.6 HCM 2000 Level of Service C													
Approach LOS F E C B Intersection Summary HCM 2000 Control Delay 31.6 HCM 2000 Level of Service C	Approach Delay (s)								22.3			19.9	
HCM 2000 Control Delay 31.6 HCM 2000 Level of Service C													
HCM 2000 Control Delay 31.6 HCM 2000 Level of Service C													
,				31.6	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capacity ratio 0.50	3	acity ratio		0.50	• • • • • • • • • • • • • • • • • • • •					•			
Actuated Cycle Length (s) 161.0 Sum of lost time (s) 14.7		,			S	um of los	t time (s)			14.7			
Intersection Capacity Utilization 72.4% ICU Level of Service C		ation						;					
Analysis Period (min) 15										•			
c Critical Lane Group				-									

	•	→	•	+	•	†	/	↓	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	Ø9
Lane Configurations	7	f)		4		€1 }		414	
Traffic Volume (vph)	69	23	30	44	51	692	46	439	
Future Volume (vph)	69	23	30	44	51	692	46	439	
Lane Group Flow (vph)	73	90	0	137	0	835	0	587	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Protected Phases		4		8		2		6	9
Permitted Phases	4		8		2		6		
Detector Phase	4	4	8	8	2	2	6	6	
Switch Phase									
Minimum Initial (s)	7.0	7.0	7.0	7.0	16.0	16.0	16.0	16.0	1.0
Minimum Split (s)	13.2	13.2	13.2	13.2	22.5	22.5	22.5	22.5	31.0
Total Split (s)	46.0	46.0	46.0	46.0	84.0	84.0	84.0	84.0	31.0
Total Split (%)	28.6%	28.6%	28.6%	28.6%	52.2%	52.2%	52.2%	52.2%	19%
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	2.0
All-Red Time (s)	2.2	2.2	2.2	2.2	2.5	2.5	2.5	2.5	0.0
Lost Time Adjust (s)	0.0	0.0		0.0		0.0		0.0	
Total Lost Time (s)	6.2	6.2		6.2		6.5		6.5	
Lead/Lag									
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	C-Max	C-Max	C-Max	C-Max	None
v/c Ratio	0.91	0.47		0.82		0.58		0.46	
Control Delay	143.8	27.0		87.2		25.1		22.1	
Queue Delay	0.0	0.0		0.0		0.0		0.0	
Total Delay	143.8	27.0		87.2		25.1		22.1	
Queue Length 50th (ft)	77	22		120		281		176	
Queue Length 95th (ft)	#139	77		188		421		275	
Internal Link Dist (ft)		525		285		534		505	
Turn Bay Length (ft)									
Base Capacity (vph)	130	268		259		1440		1269	
Starvation Cap Reductn	0	0		0		0		0	
Spillback Cap Reductn	0	0		0		0		0	
Storage Cap Reductn	0	0		0		0		0	
Reduced v/c Ratio	0.56	0.34		0.53		0.58		0.46	
Intersection Summary									

Intersection Summary Cycle Length: 161


Actuated Cycle Length: 161

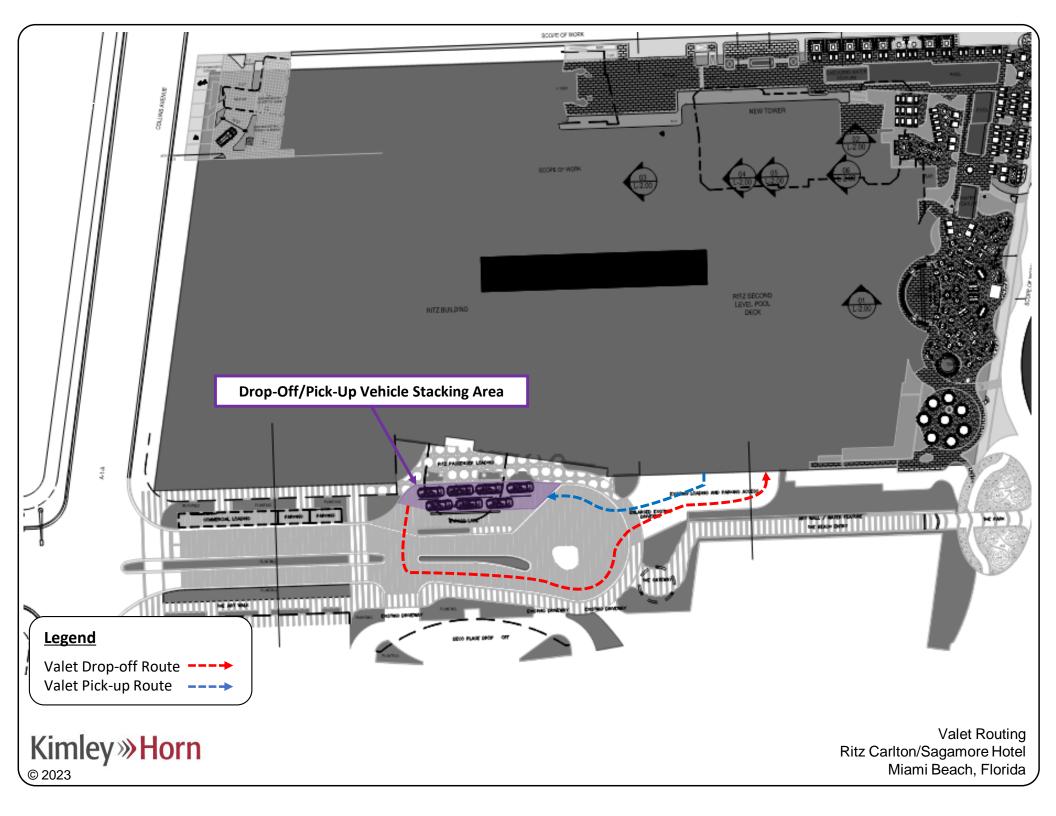
Offset: 81 (50%), Referenced to phase 2:NBTL and 6:SBTL, Start of Yellow

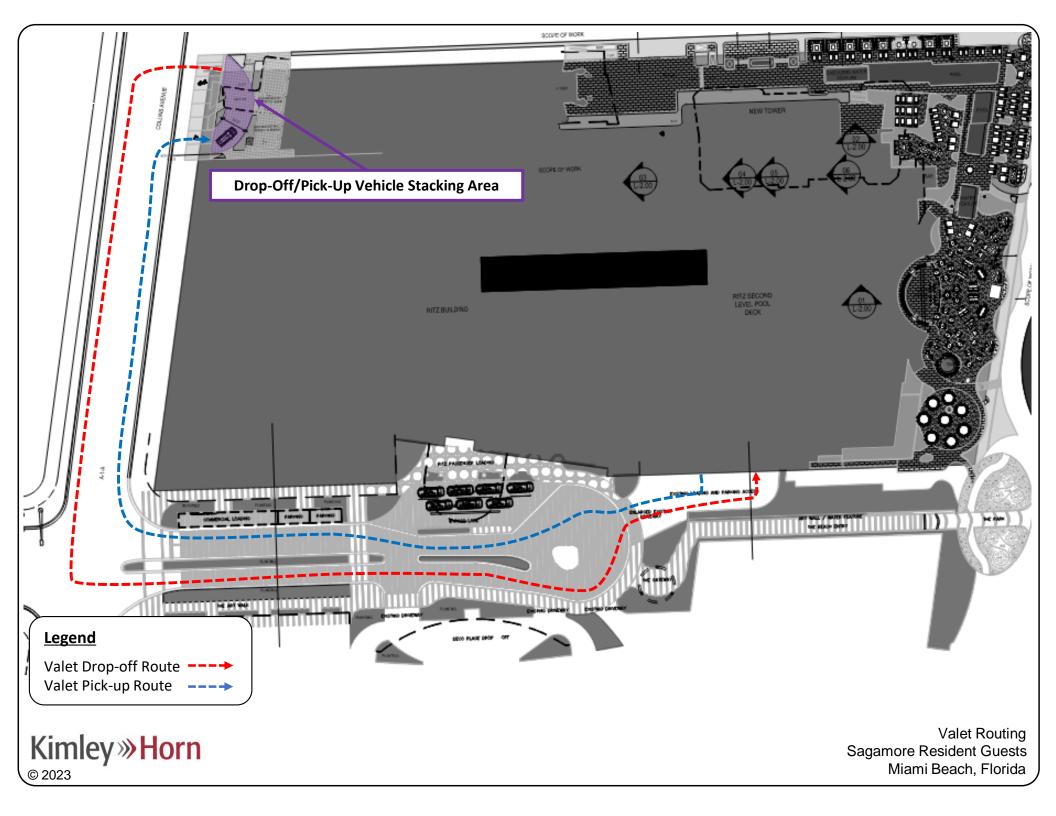
Natural Cycle: 90

Control Type: Actuated-Coordinated

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

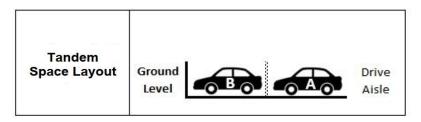
	•	-	←	†	1
Lane Group	EBL	EBT	WBT	NBT	▼ SBT
Lane Group Flow (vph)	73	90	137	835	587
v/c Ratio	0.91	0.47	0.82	0.58	0.46
Control Delay	143.8	27.0	87.2	25.1	22.1
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	143.8	27.0	87.2	25.1	22.1
Queue Length 50th (ft)	77	22	120	281	176
Queue Length 95th (ft)	#139	77	188	421	275
Internal Link Dist (ft)		525	285	534	505
Turn Bay Length (ft)					
Base Capacity (vph)	130	268	259	1440	1269
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.56	0.34	0.53	0.58	0.46
Intersection Summary					

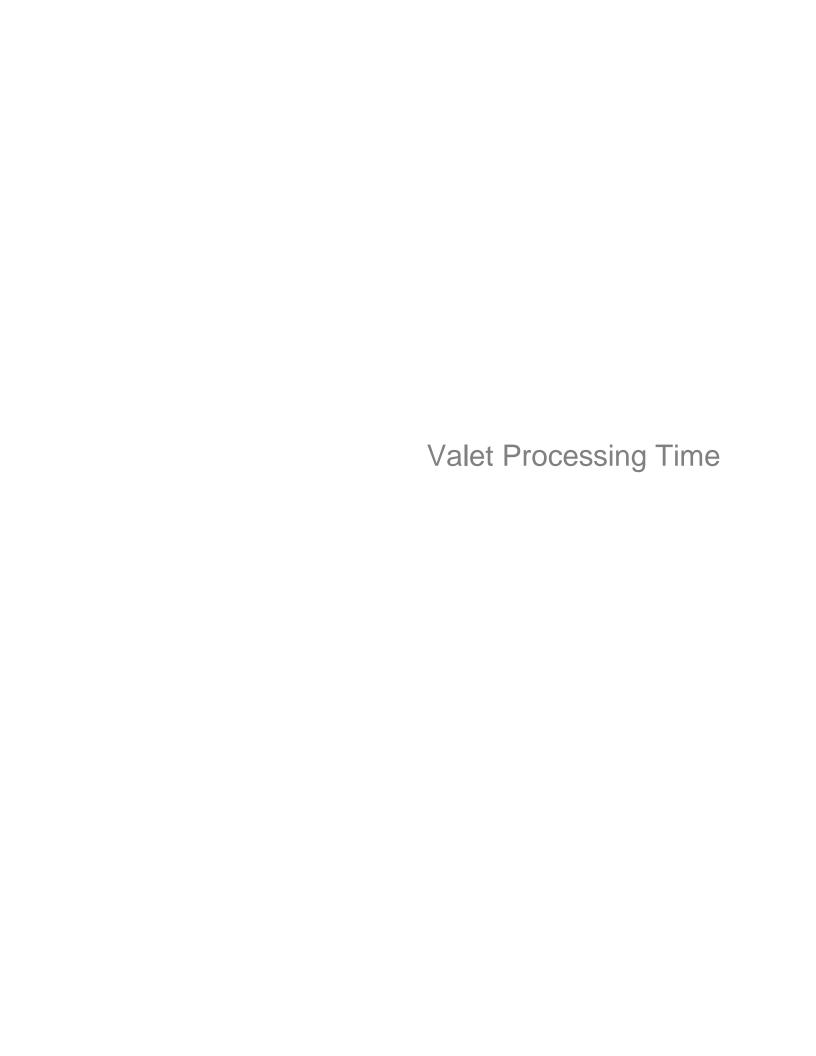

^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.


Movement		٠	→	•	•	←	4	1	†	/	/	↓	1
Traffix Ovlume (vph) 69 23 63 30 44 56 51 692 50 46 439 73 local Flow (vphpl) 69 23 63 30 44 56 51 692 50 46 439 73 local Flow (vphpl) 1900 1900 1900 1900 1900 1900 1900 190	Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Fullure Volume (vph)	Lane Configurations	ħ	4î			4			4T+			414	
Ideal Flow (yphph)	Traffic Volume (vph)										46		
Lane Wilth	Future Volume (vph)												
Total Lost time (s) 6.2 6.2 6.2 6.5 6.5		1900						1900					
Lano UILI, Factor 1.00 1.00 1.00 0.95 0.95 0.95 Phyb, pedfblkes 1.00 0.71 0.84 0.98 0.95 Phyb, pedfblkes 0.76 1.00 0.92 0.99 0.99 0.99 Phyb, pedfblkes 0.04 0.99 0.99 0.99 0.99 0.99 Phyb, pedfblkes 0.09 0.09 0.09 0.09 0.09 0.09 0.00 0.09 0.00 <td></td> <td></td> <td></td> <td>11</td> <td>11</td> <td></td> <td>11</td> <td>11</td> <td></td> <td>11</td> <td>11</td> <td></td> <td>12</td>				11	11		11	11		11	11		12
Frpb, ped/bilkes 1,00 0,71 0,84 0,98 0,95 Figh, ped/bilkes 0,76 1,00 0,92 0,99 0,98 Fill Protected 0,95 1,00 0,99 1,00 1,00 Stadi, Flow (prot) 962 837 10411 2934 2809 Fill Permitted 0,52 1,00 0,99 0,98 0,97 Satd, Flow (prot) 526 837 10411 2934 2809 Fill Permitted 0,52 1,00 0,90 0,85 0,97 2077 Satd, Flow (perm) 526 837 950 0,95 <	` ,	6.2											
Fight Pode Filt 1.00	Lane Util. Factor	1.00				1.00							
Fri 1,00													
Fit Protected													
Satd Flow (prot) 962 837 1041 2934 2809 Fli Permilted 0.52 1.00 0.90 0.95 0.95 0.95 0.79 0.70 0.	Frt	1.00				0.94							
Fill Permitted	Flt Protected	0.95	1.00			0.99			1.00			1.00	
Sald, Flow (perm) 526 837 950 2509 2217	Satd. Flow (prot)	962	837			1041						2809	
Peak-hour factor, PHF	Flt Permitted	0.52	1.00			0.90						0.79	
Adj. Flow (vph) 73 24 66 32 46 59 54 728 53 48 462 77 RTOR Reduction (vph) 0 56 0 0 19 0 0 3 0 0 6 0 Lane Group Flow (vph) 73 34 0 0 1832 0 0 581 0 Confl. Peds. (#/hr) 315 378 378 315 435 249 249 249 435 Confl. Peds. (#/hr) 315 12% 12% 3	Satd. Flow (perm)	526	837			950			2509			2217	
RTOR Reduction (vph)	Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
RTOR Reduction (vph) 0 56 0 0 19 0 0 33 0 0 6 0 Cane Group Flow (vph) 73 34 0 0 118 0 0 832 0 0 581 0 Confl. Bikes (#/hr) 315 378 378 378 315 435 249 249 435 Confl. Bikes (#/hr) 10 5 14 12 12 Heavy Vehicles (%) 12% 12% 3%<	Adj. Flow (vph)	73	24	66	32	46	59	54	728	53	48	462	77
Lane Group Flow (vph) 73 34 0 0 118 0 0 832 0 0 581 0 0 0 0 0 0 0 0 0		0	56	0	0	19	0	0	3	0	0	6	0
Confi. Peds. (#/hh) 315 378 378 378 378 315 435 249 249 435 Confi. Bikes (#/hr) 10 5 14 12 12 Heavy Vehicles (%) 12% 12% 12% 3%	Lane Group Flow (vph)		34	0	0	118	0	0	832	0	0	581	0
Confi. Bikes (#/hr)		315		378	378		315	435		249	249		435
Heavy Vehicles (%)	Confl. Bikes (#/hr)			10			5			14			
Parking (#/hr)	` '	12%	12%		3%	3%		3%	3%	3%	3%	3%	
Turn Type Perm NA Perm													
Protected Phases 4 8 2 6 Permitted Phases 4 8 2 6 Actuated Green, G (s) 24.5 24.5 92.8 92.8 Effective Green, g (s) 24.5 24.5 92.8 92.8 Actuated g/C Ratio 0.15 0.15 0.58 0.58 Clearance Time (s) 6.2 6.2 6.5 6.5 Vehicle Extension (s) 2.5 2.5 2.5 1.0 1.0 Lane Grp Cap (vph) 80 127 144 1446 1277 V/s Ratio Pror 0.04 0.012 0.03 0.26 V/s Ratio Perm c0.14 0.12 c0.33 0.26 V/s Ratio Perm c0.14 0.27 0.82 0.58 0.46 Uniform Delay, d1 67.2 60.3 66.1 21.6 19.6 Progression Factor 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 71.4 0.8 29.4		Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Permitted Phases													
Actuated Green, G (s)		4			8			2			6		
Effective Green, g (s) 24.5 24.5 92.8 92.8 Actuated g/C Ratio 0.15 0.15 0.15 0.58 0.58 Clearance Time (s) 6.2 6.2 6.2 6.5 6.5 Vehicle Extension (s) 2.5 2.5 2.5 1.0 1.0 Lane Grp Cap (vph) 80 127 144 1446 1277 v/s Ratio Port 0.04 0.04 0.04 0.04 0.04 0.04 v/s Ratio Perm c0.14 0.04 0.012 c0.33 0.26 0.26 v/s Ratio 0.91 0.27 0.82 0.58 0.46 0.46 0.04 0.04 0.05 0.05 0.06			24.5			24.5			92.8			92.8	
Actuated g/C Ratio 0.15 0.15 0.15 0.58 0.58 Clearance Time (s) 6.2 6.2 6.2 6.2 6.5 6.5 Vehicle Extension (s) 2.5 2.5 2.5 1.0 1.0 1.0 Lane Grp Cap (vph) 80 127 144 1446 1277 v/s Ratio Prot 0.04 v/s Ratio Perm	• ,												
Clearance Time (s) 6.2 6.2 6.2 6.5 6.5 Vehicle Extension (s) 2.5 2.5 2.5 1.0 1.0 Lane Grp Cap (vph) 80 127 144 1446 1277 V/s Ratio Prot 0.04 0.04 0.04 0.04 0.04 0.00													
Vehicle Extension (s) 2.5 2.5 2.5 1.0 1.0 Lane Grp Cap (vph) 80 127 144 1446 1277 v/s Ratio Prot 0.04 0.04 0.02 0.033 0.26 v/s Ratio Perm c0.14 0.12 c0.33 0.26 v/c Ratio 0.91 0.27 0.82 0.58 0.46 Uniform Delay, d1 67.2 60.3 66.1 21.6 19.6 Progression Factor 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 71.4 0.8 29.4 1.7 1.2 Delay (s) 138.6 61.2 95.5 23.3 20.8 Level of Service F E F C C Approach LOS F F C C Intersection Summary 35.0 HCM 2000 Level of Service D HCM 2000 Volume to Capacity ratio 0.52 Actuated Cycle Length (s) 161.0 Sum of lost time (s) <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
Lane Grp Cap (vph) 80 127 144 1446 1277 v/s Ratio Perm c0.14 0.12 c0.33 0.26 v/c Ratio 0.91 0.27 0.82 0.58 0.46 Uniform Delay, d1 67.2 60.3 66.1 21.6 19.6 Progression Factor 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 71.4 0.8 29.4 1.7 1.2 Delay (s) 138.6 61.2 95.5 23.3 20.8 Level of Service F E F C C Approach Delay (s) 95.8 95.5 23.3 20.8 Approach LOS F F F C C Intersection Summary F F C C C HCM 2000 Control Delay 35.0 HCM 2000 Level of Service D D HCM 2000 Unime to Capacity ratio 0.52 Actuated Cycle Length (s) 161.0 Sum of lost time (s) 14.7 Intersection Capacity Utilization 78.6% ICU Level of Service	• • •												
v/s Ratio Prot 0.04 v/s Ratio Perm c0.14 0.12 c0.33 0.26 v/c Ratio 0.91 0.27 0.82 0.58 0.46 Uniform Delay, d1 67.2 60.3 66.1 21.6 19.6 Progression Factor 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 71.4 0.8 29.4 1.7 1.2 Delay (s) 138.6 61.2 95.5 23.3 20.8 Level of Service F E F C C C Approach Delay (s) 95.8 95.5 23.3 20.8 20.8 Approach LOS F F F C C C Intersection Summary B 40.5													
v/s Ratio Perm c0.14 0.12 c0.33 0.26 v/c Ratio 0.91 0.27 0.82 0.58 0.46 Uniform Delay, d1 67.2 60.3 66.1 21.6 19.6 Progression Factor 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 71.4 0.8 29.4 1.7 1.2 Delay (s) 138.6 61.2 95.5 23.3 20.8 Level of Service F E F C C C Approach Delay (s) 95.8 95.5 23.3 20.8 20.8 Approach LOS F F F C C C Intersection Summary F F F C C C HCM 2000 Control Delay 35.0 HCM 2000 Level of Service D D HCM 2000 Volume to Capacity ratio 0.52 Actuated Cycle Length (s) 161.0 Sum of lost time (s) 14.7 Intersection Capacity Utiliza		00							1110			12//	
v/c Ratio 0.91 0.27 0.82 0.58 0.46 Uniform Delay, d1 67.2 60.3 66.1 21.6 19.6 Progression Factor 1.00 1.00 1.00 1.00 Incremental Delay, d2 71.4 0.8 29.4 1.7 1.2 Delay (s) 138.6 61.2 95.5 23.3 20.8 Level of Service F E F C C Approach Delay (s) 95.8 95.5 23.3 20.8 Approach LOS F F F C C Intersection Summary F F C C HCM 2000 Volume to Capacity ratio 0.52 Actuated Cycle Length (s) 161.0 Sum of lost time (s) 14.7 Intersection Capacity Utilization 78.6% ICU Level of Service D Analysis Period (min) 15		c0 14	0.01			0.12			c0 33			0.26	
Uniform Delay, d1 67.2 60.3 66.1 21.6 19.6 Progression Factor 1.00 1.00 1.00 1.00 Incremental Delay, d2 71.4 0.8 29.4 1.7 1.2 Delay (s) 138.6 61.2 95.5 23.3 20.8 Level of Service F E F C C Approach Delay (s) 95.8 95.5 23.3 20.8 Approach LOS F F F C C Intersection Summary HCM 2000 Control Delay 35.0 HCM 2000 Level of Service D HCM 2000 Volume to Capacity ratio 0.52 Actuated Cycle Length (s) 161.0 Sum of lost time (s) 14.7 Intersection Capacity Utilization 78.6% ICU Level of Service D Analysis Period (min) 15			0.27										
Progression Factor 1.00 1.00 1.00 1.00 Incremental Delay, d2 71.4 0.8 29.4 1.7 1.2 Delay (s) 138.6 61.2 95.5 23.3 20.8 Level of Service F E F C C Approach Delay (s) 95.8 95.5 23.3 20.8 Approach LOS F F F C C Intersection Summary F F F C C HCM 2000 Control Delay 35.0 HCM 2000 Level of Service D HCM 2000 Volume to Capacity ratio 0.52 Actuated Cycle Length (s) 161.0 Sum of lost time (s) 14.7 Intersection Capacity Utilization 78.6% ICU Level of Service D Analysis Period (min) 15													
Incremental Delay, d2	3												
Delay (s) 138.6 61.2 95.5 23.3 20.8 Level of Service F E F C C Approach Delay (s) 95.8 95.5 23.3 20.8 Approach LOS F F C C Intersection Summary Sum of Lost of Service D D HCM 2000 Control Delay 35.0 HCM 2000 Level of Service D HCM 2000 Volume to Capacity ratio 0.52 D Actuated Cycle Length (s) 161.0 Sum of lost time (s) 14.7 Intersection Capacity Utilization 78.6% ICU Level of Service D Analysis Period (min) 15	•												
Level of Service F E F C C C Approach Delay (s) 95.8 95.5 23.3 20.8 Approach LOS F F F C C C Intersection Summary HCM 2000 Control Delay 35.0 HCM 2000 Level of Service D HCM 2000 Volume to Capacity ratio 0.52 Actuated Cycle Length (s) 161.0 Sum of lost time (s) 14.7 Intersection Capacity Utilization 78.6% ICU Level of Service D Analysis Period (min) 15													
Approach Delay (s) 95.8 95.5 23.3 20.8 Approach LOS F F F C C Intersection Summary HCM 2000 Control Delay 35.0 HCM 2000 Level of Service D HCM 2000 Volume to Capacity ratio 0.52 Actuated Cycle Length (s) 161.0 Sum of lost time (s) 14.7 Intersection Capacity Utilization 78.6% ICU Level of Service D Analysis Period (min) 15													
Approach LOS F F F C C Intersection Summary HCM 2000 Control Delay 35.0 HCM 2000 Level of Service D HCM 2000 Volume to Capacity ratio 0.52 Actuated Cycle Length (s) 161.0 Sum of lost time (s) 14.7 Intersection Capacity Utilization 78.6% ICU Level of Service D Analysis Period (min) 15		•											
Intersection Summary HCM 2000 Control Delay 35.0 HCM 2000 Level of Service D HCM 2000 Volume to Capacity ratio 0.52 Actuated Cycle Length (s) 161.0 Sum of lost time (s) 14.7 Intersection Capacity Utilization 78.6% ICU Level of Service D Analysis Period (min) 15													
HCM 2000 Control Delay HCM 2000 Control Delay 35.0 HCM 2000 Level of Service D Actuated Cycle Length (s) Intersection Capacity Utilization 78.6% Analysis Period (min) 15 HCM 2000 Level of Service D 14.7 ICU Level of Service D													
HCM 2000 Volume to Capacity ratio Actuated Cycle Length (s) Intersection Capacity Utilization Analysis Period (min) 0.52 Sum of lost time (s) 14.7 ICU Level of Service D				35.0	Н	CM 2000	Level of	Service		D			
Actuated Cycle Length (s) 161.0 Sum of lost time (s) 14.7 Intersection Capacity Utilization 78.6% ICU Level of Service D Analysis Period (min) 15	,	acity ratio			• • • • • • • • • • • • • • • • • • • •	J 2000		_ 0. 1100		D			
Intersection Capacity Utilization 78.6% ICU Level of Service D Analysis Period (min) 15		, .a.io			S	um of los	t time (s)			14 7			
Analysis Period (min) 15		ation						j					
					10	. J E0101	J. J. 501 VIOC	•		D			
	c Critical Lane Group			10									

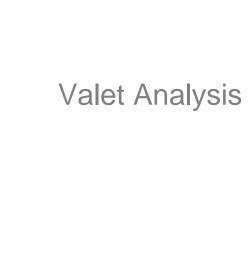
Appendix J

Valet Analysis


Valet Routing



Vehicle Processing Scenarios



Vehicle B - Drop-Off		
 Attendant drives into space 		10
		10 sec
Vehicle B - Pick-Up (Vehicle A not Parked)		
 Attendant drives out of space 		10
		10 sec
Vehicle B - Pick-Up (Vehicle A Parked)		
 Attendant enters Vehicle A 		5
2. Attendant moves Vehicle A to drive	aisle	10
3. Attendant exits Vehicle A		5
4. Attendant enters Vehicle B and drive	es to drive aisle	15
5. Attendant exits Vehicle B		5
6. Attendant re-enters Vehicle A and d	rives into position B	15
7. Attendant exits Vehicle A		5
8. Attendant re-enters Vehicle B		5
		65 sec
Vehicle A - Drop-Off		
 Attendant drives into space 		10
		10 sec
<u>Vehicle A - Pick-Up</u>		
Attendant drives out of space		10
		10 sec
	Average Drop-off Processing Time	10 sec
	Average Pick-up Processing Time	28 sec

Saga	Sagamore Residential Guest Valet Drop-off Calculated Average Travel Time						
VALET DROP-OFF							
VEHICLE TRAVEL TIME							
Travel Times (Assume)	15 mph speed)	Travel Times (Assume)		5 ft/s speed)			
To Drop-Off Vehicle (In vehicle)		Return to Valet Drop-off Area (Walk/Run					
Distance	Travel Time	Distance		Travel Time			
0.25 mi	les 1 minutes		0.07 miles	1.2 minutes			
Double Tandem Processing Time	0.2 Minutes						
Controlled Delay	1.5 Minutes						
Total Time 3.9 Minutes							

Sagamore Residential Guest Valet Pick-up Calculated Average Travel Time							
VALET PICK-UP							
VALET ATTENDANT TRAVEL TIME VEHICLE TRAVEL TIME							
Travel Times (Assume)	5 ft/s speed)	Travel Times (Assume)		15 mph speed)			
To Pick-Up Vehicle (Walk/Run)							
Distance	Travel Time		Distance	Travel Time			
0.07 miles	1.2 minutes		0.20 m	iles 0.8 minutes			
			Double Tandem Processing Time	0.5 Minutes			
			Controlled Delay	1.5 Minutes			
Total Time 4.0 Minutes							

A.M. Peak Hour Valet Analysis

Arrival Rate

IN	OUT	
0	1	veh/hr

Number of Valet Attendants (N) = 1

Level of Confidence = 0.95

Service Rate

	OUT	IN
mins/veh	4.00	3.90

Total Entering and Exiting Vehicles(q) = 1

1 veh/hr

vehicles

3

Service Capacity per N (60 mins/Service Rate) (Q) = 15.00 veh/hr/pos

Storage Provided On-Site =

Average Service Rate (t) = 4.00 mins/veh

rho(t/Q) = 0.067

Service Time = 4.00 mins/veh

Expected (avg.) number of vehicles in the system E(m)=0.00Expected (avg.) number of vehicles waiting in queue E(n)=0.07

Mean time in the queue E(w)=0.29 mins Mean time in system E(t)=4.29 mins

Proportion of customers who wait (P) (E(w) > 0) = 6.67% Probability of a queue exceeding a length (M) P(x > M) = 5.00%

Queue length which is exceeded 5.00% of the times is equal to -0.9 vehicles

P.M. Peak Hour Valet Analysis

Arrival Rate

IN	OUT	
1	0	veh/hr

Number of Valet Attendants (N) =

Level of Confidence = 0.95

Storage Provided On-Site = 3 vehicles

Service Rate

IN	OUT	
3.90	4.00	mins/veh

Total Entering and Exiting Vehicles(q) = 1

Service Capacity per N (60 mins/Service Rate) (Q) = 15.38 veh/hr/pos

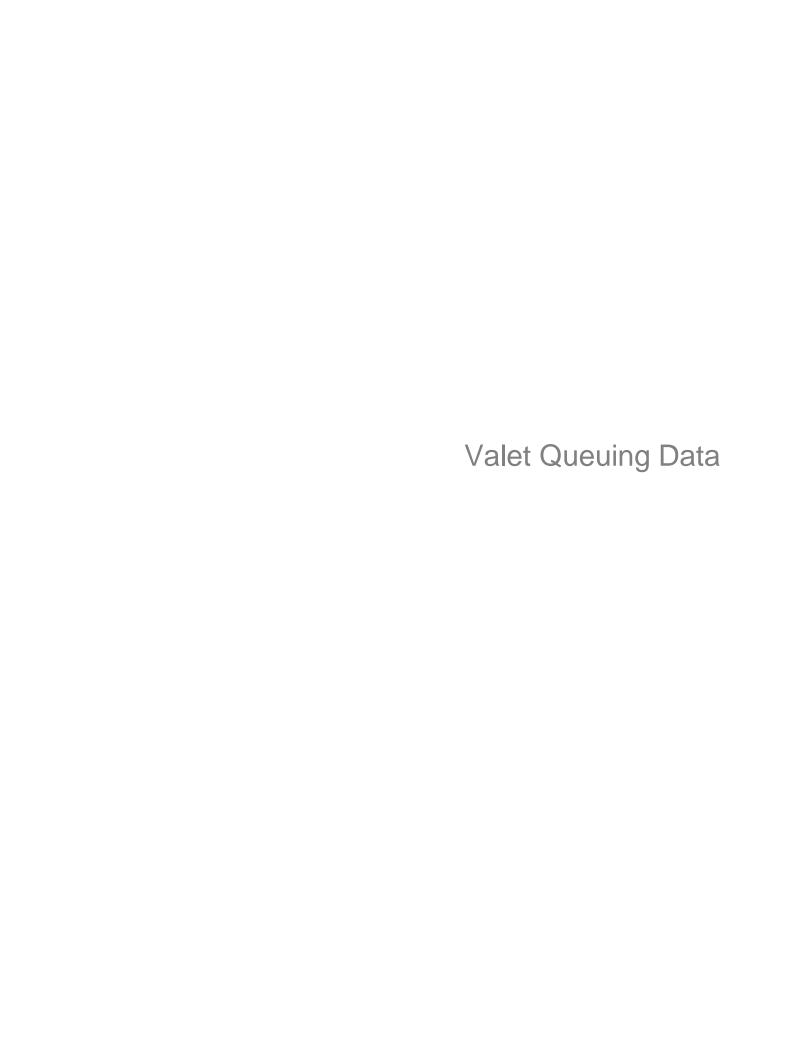
Average Service Rate (t) = 3.90 mins/veh

rho (t/Q) = 0.065

veh/hr

Service Time = 3.9 mins/veh

Expected (avg.) number of vehicles in the system E(m)=0.00Expected (avg.) number of vehicles waiting in queue E(n)=0.07


Mean time in the queue E(w)=0.27 mins

Mean time in system E(t)= 4.17 mins

Proportion of customers who wait (P) (E(w) > 0) = 6.50%

Probability of a queue exceeding a length (M) P(x > M) = 5.00%

Queue length which is exceeded 5.00% of the times is equal to -0.9 vehicles

RITZ CARLTON PORTE-COCHERE QUEUE ANALYSIS

	Hotel Rooms	Maximum Queue Observed	Required Valet Attendants
Existing	373	5	4
Increase Factor	1.136		
Proposed	424	6	5

Snapshot Queue Study

Location: The Ritz-Carlton, South Beach Hotel, 1 Lincoln Rd City: Miami Beach, FL Day: Thursday Date: 7/21/2022

Time		Snapshot Queue Lengtl	n (Number of Vehicles)		
Time	VALET RAMP (Inner)	VALET RAMP (Outer)	Total	Notes	
12:00 PM	2	1	3]
12:01 PM	2	1	3		
12:02 PM	2	1	3		ļ
12:03 PM	2	2	4		1
12:04 PM	2	2	4		
12:05 PM	2	2	4		1
12:06 PM	2	2	4		4
12:07 PM	2	2	4		4
12:08 PM	2	2 2	4		
12:09 PM 12:10 PM	3 1	2	5 3	-	< MAX
12:10 PM	1	2	3	-	1
12:11 PM	1	2	3		1
12:13 PM	1	2	3		1
12:14 PM	1	2	3		1
12:15 PM	1	1	2		
12:16 PM	1	2	3		1
12:17 PM	1	2	3		1
12:18 PM	1	2	3		1
12:19 PM	1	2	3		1
12:20 PM	1	2	3]
12:21 PM	1	2	3]
12:22 PM	1	2	3]
12:23 PM	1	1	2		
12:24 PM	2	1	3		
12:25 PM	1	1	2		
12:26 PM	1	1	2		
12:27 PM	1	1	2		ļ
12:28 PM	1	0	1		1
12:29 PM	1	1	2		4
12:30 PM	1	1	2		-
12:31 PM 12:32 PM	0	1	1		1
12:32 PM	1	1	2		1
12:34 PM	0	1	1		1
12:35 PM	0	1	1		1
12:36 PM	0	1	1		1
12:37 PM	0	1	1		1
12:38 PM	0	1	1		1
12:39 PM	1	1	2		1
12:40 PM	1	1	2		1
12:41 PM	4	1	5		< MAX
12:42 PM	1	0	1]
12:43 PM	2	0	2		1
12:44 PM	2	0	2		1
12:45 PM	2	0	2		1
12:46 PM	2	0	2		4
12:47 PM	2	1	3		4
12:48 PM	2	1	3	-	4
12:49 PM	1	0	1	-	4
12:50 PM	1	0	1	 	4
12:51 PM	1	0	1		1
12:52 PM	<u>2</u>	0	2	-	1
12:53 PM 12:54 PM	3	0	3	+	1
12:54 PM 12:55 PM	1			1	1
12:55 PM	1	0	1	+	1
12:56 PIVI 12:57 PM	1	0	1	+	1
12:57 PIVI 12:58 PM	1	0	1	+	1
12:56 PIVI 12:59 PM	2	0	2	 	1
1:00 PM	2	0	2	+	4

Time	Maximum Queue Observed	Valet Attendants required
12:09 PM	5	5
12:41 PM	5	5
1:13 PM	5	5

		Spanshot Ougus Longt	h (Number of Vehicles)		ī
Time	VALET RAMP (Inner)	VALET RAMP (Outer)	Total	Notes	
1:01 PM	3	1	4		
1:02 PM	3	1	4		
1:03 PM	1	1	2		
1:04 PM	1	1	2		
1:05 PM	2	1	3		
1:06 PM	3	1	4		
1:07 PM	3	1	4		
1:08 PM	3	1	4		
1:09 PM	2	1	3		
1:10 PM	2	1	3		
1:11 PM	3	1	4		
1:12 PM	3	1	4		
1:13 PM	4	1	5		< MAX
1:14 PM	3	0	3		_
1:15 PM 1:16 PM	3	0	3		
1:16 PM	2	0	2		
1:18 PM	3	0	3		
1:19 PM	1	0	1		1
1:19 PM	1	0	1		1
1:21 PM	1	1	2		1
1:22 PM	2	1	3		1
1:23 PM	2	0	2		
1:24 PM	2	0	2		
1:25 PM	2	0	2		
1:26 PM	1	0	1		
1:27 PM	1	0	1		
1:28 PM	2	0	2		
1:29 PM	3	1	4		1
1:30 PM	2	1	3		
1:31 PM	2	0	2		
1:32 PM	2	0	2		
1:33 PM	2	1	3		
1:34 PM	2	1	3		
1:35 PM	2	1	3		
1:36 PM	2	1	3		
1:37 PM	2	1	3		
1:38 PM	1	1	2		
1:39 PM	1	1	2		ł
1:40 PM	1	1	2		-
1:41 PM	1	1	2 2		-
1:42 PM 1:43 PM	1	1	2	-	
1:43 PM 1:44 PM	1	0	1		1
1:44 PM 1:45 PM	1	1	2		1
1:45 PM	1	1	2		1
1:46 PM	1	1	2		1
1:48 PM	3	1	4		1
1:49 PM	3	1	4		
1:50 PM	3	1	4		1
1:51 PM	2	1	3		1
1:52 PM	2	1	3		1
1:53 PM	1	1	2		1
1:54 PM	1	0	1		1
1:55 PM	0	1	1		1
1:56 PM	2	1	3		1
1:57 PM	2	0	2		
1:58 PM	2	0	2		
1:59 PM	1	0	1		
2:00 PM	1	0	1		1

Max Queue Study

Location: The Ritz-Carlton, South Beach Hotel, 1 Lincoln Rd City: Miami Beach, FL Day: Thursday Date: 7/21/2022

Time		Max Queue Length (
	VALET RAMP (Inner)	VALET RAMP (Outer)	Total	Notes	
12:00 PM	2	1	3		1
12:01 PM	2	1	3		
12:02 PM	2	2	4		1
12:03 PM	2	2	4		-
12:04 PM	2	2	4		
12:05 PM	3	2	5		< M/
12:06 PM	2	2	4		4
12:07 PM 12:08 PM	3	2 2	4 5		< MA
12:08 PIVI 12:09 PM	3	2	5		< M/
12:10 PM	1	2	3		100
12:11 PM	1	2	3		1
12:12 PM	1	2	3		1
12:13 PM	1	2	3		-
12:14 PM	2	2	4		1
12:15 PM	1	2	3		1
12:16 PM	1	2	3		1
12:17 PM	1	2	3		1
12:18 PM	1	2	3		
12:19 PM	1	2	3		
12:20 PM	1	2	3		
12:21 PM	1	2	3		
12:22 PM	2	2	4]
12:23 PM	2	1	3		_
12:24 PM	2	1	3		_
12:25 PM	1	1	2		1
12:26 PM	1	1	2		
12:27 PM	11	1	2		-
12:28 PM	1	1	2		
12:29 PM	1	2	3		-
12:30 PM 12:31 PM	1	1	2 2		4
12:31 PM	1	1	2		4
12:33 PM	1	1	2		
12:34 PM	0	1	1		1
12:35 PM	0	1	1		
12:36 PM	0	1	1		-
12:37 PM	0	1	1		1
12:38 PM	1	1	2		
12:39 PM	2	1	3		Ī
12:40 PM	3	1	4		1
12:41 PM	4	1	5		< M/
12:42 PM	2	0	2		1
12:43 PM	2	0	2		1
12:44 PM	2	0	2		1
12:45 PM	2	0	2		1
12:46 PM	2	1	3		1
12:47 PM	3	1	4		4
12:48 PM	2	1	3		1
12:49 PM	11	0	1		4
12:50 PM	1	0	1		1
12:51 PM	2	0	2		-
12:52 PM	2	0	2		-
12:53 PM	3	0	3		-
12:54 PM	3	0	3		-
12:55 PM 12:56 PM	1	0	1		1
12:56 PM 12:57 PM					1
12:57 PM 12:58 PM	2	0	1 2		1
12:58 PM 12:59 PM	2	0	2		1
1:00 PM	3	1	4	╂	4

Time	Maximum Queue Observed	Valet Attendants required
12:05 PM	5	5
12:08 PM	5	5
12:09 PM	5	5
12:41 PM	5	5
1:12 PM	5	5
1:13 PM	5	5

71		Max Queue Length ((Number of Vehicles)		
Time	VALET RAMP (Inner)	VALET RAMP (Outer)	Total	Notes	
1:01 PM	3	1	4		1
1:02 PM	3	1	4		
1:03 PM	1	1	2		
1:04 PM	2	1	3		1
1:05 PM	3	1	4		
1:06 PM	3	1	4		
1:07 PM	3	1	4]
1:08 PM	3	1	4]
1:09 PM	2	1	3		
1:10 PM	3	1	4		
1:11 PM	3	1	4		
1:12 PM	4	1	5		< MAX
1:13 PM	4	1	5		< MAX
1:14 PM	3	0	3		
1:15 PM	3	0	3		
1:16 PM	3	0	3		_
1:17 PM	3	0	3		
1:18 PM	3	0	3		_
1:19 PM	1	0	1		1
1:20 PM	1	1	2		_
1:21 PM	2	1	3		
1:22 PM	2	1	3		
1:23 PM	2	0	2		
1:24 PM	2	0	2		
1:25 PM	2	0	2		
1:26 PM	1	0	1		
1:27 PM	2	0	2		
1:28 PM	3	1	4		
1:29 PM	3	1	4		
1:30 PM	2	1	3		
1:31 PM	2	0	2		
1:32 PM	2	1	3		_
1:33 PM	2	1	3		_
1:34 PM	2	1	3		
1:35 PM	2	1	3		_
1:36 PM	2	1	3		_
1:37 PM					-
1:38 PM	1	1	2		-
1:39 PM	1	1	2	l	-
1:40 PM 1:41 PM	1	1	2		4
1:41 PM 1:42 PM	1	1	2		-
1:42 PIVI 1:43 PM	1	1	2		4
1:43 PM	1	1	2		4
1:44 PM 1:45 PM	1	1	2		1
1:45 PM	2	1	3		1
1:46 PIVI 1:47 PM	3	1	4	l 	-
1:47 PIVI 1:48 PM	3	1	4		1
1:46 PIVI 1:49 PM	3	1	4		-
1:50 PM	3	1	4		-
1:50 PM	3	1	4		1
1:52 PM	2	1	3		1
1:53 PM	2	1	3		1
1:53 PM	1	1	2		╡
1:54 PM	2	1	3		1
1:56 PM	2	1	3		╡
1:56 PIVI 1:57 PM	2	0	2		1
1:57 PM	2	0	2		╡
1:59 PM	1	1	2		1
2:00 PM	1	1	2		1
2.001101	· '	. '	ı -	1	1

Snapshot Queue Study

Location: The Ritz-Carlton, South Beach Hotel, 1 Lincoln Rd City: Miami Beach, FL Day: Saturday Date: 7/23/2022

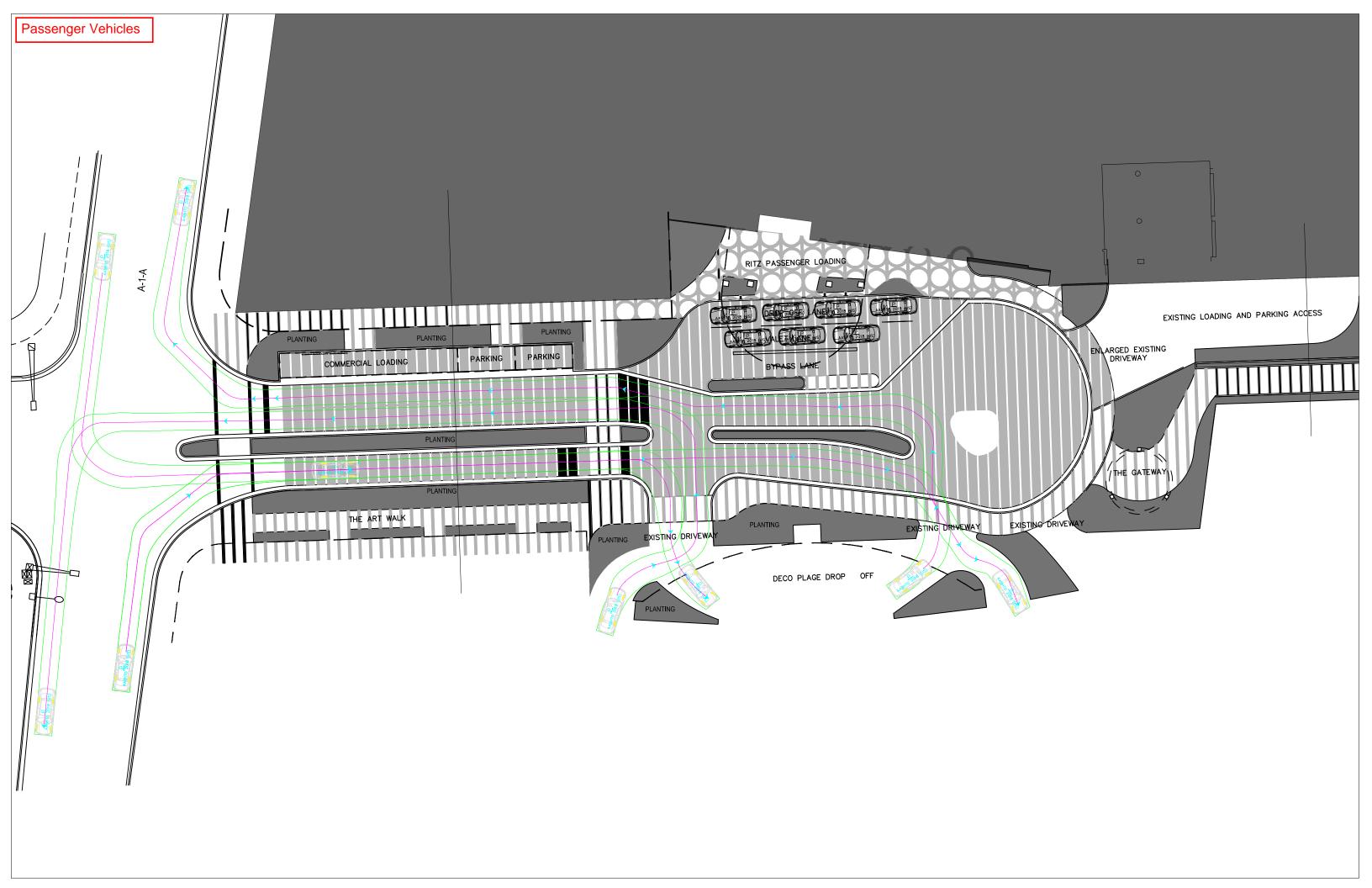
		Snapshot Queue Lengt	h (Number of Vehicles)		ì
Time	VALET RAMP (Inner)	VALET RAMP (Outer)	Total	Notes	
4:30 PM	0	0	0		
4:31 PM	2	0	2		
4:32 PM	1	1	2		ļ
4:33 PM	1	1	2		
4:34 PM	2	1	3		ļ
4:35 PM	1	1	2		
4:36 PM 4:37 PM	1	1 0	2		
4:38 PM	2	0	2		
4:39 PM	2	1	3		
4:40 PM	2	1	3		
4:41 PM	0	1	1		
4:42 PM	0	1	1		ĺ
4:43 PM	0	1	1		
4:44 PM	0	1	1		
4:45 PM	0	1	1		
4:46 PM	0	1	1		
4:47 PM	0	1	1		I
4:48 PM	0	1	1		
4:49 PM	1	1	2		I
4:50 PM		1			
4:51 PM 4:52 PM	2	1	3		
4:52 PM	2	1	3		
4:54 PM	2	1	3		
4:55 PM	3	1	4		< MAX
4:56 PM	1	1	2		
4:57 PM	2	1	3		
4:58 PM	2	1	3		ĺ
4:59 PM	1	1	2		
5:00 PM	1	1	2		
5:01 PM	1	1	2		
5:02 PM	1	0	1		
5:03 PM	1	0	1		
5:04 PM	2	0	2		
5:05 PM	3	0	3		
5:06 PM 5:07 PM	3	0	3		
5:07 PM	3	1	4		
5:00 PM	3	1	4		< MAX
5:10 PM	1	1	2		
5:11 PM	2	1	3		1
5:12 PM	2	1	3		
5:13 PM	1	2	3		
5:14 PM	0	2	2		1
5:15 PM	1	2	3		
5:16 PM	2	2	4		< MAX
5:17 PM	2	2	4		< MAX
5:18 PM	1	2	3		
5:19 PM	1	2	3		I
5:20 PM	1	1	2		
5:21 PM	2	1	3		
5:22 PM	1	1	2		
5:23 PM	1	1	2 2		-
5:24 PM 5:25 PM	1	1	2		
5:25 PIVI 5:26 PM	1	1	2		1
5:20 PM	1	1	2		1
5:28 PM	3	0	3		1
5:29 PM	1	1	2		
5:30 PM	1	0	1		1

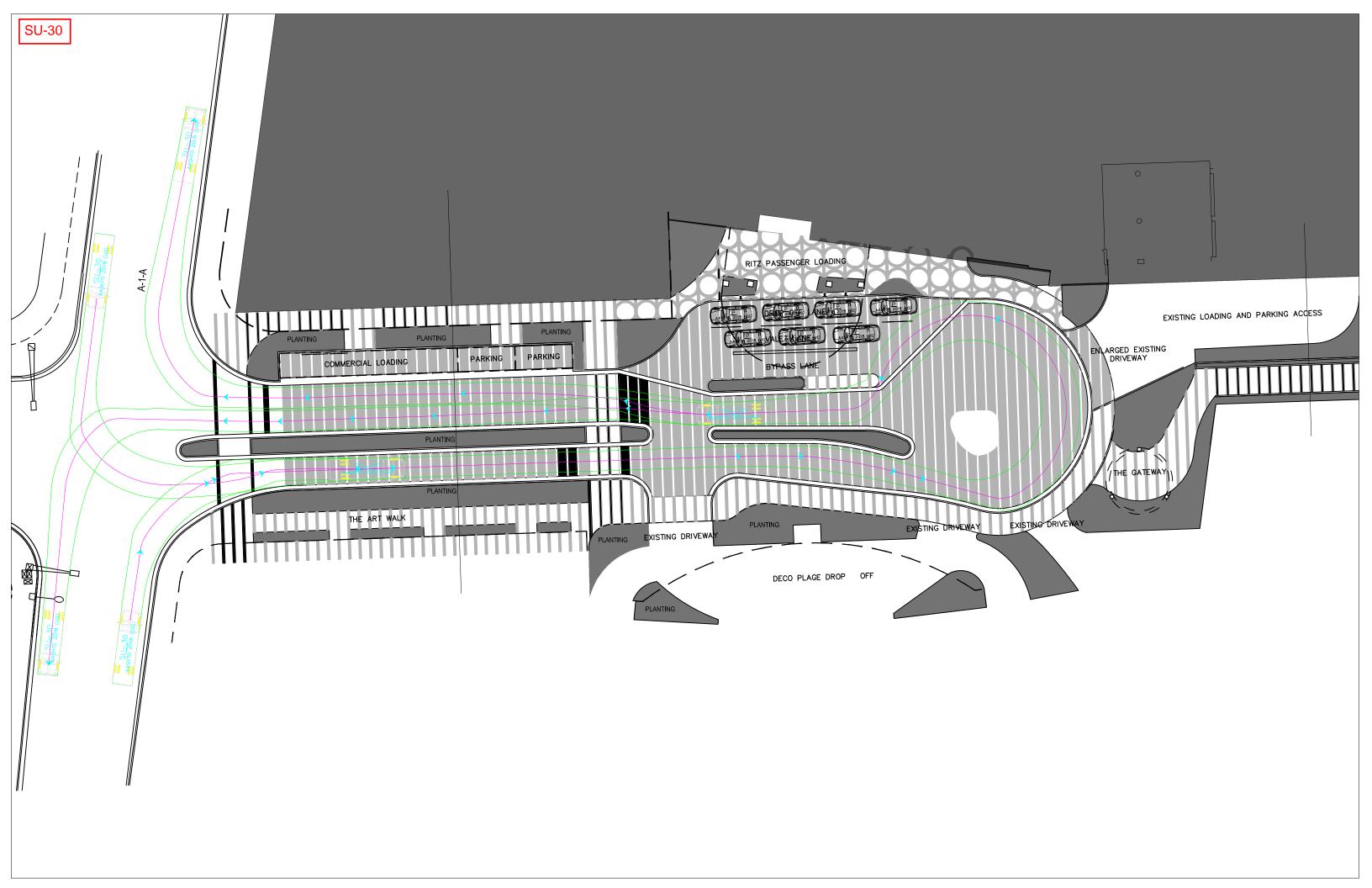
Time	Maximum Queue Observed	Valet Attendants required
4:55 PM	4	4
5:08 PM	4	4
5:09 PM	4	4
5:16 PM	4	4
5:17 PM	4	4
5:33 PM	4	4
5:40 PM	4	4

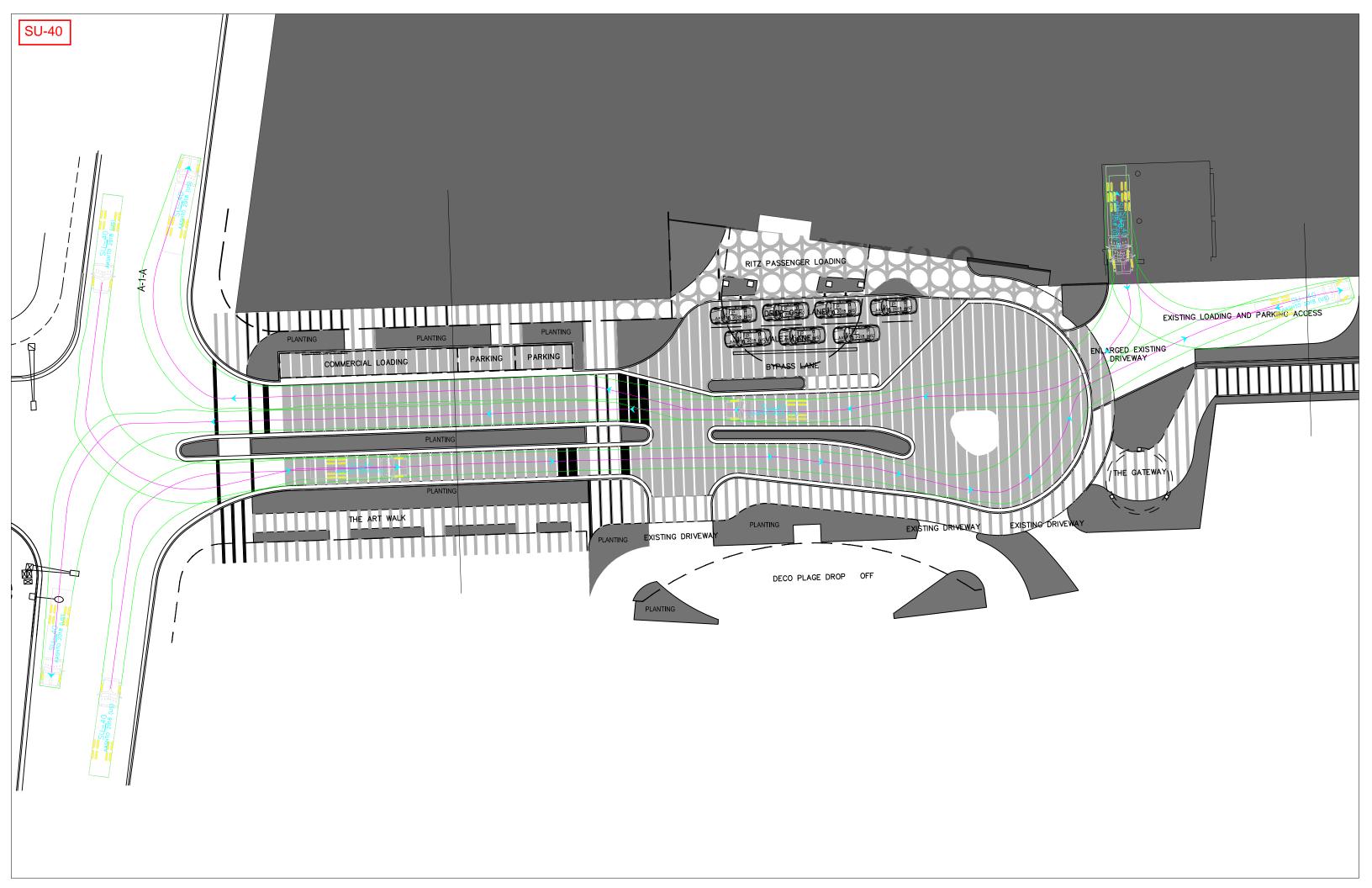
		Snapshot Queue Lengt	h (Number of Vehicles)		
Time	VALET RAMP (Inner)	VALET RAMP (Outer)	Total	Notes	
5:31 PM	0	1	1		
5:32 PM	2	1	3		
5:33 PM	3	1	4		< N
5:34 PM	3	0	3		
5:35 PM	2	0	2		
5:36 PM	2	1	3		
5:37 PM	3	0	3		
5:38 PM	2	1	3		
5:39 PM	1	1	2		
5:40 PM	3	1	4		< N
5:41 PM	2	1	3		┥゛
5:42 PM	0	1	1		
5:42 PM	0	1	1		
5:44 PM	0	1	1		-
			2	1	
5:45 PM	1	1			_
5:46 PM	1	1	2		_
5:47 PM	0	1	1		_
5:48 PM	0	1	1		
5:49 PM	0	1	1		
5:50 PM	0	0	0	ļ	_
5:51 PM	0	0	0	ļ	
5:52 PM	0	0	0		
5:53 PM	0	0	0		
5:54 PM	0	0	0		
5:55 PM	0	0	0		
5:56 PM	0	0	0		
5:57 PM	0	0	0		
5:58 PM	0	1	1		
5:59 PM	1	0	1		
6:00 PM	0	0	0		
6:01 PM	0	0	0		
6:02 PM	1	0	1		
6:03 PM	0	0	0		
6:04 PM	1	0	1		-
6:05 PM	1	0	1		-
6:06 PM	1	1	2		-
6:07 PM	1	0	1		
6:08 PM	1	0	1		
6:09 PM	1	0	1		-
					-
6:10 PM 6:11 PM	1	0	1	+	
6:11 PM 6:12 PM	1	0	1	+	_
				+	_
6:13 PM	0	0	0	1	
6:14 PM	1	0	1	1	_
6:15 PM	0	0	0		
6:16 PM	1	0	1		
6:17 PM	1	0	1		
6:18 PM	1	0	1	ļ	
6:19 PM	2	0	2		
6:20 PM	1	0	1		
6:21 PM	0	0	0		
6:22 PM	0	0	0		
6:23 PM	0	0	0		
6:24 PM	1	0	1	İ	
6:25 PM	0	0	0		_
6:26 PM	0	0	0	 	=
6:27 PM	0	0	0	1	-
6:28 PM	1	0	1	1	_
6:28 PIVI 6:29 PM	1	0	1	+	\dashv
0.27 MVI				1	
6:30 PM	0	0	0		

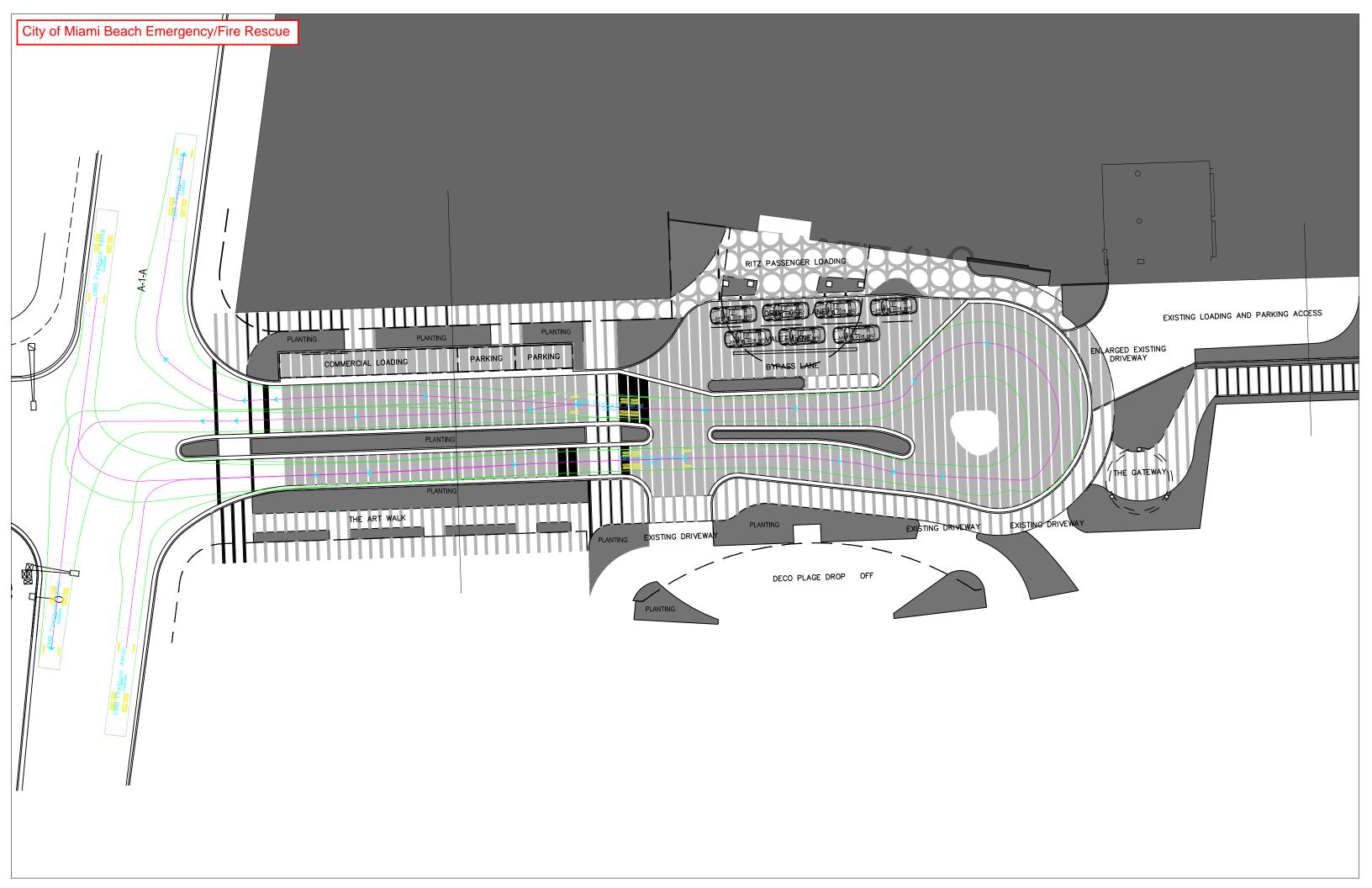
Max Queue Study

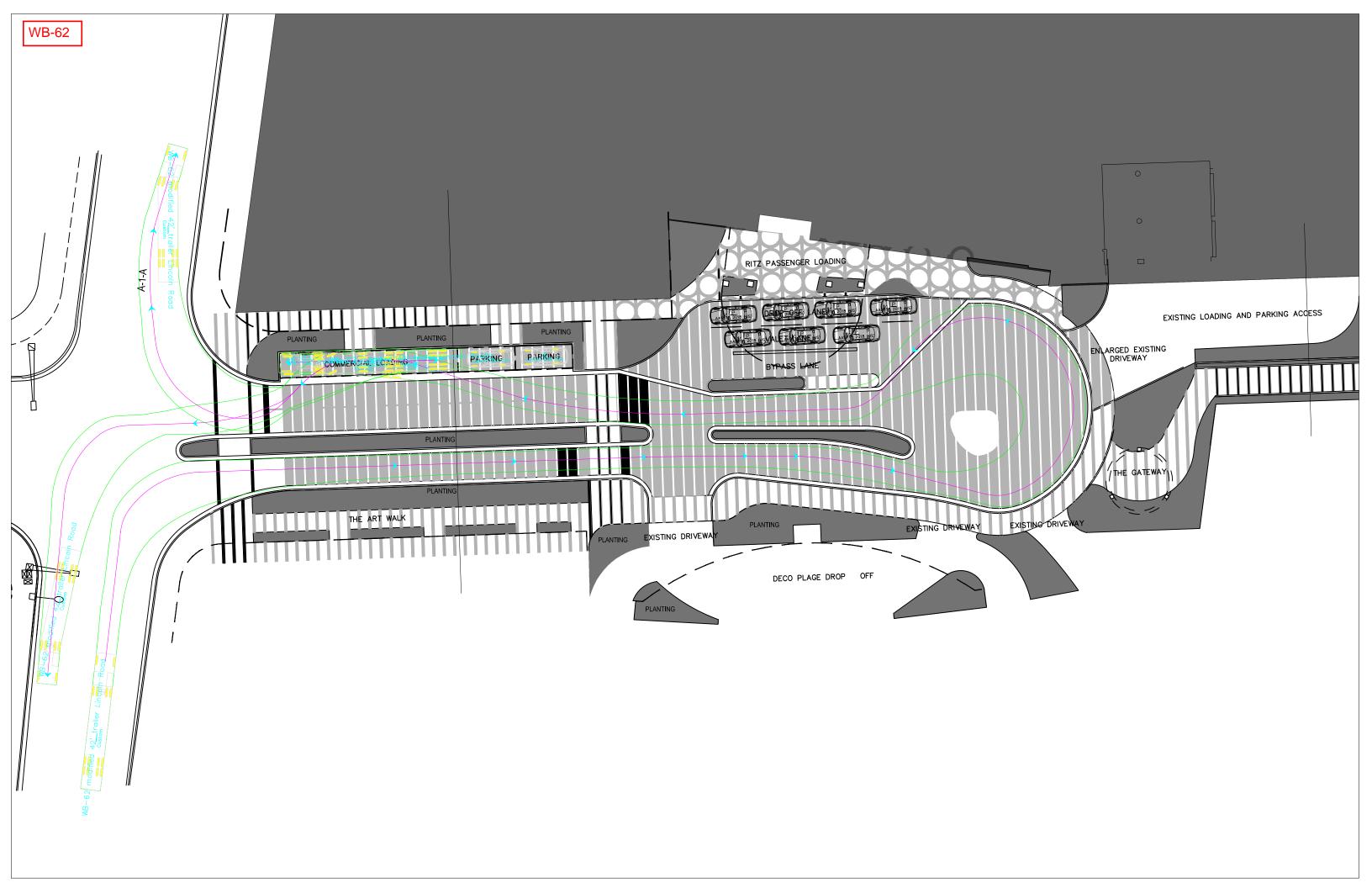
Location: The Ritz-Carlton, South Beach Hotel, 1 Lincoln Rd City: Miami Beach, FL Day: Saturday Date: 7/23/2022


		Max Queue Length (Number of Vehicles)		1
Time	VALET RAMP (Inner)	VALET RAMP (Outer)	Total	Notes	
4:30 PM	1	0	1		
4:31 PM	2	0	2		
4:32 PM	1	1	2		
4:33 PM	1	1	2		
4:34 PM	2	1	3		
4:35 PM	2	1	3		
4:36 PM	1	1	2		
4:37 PM	2	1	3		
4:38 PM	3	0	3		
4:39 PM	2	1	3		
4:40 PM	2	1	3		
4:41 PM	2	1	3		
4:42 PM	0	1	1		1
4:43 PM	0	1	1		_
4:44 PM	0	1	1		1
4:45 PM	0	1	1		4
4:46 PM	0	1	1	 	4
4:47 PM	0	1	1		4
4:48 PM	0	1	1	 	4
4:49 PM	1	1	2		4
4:50 PM	1	1	2	-	1
4:51 PM 4:52 PM	2 2	1	3	-	1
4:52 PIVI 4:53 PM	2	1	3	 	-
4:53 PIVI 4:54 PM	2	1	3	 	-
4:54 PIVI 4:55 PM	3	1	4		< MAX
4:56 PM	3	1	4	1	< MAX
4:57 PM	2	1	3		C IVIAA
4:58 PM	2	1	3	1	1
4:59 PM	2	1	3	1	-
5:00 PM	2	1	3	 	1
5:01 PM	1	1	2		1
5:02 PM	1	1	2		
5:03 PM	2	0	2		
5:04 PM	2	0	2		i
5:05 PM	3	0	3		
5:06 PM	3	0	3		ĺ
5:07 PM	3	0	3		
5:08 PM	3	1	4		< MAX
5:09 PM	3	1	4		< MAX
5:10 PM	3	1	4		< MAX
5:11 PM	2	1	3		1
5:12 PM	2	1	3]
5:13 PM	2	2	4		< MAX
5:14 PM	2	2	4		< MAX
5:15 PM	1	2	3]
5:16 PM	2	2	4		< MAX
5:17 PM	2	2	4		< MAX
5:18 PM	2	2	4		< MAX
5:19 PM	2	2	4		< MAX
5:20 PM	1	2	3		1
5:21 PM	2	1	3		Ţ
5:22 PM	2	1	3		1
5:23 PM	2	1	3		1
5:24 PM	2	1	3		1
5:25 PM	1	1	2		1
5:26 PM	1	1	2	ļ	1
5:27 PM	2	1	3		1
5:28 PM	3	1	4	<u> </u>	< MAX
5:29 PM	2	2	4		< MAX
5:30 PM	1	1	2		_


Time	Maximum Queue Observed	Valet Attendants required
4:55 PM	4	4
4:56 PM	4	4
5:08 PM	4	4
5:09 PM	4	4
5:10 PM	4	4
5:13 PM	4	4
5:14 PM	4	4
5:16 PM	4	4
5:17 PM	4	4
5:18 PM	4	4
5:19 PM	4	4
5:28 PM	4	4
5:29 PM	4	4
5:33 PM	4	4
5:34 PM	4	4
5:35 PM	4	4
5:37 PM	4	4
5:38 PM	4	4
5:40 PM	4	4
5:41 PM	4	4
6:07 PM	4	4


Time			(Number of Vehicles)		
	VALET RAMP (Inner)	VALET RAMP (Outer)	Total	Notes	
5:31 PM	1	0	1		Ц
5:32 PM	1	1	2		
5:33 PM	3	1	4		٧
5:34 PM	3	1	4		<
5:35 PM	3	1	4		-
5:36 PM	2	1	3		T
5:37 PM	3	1	4		-
5:38 PM	3	1	4		-
5:39 PM	2	1	3		7
5:40 PM	3	1	4		=
5:41 PM	3	1	4		_
5:42 PM	2	1	3		ŦÌ
5:43 PM	0	1	1		-
5:44 PM	0	1	1		-
					-
5:45 PM	2	1	3		_
5:46 PM	2	1	3		4
5:47 PM	1	1	2	-	4
5:48 PM	11	1	2		4
5:49 PM	0	1	1		_
5:50 PM	0	1	1		╝
5:51 PM	0	0	0		_Ī
5:52 PM	0	0	0		
5:53 PM	1	0	1		٦
5:54 PM	0	0	0		7
5:55 PM	1	0	1		╗
5:56 PM	1	0	1		7
5:57 PM	1	0	1		-
5:58 PM	0	1	1		7
5:59 PM	1	1	2		-
6:00 PM	1	0	1		4
					-
6:01 PM	0	0	0		_
6:02 PM	1	0	1		4
6:03 PM	1	0	1		4
6:04 PM	1	0	1		_
6:05 PM	1	0	1		
6:06 PM	1	1	2		
6:07 PM	2	2	4		<
6:08 PM	1	0	1		
6:09 PM	1	0	1		
6:10 PM	1	0	1		
6:11 PM	1	0	1		7
6:12 PM	1	0	1	Time to the second	7
6:13 PM	1	0	1	1	\dashv
6:14 PM	1	0	1	1	┪
6:15 PM	1	0	1	+	\dashv
		1		+	-
6:16 PM	1	0	1	+	-
6:17 PM	11	0	1	-	4
6:18 PM	11	0	1	-	4
6:19 PM	2	0	2		_
6:20 PM	2	0	2		╝
6:21 PM	1	0	1		
6:22 PM	1	0	1		1
6:23 PM	0	0	0		٦
6:24 PM	1	0	1		7
6:25 PM	1	0	1		7
6:26 PM	0	0	0		\neg
6:27 PM	0	0	0	+	\dashv
	1	0	1	+	-1
6:28 PM	1	0	1	+	-1
6:29 PM				<u> </u>	-
6:30 PM	0	0	0		
Totals	174	86	260		


Appendix K


Maneuverability Analysis

Appendix L

Parking Evaluation

RITZ	HOTEL		Sagam	ore
	FAR AREA			FAR AREA
asement	8,785 **		Basement	0 **
Fround	66,541		Ground	10,620
nd Floor	65,856		2nd Floor	11,726
rd Floor	60,169		3rd Floor	11,726
th Floor	44,244		4th Floor	11,726
th Floor	26,639		5th Floor	11,275
th Floor	24,397		6th Floor	4,218
th Floor	24,393		Totals	61,291
th Floor	24,397			
th Floor	24,327			
0th Floor	24,387			
1th Floor	24,383			
otals	418,518		Total FAR to remian	479,809
ITZ	LOT AREA	FAR RATIO	MAX FAR	FAR AVAILABLE
ER SURVEY	163.813	3	511.439	92.922*
	130/313			
AGAMORE	LOT AREA	FAR RATIO	MAX FAR	FAR AVAILABLE
ot AREA	44,848	2	89696	28,405
	FAR S	UMMARY		
Ri	tz FAR	Sagamore FAR	Total FAR Available	

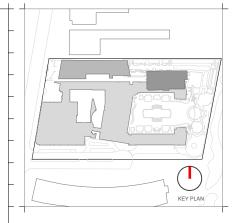
^{*} Includes 20,000 SF per Sec.142-246 (a)(3)

** 1/2 of the basemant included in the calcualtion

LEVELS	UNITS	COMMON AREA+BOH	AMENITIES	NEW BRIDGE CONNECTION	NEW RESIDENTIAL UNITS	FAR
ROOF		1,380 SQ.FT.				
LEVEL 15	7,216 SQ.FT.	1,395 SQ.FT.			4	8,989 SQ.FT.
LEVEL 14	7,216 SQ.FT.	1,395 SQ.FT.			4	8,989 SQ.FT.
LEVEL 13	7,216 SQ.FT.	1,395 SQ.FT.			4	8,989 SQ.FT
LEVEL 12	7,216 SQ.FT.	1,395 SQ.FT.			4	8,989 SQ.FT
LEVEL 11	7,183 SQ.FT.	1,430 SQ.FT.			4	8,991 SQ.FT
LEVEL 10	7,183 SQ.FT.	1,430 SQ.FT.			4	8,991 SQ.FT
LEVEL 9	7,183 SQ.FT.	1,430 SQ.FT.			4	8,991 SQ.FT
LEVEL 8	7,183 SQ.FT.	1,430 SQ.FT.			4	8,991 SQ.FT
LEVEL 7	7,181 SQ.FT.	1,430 SQ.FT.			4	8,989 SQ.FT
LEVEL 6	7,181 SQ.FT.	1,430 SQ.FT.			4	8,989 SQ.FT
LEVEL 5	-	1,596 SQ.FT.	7,607 SQ.FT.			9,581 SQ.FT
LEVEL 4	4,071 SQ.FT.	1,430 SQ.FT.			1	5,879 SQ.FT
LEVEL 3	3,838 SQ.FT.	1,670 SQ.FT.		512 SQ.FT.	1	6,398 SQ.FT
LEVEL 2	3,835 SQ.FT.	1,670 SQ.FT.		512 SQ.FT.		6,395 SQ.FT
LEVEL 1	-	2,798 SQ.FT.				3,176 SQ.FT
	83,702 SQ.FT.	24,704 SQ.FT.	7,607 SQ.FT.	1,024 SQ.FT.	42	121,327 SQ.F

PROPOSED PROJECT FAR				
RITZ	418,518 SQ.FT.			
SA GAM ORE	61,291 SQ.FT.			
TOW ER	121,327 SQ.FT.			
GRAND TOTAL	601,136 SQ.FT.			

		Seating / O.C.C Chart /	Parking		
		RITZ			
Floor Level	Room Name	Area	Existing Seats/Occupants	Proposed Seats/Occupants	Parking Required
	New Retail from 1999 Permit	2,819 SF			8
Ground	Lobby Bar	In Historic Ritz	51 Occupants	52 Occupants	N/A
Ground	New Beach Club Restaurant from 1999 Permit	In Historic Ritz	240 seats	240 seats	N/A
	Restaurant	In Historic Ritz	564 Occupants	565 Occupants	N/A
Level 2	All Day Restaurant/Pool Deck	In Historic Ritz	203 Seats	204 Seats	N/A
Totals					
		SAGAMORE			
Floor Level	Room Name	Area	Existing Seats/Occupants	Proposed Seats/Occupants	Parking Required
	Book Store/Coffee Shop	In Historic Sagamore	N/a	10 Seats	N/A
Ground	Cigar Lounge	In Historic Sagamore	N/A	20 Seats	N/A
Ground	Pool Restaurant	In Historic Sagamore	N/A		
	Restaurant	In Historic Sagamore	142 Seats	60 Seats	N/A
Totals					
		UNIT PARKING REQUIRE	MENTS		
Unit Type	Proposed Density	Area	Existing Seats/Occupants		Parking Required
Hotel (Ritz)	374 Existing	New rooms from 1999 Permit	N/A	.5/unit x 173	87
Hotel (Sagamore)	60	In Historic Sagamore	N/A	N/A	N/A
550-999 SF	0	New Tower	N/A	1	0
1000-1200 SF	12	New Tower	N/A	1.5	18
+ 1200 SF	38	New Tower	N/A	2	76
Total					189


MIAMIBEACH

Planning Department, 1700 Convention Center Drive Miami Beach, Florida 33139, www.miamibeachfl.gov 305.673.7550

		Λ	AULTIFAMILY - COMMERCIA	L - ZONING DATA SHEET	
ITEA	Λ				
#	Zoning Information				
1	Address:	1 Lincoln Road, 1671	Collins Ave, Miami Beach, F	FL, 33139	
2	Board and File numbers:				
3	Folio number(s):	02-3234-019-0520 02	2-3234-019-0530 02-3234-0	19-0570	
4	Year constructed:		Zoning District:	RM-3 HIGH DENSITY MULTI FAMILY RESIDENTIAL	
5	Historic Designation	Local: Ocean Drive/	Collins Ave Historic District		
		National: Miami Bead	ch Architectural District		
6 7	Flood Zone:	Flood Zone AE & Floo	od Zone X		
7	Base Flood Elevation:	8'-0" NGVD	Grade Value in NGVD:	6.83' NGVD	
8	Design Flood Elevation:	13'-0" NGVD			
9	Max. Wave Crest Elevation:	15'-0" NGVD			
10	Adjusted grade (Flood+Grade/2)	N/A			
11	Lot Area:		44,848 SF/ 1 LINCOLN ROAD) = <u>163,813 SF</u>	208,661 SFTOTAL / 4.79 AC
12	Lot Width	350.28'	Lot Depth:	594.47'	
13	Minimum Unit Size	550 SF	Average Unit Size:	2,000 SF	
14	Existing User	HOTEL / RESTAURANT	Proposed Use:	HOTEL/ RESIDENTIAL / RESTAURANT / RETAIL	
		ALLOWED	EXISTING	PROPOSED	DEFICIENCIES
10	Height				-
	Architectural District-New Construction	200'-0'' *		178'-0'	
	Ground Floor Additions Sec. 142-246(e), (3)	25'-0" *		23'-8"	
11	Number of Stories				=
	Architectural District-New Construction	20 STORIES		15 STORY TOWER	
1	Cround Floor Additions	2 CT ODIEC			

	PARKING DISTRICT No 1	REQUIRED	EXISTING	PROPOSED	DEFICIENCIES
	** See Survey for existing conditions				
	* Sec. 142-246(f)(1)				
34	Rear Setback (East):	50' from BL	N/A	N/A	
3	Side Setback (Lincoln Rd/ South):	5'-0"	N/A	N/A	
2	Side Setback (Interior/ North):	5'-0"	N/A	N/A	
1	Front Setback (Collins ave/ West):	N/A	N/A	N/A	
	Detached Additions at 25 FT max height				1
0	Rear Setback (East):	100'-0"	N/A	94'-0" BALCONY PROJECTION / 100'-0" HABITABLE SPACE	-
_	Side Setback (Lincoln Rd/ South):		N/A		-
8_ 9	Side Setback (Interior/ North):	75'-0'' 75'-0	N/A	37'-0" BALCONY PRJECTION / 43'-0" HABITABLE SPACE 231'-0"	-
/_	Front Setback (Collins ave/West):	100'-0"	N/A	340'-0"	-
_	Tower Oceanfront*				1
6	Rear Setback (East):	100'-0"	45'-8" RITZ	45'-8" RITZ	EXISTING STRUCTURES TO REM
5	Side Setback (Lincoln Rd/ South):	28'-0"	49'-6" RITZ	49'-6" RITZ	EXISTING STRUCTURES TO REM
4	Side Setback (Interior/ North):	28'-0"	7'4" SAGAMORE	5'-0" SAGAMORE	EXISTING STRUCTURES TO REM.
3	Front Setback (Collins ave/West):	20'-0"	56'-9" RITZ	56'-9" RITZ	EXISTING STRUCTURES TO REMA
	Subterranean/ Pedestal Oceanfront/ LVL 0-5		·	·	
2	Rear Setback (East):	50' from BL	N/A	N/A	-
1	Side Setback (Lincoln Rd/ South):	17'-6"	N/A	N/A	_
)	Side Setback (Interior/ North):	17'-6"	N/A	N/A	-
_	Front Setback (Collins ave/West):	20'-0"	N/A	N/A	_
	At-Grade Parking Lot	KEQUIKED	EXISTING	TROTOSED	DETICIENCIES
	SETBACKS	REQUIRED	EXISTING	PROPOSED	DEFICIENCIES
	* Sec. 142-1161 Height regulation exceptions.				
8	Occupancy Load	N/A	N/A	REFER TO SEATING/O.C.C CHART	_
7	Number of Seats	N/A	N/A	REFER TO SEATING/O.C.C CHART	-
6	Number of Units Hotel	N/A	477	434	-
5	Number of Units Residential	N/A	N/A	50 UNITS	_
4	Square Footage by use	N/A	N/A	N/A	_
3	Gross Square Footage	N/A	N/A	001,13331	_
_	FAR: 1 Lincoln Road 3.0 + 1671 Collins 2.0	601,135 SF	479.826 SF	601,135 SF	
_	Ground Floor Additions	2 STORIES			

34	Rear Setback (East):	50' from BL	N/A	N/A	
	* Sec. 142-246(f)(1)				
	** See Survey for existing conditions				
	PARKING DISTRICT No 1	REQUIRED	EXISTING	PROPOSED	DEFICIENCIES
31	Parking District No 1				
32	Total # of parking spaces		247	236	(fee in lieu of parking to be paid)
33	# of parking spaces per use (Provide a separate chart for a breakdown calculation)	SEE CHART PROVIDED	N/A		-
	Valet Drop off and pick up		N/A	ON SITE	_
35	Loading zones and Trash collection areas		N/A	ONSITE	_
36	Bike Racks	129	N/A	129	-
37	Is this a contributing building?			YES	
38	Located within a Local Historic District?			YES	
	Notes: If not applicable write N/A				
	Notes: FAR calculated per Ordinance ZBA2019-009	7			
	* SEE PARKING REQUIREMENTS (A)				

Rev.	Date	Rev.	Date
KOBI KARP AIA, AND MAY N	N MATERIAL APPEARING HERE DT BE DUPLICATED, USED, OR OBI KARP ARCHITECTURE & IN	DISCLOSED WITHOUT THE	NAL AND UNPUBLISHED WORK OF EXPRESS WRITTEN CONSENT OF c) 2020

Ritz-Sagamore 1 Lincoln Road Miami Beach, FL 33139

Owner: Name Address Address Tel:	Di Lido Beach Resort LLC. EBJ Sagamore LLC. Sobe Sky Development LLC. Di Lido Beach Resort Hotel Corporation
Email	

STUDIO MUNGE. 25 Wingold Avenue, Toronto, ON Canada M6B 1P8 416.588.1668

LANDSCAPE ARCHITECT Naturalficial. 6915 Red Road, Suite 224 Coral Gables, FL 33143 786.717.6564

Desimore Consulting Engineering 800 Brickell Avenue, 6th Floor Miami, FL 33131 305.441.0755

Architect:
Kobi Karp Architecture and Interior Design, Inc. 571 NW 28TH ST
Miami, Florida 33137 USA
Tel: 41(305) 573 3188
Fax: +1(305) 573 3766

KOBI KARP Lic. # AR0012578

PROJECT DATA

RITZ-SAGAMORE

Date	03-07-2022	Sheet No.
Scale	-	A0.03
Project	2018	