ONE ISLAND OPERATIONAL PLAN

The project consists of office, and restaurant or food service uses, along with the existing marina, as permitted in the I-1 zoning district (the "Project"). The operational criteria for the Project is provided below:

Office

- 1. Principal hours of operation shall be during customary business hours, 7:00 AM to 6:00 PM, Monday through Friday. After-hours access will be permitted to authorized individuals via a controlled access security system (i.e., access cards or other comparable system).
- 2. Maximum occupant content of approximately ±1,425 persons for office floors, not including lobby.
- 3. Maximum number of employees allowed in the offices at one time per floor shall be ±233.

Restaurant/Food Service

- 4. Approximately ±60 outdoor seats plus additional patron area.
- 5. Maximum occupant content of approximately ±299 persons, if permitted by the Fire Marshal.
- 6. Maximum hours of operation shall be limited to 7:00 AM to 3:00 AM, Sunday through Saturday.
- 7. Maximum of ±50 employees per shift, during normal operations (not including special events).
- 8. Special Events may occur on the premises, subject to City ordinances, rules or regulations, and may exceed the hours of operation and occupancy loads specified herein, if permitted by the Fire Marshal.

Marina

- 9. Maximum hours of operation shall be 24 hours a day, seven (7) days per week.
- 10. Maximum of seven (7) wet slips.
- 11. Maximum of ±10 employees per shift, not including private yacht crew members.

General Operations; Deliveries; Loading; Trash; Security and Valet

- 12. All on-site trash disposal, and other equipment and supplies shall be physically blocked from view and noise limited by a wall and roofed enclosures within the Property.
- 13. All trash rooms shall be air conditioned and enclosed.
- 14. Trash bins shall be wheeled out via the service elevator to main dumpster(s) located in the loading dock area. Trash removal from main dumpster(s) shall take place non-peak business hours (customary peak business hours are between 7-10 AM and 4-6 PM).

- 15. Deliveries, loading, trash removal, and waste collection shall occur on the areas designated for loading and off-street loading areas identified on Sheet A1-01, and during non-peak business hours (customary peak business hours are between 7-10 AM and 4-6 PM).
- 16. There shall be security personnel, on-site, monitoring the garage and premises during all hours of operation.
- 17. Video surveillance shall be provided to keep occupants, tenants, employees, visitors, and assets safe.
- 18. The minimum parking required by the land development regulations shall be provided.
- 19. 61 parking spaces will be reserved for valet operations, which will be available to restaurant/food service patrons, as well as office employees and visitors.
- 20. Valet pick-up and delivery of vehicles will be located in the designated area, as shown in the Plans.
- 21. Valet or loading activities shall not block vehicle travel within the property, or garage driveways at any time.
- 22. Signs to minimize vehicle conflict in the driveways in and out of the property shall be posted in appropriate locations.

Terminal Island MIAMIBEACH

Traffic Study

Terminal Island

Prepared By: David Plummer & Associates

Prepared For: Related Group

Prepared In: November 2020

DPA Job #: 20129

TABLE OF CONTENTS

LIST (OF EXHIBITS	i
EXEC	UTIVE SUMMARY	ii
1.0 IN	FRODUCTION	1
1.1	Project Background	1
1.2	Study Objective	1
1.3	Study Area and Methodology	3
1.4	Project Site Information	∠
2.0 EX	ISTING CONDITIONS	5
2.1	Roadway Characteristics	5
2.2	Traffic Counts	<i>6</i>
2.3	Intersection Data	<i>є</i>
2.4	Intersection Capacity Analysis	9
3.0 PL	ANNED AND PROGRAMMED ROADWAY IMPROVEMENTS	11
4.0 FU	TURE TRAFFIC CONDITIONS	12
4.1	Background Traffic and Committed Developments	12
4.2	Future without Project Intersection Capacity Analysis	12
4.3	Project Trip Generation	15
4.4	Project Trip Assignment	17
4.5	Future with Project Intersection Capacity Analysis	20
5.0 CII	RCULATION PLAN	24
6.0 TR	ANSPORTATION MANAGEMENT PLAN	27
7 0 CO	NCLUSIONS	20

LIST OF EXHIBITS

Exhibit 1: Location Map	2
Exhibit 2: Existing AM and PM Peak Hour Traffic Volumes	7
Exhibit 3: Existing Lane Configurations	8
Exhibit 4: Existing Intersection Capacity Analysis	10
Exhibit 5: Future without Project AM and PM Peak Hour Traffic Volumes	13
Exhibit 6: Future without Project Intersection Capacity Analysis	14
Exhibit 7: Project Trip Generation Summary	16
Exhibit 8: Cardinal Distribution.	17
Exhibit 9: Project Trip Distribution	18
Exhibit 10: Project Trip Assignment	19
Exhibit 11: Future with Project AM and PM Peak Hour Traffic Volumes	21
Exhibit 12: Future with Project Intersection Capacity Analysis	22
Exhibit 13: Projected 95 th Percentile Back of Queues and Existing Storage Length (Feet)	23
Exhibit 14: Circulation Plan – Pedestrian	25
Exhibit 15: Circulation Plan – Transportation	26
Appendix A: Site Plan	
Appendix B: Methodology	
Appendix C: Traffic Data	
Appendix D: Intersection Capacity Analysis Worksheets	
Appendix E: Committed Development Documentations	
Appendix F: Trip Generation	
Appendix G: Transit Information	

EXECUTIVE SUMMARY

The project is located at 120 MacArthur Causeway (Terminal Island) in Miami Beach, Florida. The project proposes a new 160,932 SF office building and 7,234 SF restaurant. The existing six boat berth marina will remain. Access to the site will be provided via the internal roadway on Terminal Island which provides access to MacArthur Causeway. For the purpose of this traffic study, project build-out is anticipated by 2022.

An assessment of the traffic impacts associated with the proposed Terminal Island project was performed in accordance with the requirements of the City of Miami Beach. The following intersections are currently operating and projected to operate at acceptable overall LOS:

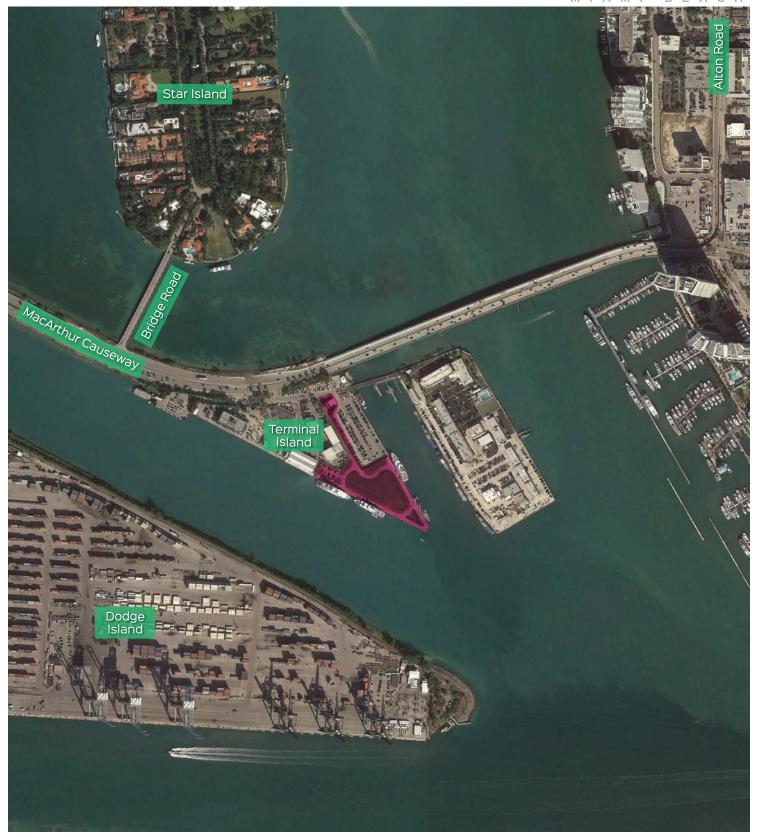
- MacArthur Causeway / Bridge Road
- MacArthur Causeway / Terminal Isle (AM peak hour)
- Alton Road / 5th Street

As with existing and future without project conditions, the eastbound and westbound approaches of Terminal Isle at the intersection with MacArthur Causeway continue to experience delays during both the morning and afternoon peak hours. The westbound approach of the MacArthur Causeway at the intersection with Terminal Isle also continues to experience delays during the afternoon peak hour and the eastbound approach is projected to experience delays during the morning peak hour. It should be noted that these are existing conditions and the project represents less than 3% of the total projected intersection volume during the morning and afternoon peak hours.

As with the existing and future without project conditions, the southbound approach of the MacArthur Causeway / Bridge Road intersection continues to experience delays during both the morning and afternoon peak hours. The northbound approach of the Alton Road and 5th Street intersection also continues to experience delays during both the morning and afternoon peak hours. This may be due to the fact that the county gives priority to vehicles travelling east/west through this area, therefore, accepting delays on cross-streets. The project driveway was analyzed and the results show adequate operations.

As part of the study, a mobility and circulation plan was completed. The plan shows that the project area is currently served by four Miami-Dade Transit bus routes and a Miami Beach Trolley route. The project is located in an area that provides sidewalk connectivity, clearly marked crosswalks, signalized intersections that provide pedestrian signals, and bike lanes. These conditions encourage the use of other modes of transportation and reduce the vehicular impact on the roadway network.

1.0 INTRODUCTION


1.1 Project Background

The project is located at 120 MacArthur Causeway (Terminal Island) in Miami Beach, Florida (see Exhibit 1). The project proposes a new 160,932 SF office building and a 7,234 SF restaurant. The existing six boat berth marina will remain. Access to the site will be provided via the internal roadway on Terminal Island which provides access to MacArthur Causeway. The proposed site plan is included in Appendix A. For the purpose of this traffic study, project build-out is anticipated by 2022.

1.2 Study Objective

The project will be applying for permits from the City. As part of this permit, the City of Miami Beach will require traffic related studies. The purpose of this study is to assess the traffic impacts associated with the proposed project and to conduct a mobility and circulation analysis.

Project Location

Exhibit 1 Location Map

1.3 Study Area and Methodology

The approved methodology is included in Appendix B. The following is a brief description of the study components and analysis undertaken:

- Traffic Counts (Intersections) Available turning movement counts collected during the AM (7 9) and PM (4 6) peak hour conditions of a regular weekday were used to analyze the following intersections:
 - MacArthur Causeway / Bridge Road (Star Island) (Signalized)
 - MacArthur Causeway / Terminal Isle (Signalized)
 - Alton Road / 5th Street (Signalized)
 - Terminal Isle / Project Driveway (Un-signalized)
- <u>Signal Location and Timing</u> Existing signal phasing and timing for the signalized intersections were obtained from Miami-Dade County. Signal timing plans are included in Appendix C.
- Future Transportation Projects The 2020 <u>Transportation Improvement Program</u> (TIP) and the <u>2045 Long Range Transportation Plan</u> (LRTP) were reviewed to include future transportation projects which add capacity to the network.
- <u>Background Traffic</u> Available Florida Department of Transportation (FDOT) and Miami-Dade County (MDC) traffic counts were consulted to determine a growth factor consistent with historical annual growth in the area. The growth factor was applied to the existing traffic volumes to establish background traffic.
- <u>Committed Developments</u> Future traffic associated with the committed developments in the vicinity of the project site was considered in the analysis.
- Project Trip Generation Trip generation for the project was estimated using trip generation information published by the Institute of Transportation Engineers (ITE) Trip Generation Manual, 10th Edition and site-specific data. Based on U.S. Census Bureau data, a 12.9% deduction for other modes of transportation may be applied. However, for a conservative analysis and as discussed with the City reviewer, a 3% reduction was used for other modes of transportations. Furthermore as discussed with the City reviewer, a 10% reduction was used for pass-by applied to restaurant trips.

- Project Trip Distribution / Trip Assignment Net new external project vehicular trips were assigned to the adjacent street network using the appropriate cardinal distribution from the Miami-Dade 2040 Long Range Transportation Plan, published by the Metropolitan Planning Organization. Area traffic patterns were considered when assigning project trips. A figure showing all of the assigned project trips to the adjacent transportation network was provided as part of the study.
- <u>Future Traffic Conditions</u> Project traffic was combined with background traffic and committed development traffic to obtain future conditions with project. Intersection capacity analyses were performed for existing and future with project conditions.
- <u>Circulation Analysis / Plan</u> A circulation plan is provided depicting the project site, driveways, location of street signs/signals, crosswalks, sidewalks, location of bus facilities, and bike facilities in the vicinity of this project.
- An extensive Transportation Demand Management plan (TDM) will be included in the report.

1.4 Project Site Information

The project is located at 120 MacArthur Causeway (Terminal Island) in Miami Beach, Florida. The project proposes a new 160,932 SF office building and a 7,234 SF restaurant. The existing six boat berth marina will remain. Access to the site will be provided via the internal roadway on Terminal Island which provides access to MacArthur Causeway.

2.0 EXISTING CONDITIONS

Data collection for this study included roadway characteristics, intersection traffic counts, signal timing, and seasonal adjustment factors. The data collection effort is described in the following sections.

2.1 Roadway Characteristics

MacArthur Causeway (SR A1A)

MacArthur Causeway is a principal arterial that provides east/west access. It is the only roadway connecting Terminal Island, Star Island, Palm Island, Hibiscus Island, and Watson Island to the mainland and the Miami Beach Island. Within the study area, the MacArthur Causeway is a sixlane, two-way, divided roadway with exclusive left-turn and right-turn lanes at major intersections. The causeway also provides merge lanes at intersections to incorporate left turning vehicles into the roadway. Bike lanes are provided along both sides of the roadway. FDOT has jurisdiction over this portion of the MacArthur Causeway. The posted speed limit is 45 mph.

Terminal Isle

Terminal Isle is the perimeter road within Terminal Island. The road is a two-lane, two-way undivided roadway providing access to the FPL Miami Beach Plant, the Fisher Island Ferry Terminal and the US Coast Guard Station. The City of Miami Beach has jurisdiction over Terminal Isle.

Bridge Road

Bridge Road is a two-lane, two-way undivided roadway bridge connecting Star Island to MacArthur Causeway. Bike lanes are provided along both sides of the bridge. The City of Miami Beach has jurisdiction over Bridge Road.

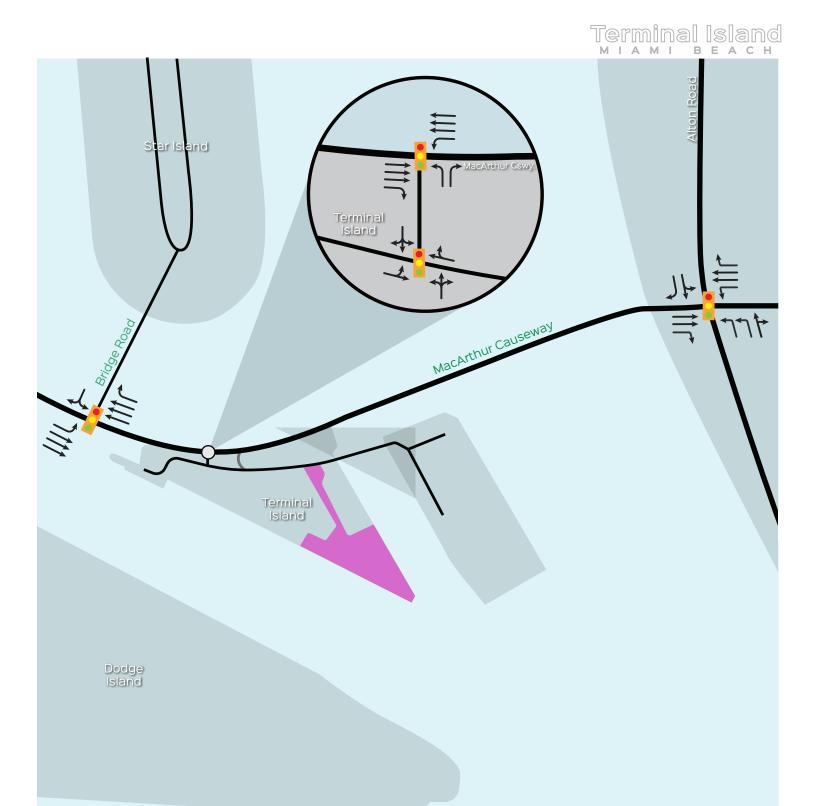
Alton Road

Alton Road north of 5th Street is a minor arterial that provides north/south access all along the City of Miami Beach. South of 5th Street, Alton Road is a collector roadway. Within the study area, Alton Road is a two-way, four-lane divided roadway. The posted speed limit is 35 mph.

There is on-street parking provided on portions of the roadway. Bike lanes are provided along both sides of Alton Road south of 4th Street. The City of Miami Beach has jurisdiction over Alton Road south of 5th Street.

5th Street

5th Street is a principal arterial that runs east/west across the City of Miami Beach between east of Collins Avenue and Alton Road. The roadway is a two-way, six-lane divided road. There is no on-street parking provided. Bike lanes are provided along both sides of 5th Street east of Lenox Avenue. FDOT has jurisdiction over 5th Street. The posted speed limit is 35mph.


2.2 Traffic Counts

Field TMC's could not be collected as traffic volumes and patterns are currently affected by Miami-Dade's stay at home order due to the Covid-19 pandemic. Consistent with the methodology submitted and approved by the City, peak hour vehicle turning movement counts were provided by the City and obtained from an FDOT Arterial Analysis of SR AIA / MacArthur Causeway with data from November 2017. A 0.5% growth rate was used to grow counts to existing (2020) traffic conditions. Traffic volume documentation is provided in Appendix C. Existing volumes at the intersection are graphically portrayed in Exhibit 2.

2.3 Intersection Data

Existing signal phasing and timing for all the intersections were obtained from Miami-Dade County. This information was used for the signal phasing and timing required for the intersection capacity analysis and can be seen in Appendix C. A field survey was conducted to obtain the intersection lane configurations to be used in the intersection analysis. Exhibit 3 shows the existing lane configurations at the analyzed intersections.

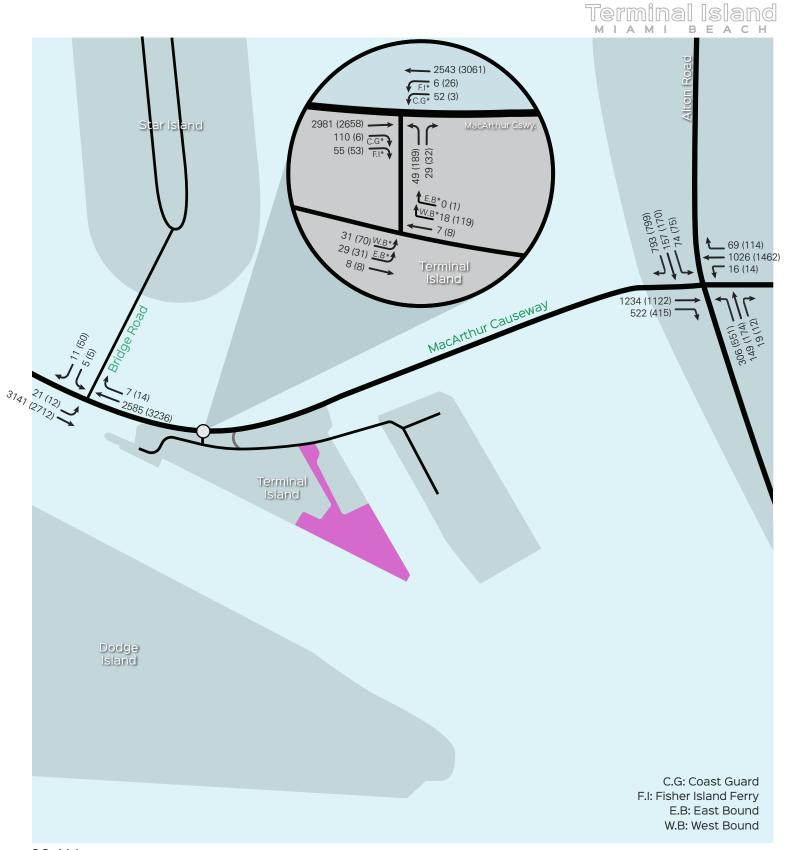


Exhibit 3

Existing Lane Configurations

00 AM (00) PM

Project Location

Exhibit 2

Existing AM & PM Peak Traffic Volumes

2.4 Intersection Capacity Analysis

The Synchro Software, based on procedures of the <u>Highway Capacity Manual 6th Edition</u>, was used to perform intersection capacity analysis at the analyzed intersections. Synchro is a macroscopic analysis and optimization software application that implements the intersection capacity utilization method for determining intersection capacity. Results for the existing conditions intersection analysis show that the overall LOS for the following intersections currently operate at acceptable LOS:

- MacArthur Causeway / Bridge Road
- MacArthur Causeway / Terminal Isle (AM peak hour)
- Alton Road / 5th Street

The eastbound and westbound approaches of the Terminal Isle at the intersection with MacArthur Causeway currently experience delays during both the morning and afternoon peak hours. The westbound approach of the MacArthur Causeway at the intersection with Terminal Isle currently experience delays during the afternoon peak hour. The southbound approach of the MacArthur Causeway / Bridge Road intersection currently experience delays during both the morning and afternoon peak hours. The northbound approach of the Alton Road and 5th Street intersection also currently experience delays during both the morning and afternoon peak hours. This may be due to the fact that the county gives priority to vehicles travelling east/west through this area, therefore, accepting delays on cross-streets. Exhibit 4 shows the resulting LOS for the existing AM and PM peak hour conditions. Analysis worksheets are included in Appendix D.

Exhibit 4: Existing Intersection Capacity Analysis Weekday AM and PM Peak Hour Conditions

Intersection	Signalized/ Un-signalized	Direction	AM Peak LOS	Delay (Sec)	PM Peak LOS	Delay (Sec)
MacArthur Causeway / Bridge Road (Star Island)	S	SB EB WB Overall	F A A	87.5 1.8 6.1 4.0	F A A	80.4 1.5 4.4 3.8
MacArthur Causeway / Terminal Isle	S	NB EBSRA1A WBSRA1A EBTerminal WBTerminal	A D B F E	0.0 45.1 12.5 86.4 75.5 31.2	A E F E E	0.0 63.9 90.8 84.1 64.1 78.0
Alton Road / 5 th Street	S	NB SB EB WB Overall	F C C C	88.6 22.1 32.8 23.9 34.2	F B C C	236.2 19.2 28.5 31.6 58.7

Source: David Plummer & Associates

3.0 PLANNED AND PROGRAMMED ROADWAY IMPROVEMENTS

The 2020 Miami-Dade County <u>Transportation Improvement Program</u> (TIP) and the <u>2045 Long Range Transportation Program</u> (LRTP) were reviewed to identify any programmed project within the limits of the established study area. These documents show the following projects within the study area:

DT2511563 – Port of Miami Tunnel – New Toad Construction from Port of Miami to SR 836 / I-395

DT2516881 – SR 836/I-395 – Bridge, replace and add lanes from West of I-95 to MacArthur Causeway Bridge

DT4401691 – SR A1A/Collins Avenue Signalized Intersection Lighting from Fountain Street to 17th Street

DT4401781 – SR 907/Alton Road Signalized Intersection Lighting from 6th Street to 20th Street

DT4434321 – SR A1A/MacArthur Causeway Pedestrian/ Bicycle Bike Path Trial from SR-5/Biscayne Blvd to SR-997/Alton Road

 $\textbf{PW0001010} - \textbf{Alton Road and 4}^{th} \ \textbf{Street Traffic Signal}$

TA4387491 – DTPW / MDT Transit Connector PTO Study Express bus link downtown Miami to Miami Beach

MDT135 – Beach Corridor – Rapid transit from Midtown Miami/Downtown to Miami Beach Convention Center

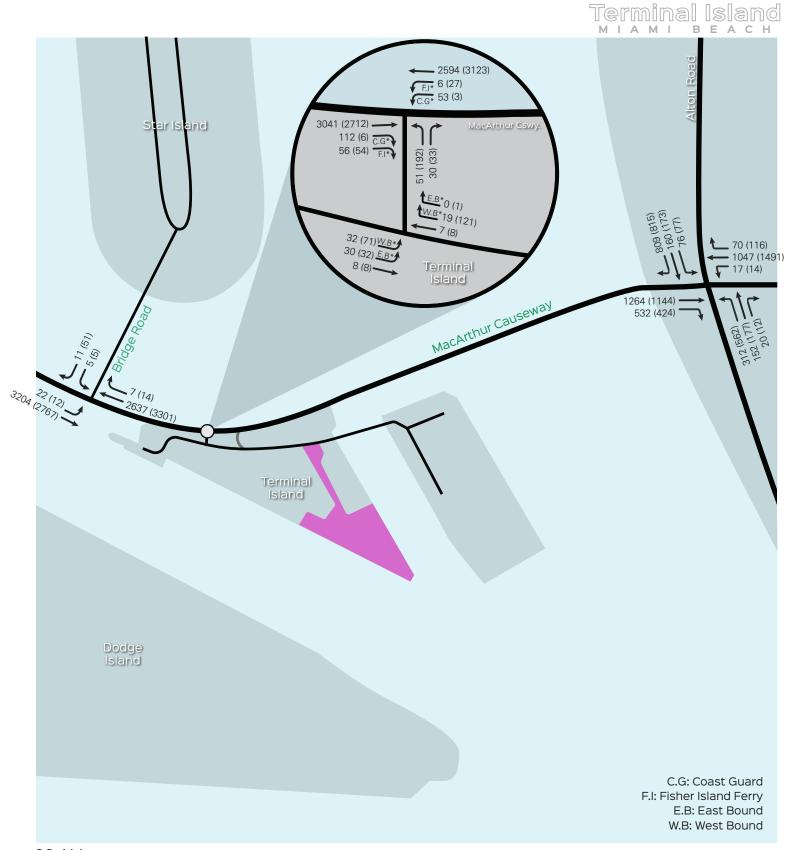
MDT231 – Beach Express South – Implement bus express rapid transit service from downtown intermodal terminal to Miami Beach convention Center

These documents are within the study area however, show no officially programmed or planned capacity improvement projects at the study intersections prior to completion of the proposed project. Roadway project documentation is included in Appendix E.

4.0 FUTURE TRAFFIC CONDITIONS

4.1 Background Traffic and Committed Developments

Average Daily Traffic (ADT) counts published by FDOT were reviewed to determine historic growth in the area. This analysis indicated that the annual growth rate is -0.5% in the past five years and -0.8% in the past ten years. However, for a conservative analysis, an annual growth rate of 0.5% was used to project future background traffic conditions. In order to account for traffic associated with any additional committed developments a 0.5% growth rate was added in the analysis. Historic growth rate documentation is included in Appendix C.


4.2 Future without Project Intersection Capacity Analysis

Future without project turning movement volumes were obtained by applying two additional years of background growth to the existing network. Exhibit 5 shows the projected AM and PM peak hour turning movement counts for future without project conditions. Results for intersection analysis for future without project conditions show that the overall LOS for the following intersections continue to operate at acceptable LOS:

- MacArthur Causeway / Bridge Road
- MacArthur Causeway / Terminal Isle (AM peak hour)
- Alton Road / 5th Street

As with existing conditions, the eastbound and westbound approaches of the Terminal Isle at the intersection with MacArthur Causeway continue to experience delays during both the morning and afternoon peak hours. The eastbound and westbound approaches of the MacArthur Causeway at the intersection with Terminal Isle are also projected to experience delays during the afternoon peak hour. As with existing conditions, the southbound approach of the MacArthur Causeway / Bridge Road intersection continues to experience delays during both the morning and afternoon peak hours. The northbound approach of the Alton Road and 5th Street intersection also continues to experience delays during both the morning and afternoon peak hours. Exhibit 6 shows the resulting LOS for the future without project conditions during the AM and PM peak hours. Analysis worksheets are included in Appendix D.

00 AM (00) PM

Project Location

Exhibit 5

Future Without Project AM and PM Peak Hour Traffic Volumes

Exhibit 6: Future without Project Intersection Capacity Analysis Weekday AM and PM Peak Hour Conditions

Intersection	Signalized/ Un-signalized	Direction	AM Peak LOS	Delay (Sec)	PM Peak LOS	Delay (Sec)
MacArthur Causeway / Bridge Road (Star Island)	S	SB EB WB Overall	F A A	87.5 1.7 5.9 3.8	F A A	80.3 1.5 7.0 5.2
MacArthur Causeway / Terminal Isle	S	NB EBSRA1A WBSRA1A EBTerminal WBTerminal	A D B F E	0.0 51.0 13.8 86.9 75.5 35.0	A E F E F	0.0 73.9 101.7 84.1 64.0 88.1
Alton Road / 5 th Street	S	NB SB EB WB Overall	F C C C	89.1 22.2 33.8 24.4 34. 7	F B C C	246.9 19.6 29.1 33.0 61.1

Source: David Plummer & Associates

4.3 Project Trip Generation

Trip generation for the proposed project was estimated using the Institute of Transportation Engineers (ITE) <u>Trip Generation Manual</u>, 10th Edition, which provides gross trip generation rates and/or equations by land use type. These rates and equations estimate vehicle trip ends at a free-standing site's driveways. ITE trip generation worksheets are provided in Appendix F.

The proposed development plan incorporates residential and restaurant land uses, which can satisfy the lunch/diner trip for some residents, employees, and visitors without making a trip off-site. An internalization matrix was developed to establish the appropriate number of internal project trips. Internal capture rates used are also included in Appendix F.

ITE research shows that a certain percent of restaurant trips are "pass-by" trips. These are described as trips "attracted from the traffic passing the site on an adjacent street." These are not new trips, but trips already using the existing roadway network that stop at the proposed use and go back to their original path. Pass-by trips for this use were established based on guidelines provided in ITE's <u>Trip Generation Handbook</u> 3rd Edition. The average pass-by rate published by ITE for Restaurant use is 44% during the PM peak hour however, as discussed with the City reviewer, a 10% reduction was used for pass-by applied to restaurant trips.

The study area is pedestrian and bicyclist friendly and transit is readily available (see Section 5 of this report for additional pedestrian and transit information). US Census data shows an existing 12.9% overall use of other modes of transportation in the US Census Tract 9810 where the project is located (see Appendix F). However, for a conservative analysis and as discussed with the City reviewer, a 3% reduction will be used for other modes of transportations. The project trip generation summary is provided in Exhibit 7.

Exhibit 7: Project Trip Generation Summary

Proposed ITE Land Use Designation ¹	Size/Units	Daily (Two-way)		Peak H		PM Peak Hour Vehicle Trips		
Designation			In	Out	Total	In	Out	Total
Office (Land Use 710)	160,932 SF	1,684	153	25	178	29	150	179
Fast Casual Restaurant (Land Use 930)	7,234 SF	2,278	10	5	15	56	46	102
Gross External Trips	3,962	163	30	193	85	196	281	
Internalization AM, PM		4.1%, 1.4%	-4	-4	-8	-2	-2	-4
Other Modes of Transportation ²		3%	-5	-1	-6	-3	-5	-8
Pass-By Restaurant (10%	0	0	0	-5	-5	-10	
Proposed Net External T	154	25	179	75	184	259		

¹Based on ITE <u>Trip Generation Manual</u>, Tenth Edition ²Based on US Census (Tract 9810) is 12.9%, however a 3% was used.

³Based on ITE Trip Generation Handbook, 3rd Edition (PM pass-by) is 44%, however 10% was used.

4.4 Project Trip Assignment

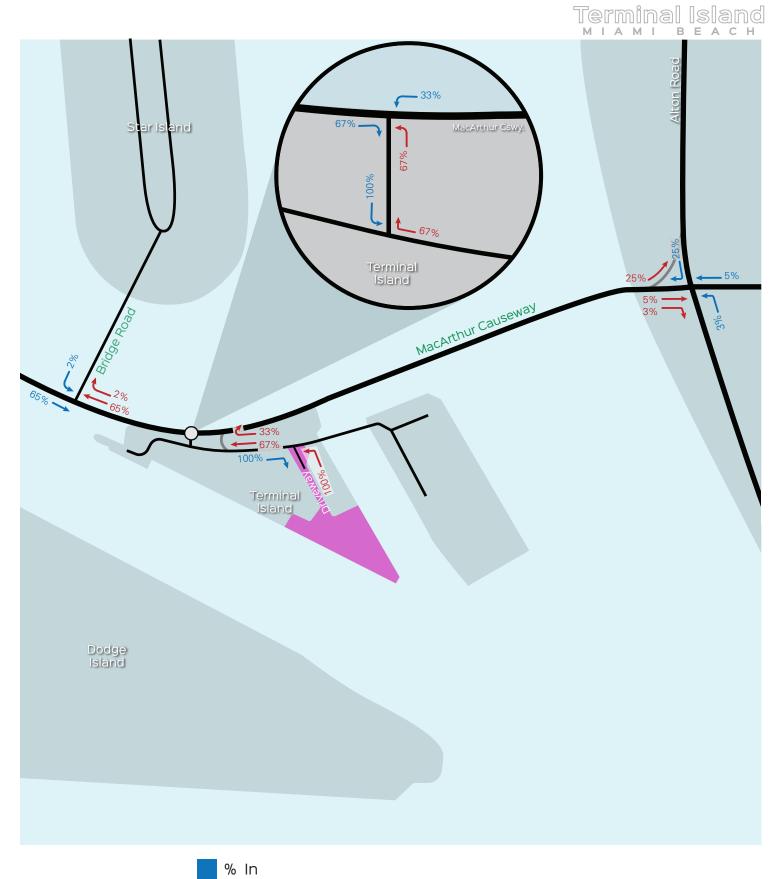
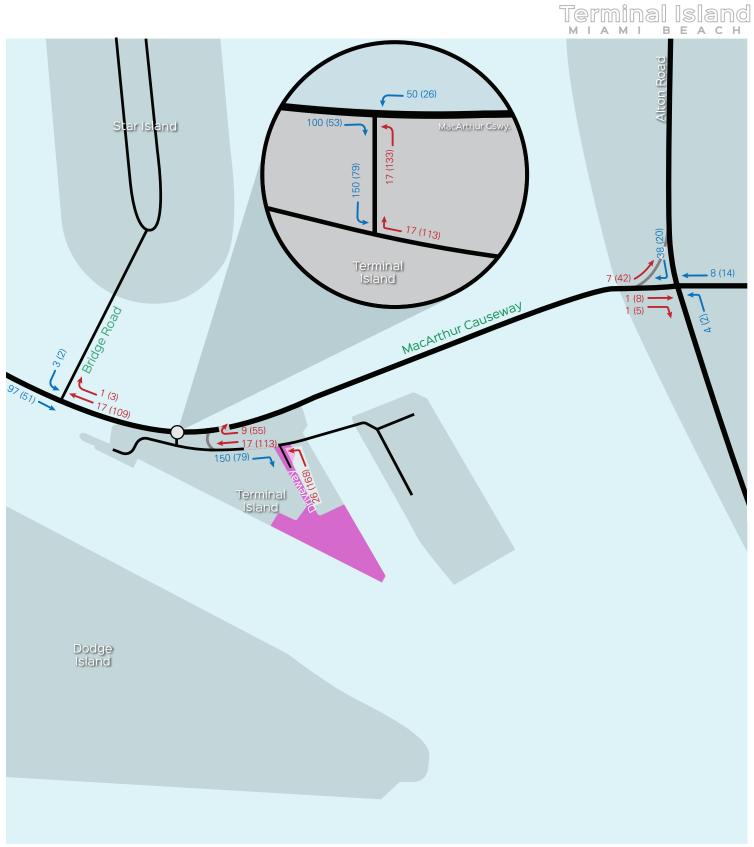

Project traffic was distributed and assigned to the study area using the Cardinal Distribution for TAZ 651 shown in Exhibit 8. The Cardinal Distribution gives a generalized distribution of trips from a TAZ to other parts of Miami-Dade County (see Appendix C). For estimating trip distribution for the project traffic, consideration was given to conditions such as the roadway network accessed by the project traffic, roadways available to travel in the desired direction, and attractiveness of traveling on a specific roadway. Exhibit 9 and 10 shows the project trip distribution and project trip assignment for the project.

Exhibit 8: Cardinal Distribution (TAZ 651)

Direction	Distribution
NNE	27.49%
ENE	1.81%
ESE	5.86%
SSE	0.00%
SSW	1.24%
WSW	15.57%
WNW	29.21%
NNW	18.71%
Total	100.00%

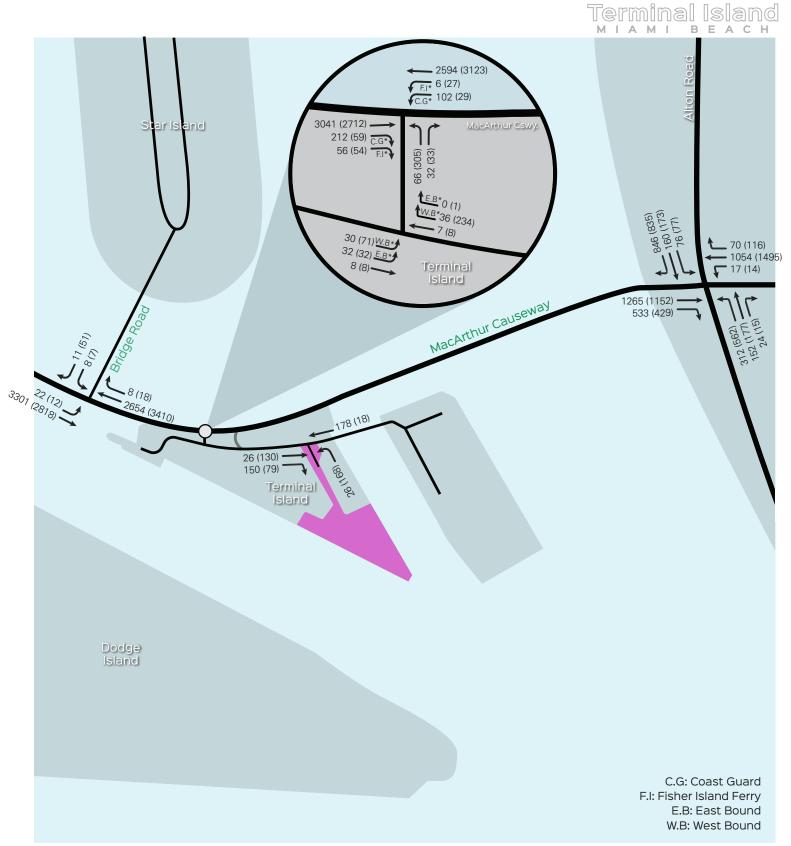
Source: Long Range Transportation Plan



Project Trip Distribution

Exhibit 10

Project Trip Assignment


4.5 Future with Project Intersection Capacity Analysis

Future background traffic from the previous section and traffic projections for the project were combined to obtain future traffic with project at the analyzed intersections. Exhibit 11 shows the projected turning movement volumes for future with project conditions. Results of the future with the project conditions intersection analysis are displayed in Exhibit 12. The results show that the overall LOS for the following intersections are projected to operate at acceptable LOS:

- MacArthur Causeway / Bridge Road
- MacArthur Causeway / Terminal Isle (AM peak hour)
- Alton Road / 5th Street

As with existing and future without project conditions, the eastbound and westbound approaches of the Terminal Isle at the intersection with MacArthur Causeway continue to experience delays during both the morning and afternoon peak hours. The westbound approach of the MacArthur Causeway at the intersection with Terminal Isle also continues to experience delays during the afternoon peak hour and the eastbound approach is projected to experience delays during the morning peak hour. It should be noted that this is an existing condition and the project represents less than a 3% of the total projected intersection volume during the morning and afternoon peak hours. As with the existing and future without project conditions, the southbound approach of the MacArthur Causeway / Bridge Road intersection continues to experience delays during both the morning and afternoon peak hours. The northbound approach of the Alton Road and 5th Street intersection also continues to experience delays during both the morning and afternoon peak hours. This may be due to the fact that the county gives priority to vehicles travelling east/west through this area, therefore, accepting delays on cross-streets. The project driveway was analyzed and the results show adequate operations. Intersection capacity worksheets are included in Appendix D.

00 AM (00) PM

Exhibit 11

Future With Project AM and PM Peak Hour Traffic Volumes

Exhibit 12: Future with Project Intersection Capacity Analysis Weekday AM and PM Peak Hour Conditions

Intersection	Signalized/ Un-signalized	Direction	AM Peak LOS	Delay (Sec)	PM Peak LOS	Delay (Sec)
MacArthur Causeway / Bridge Road (Star Island)	S	SB EB WB Overall	F A A	88.3 1.8 6.1 4.0	E A A	79.2 1.6 8.0 5.8
MacArthur Causeway / Terminal Isle	S	NB EBSRA1A WBSRA1A EBTerminal WBTerminal	A F B F E	0.0 86.4 16.2 86.9 75.0 55.4	A F F E F	0.0 91.9 101.5 84.1 64.0 96.0
Alton Road / 5 th Street	S	NB SB EB WB Overall	F C C C	89.6 21.7 34.0 24.7 34.7	F B C C	247.0 19.4 29.3 33.2 61.0
Project Driveway / Terminal Isle	U	NB	В	10.4	В	11

Source: David Plummer & Associates

The approximate existing storage length and the projected 95th percentile back of queue at all the exclusive turn lanes for the AM and PM peak hour conditions are displayed in Exhibit 13. The results show that the existing storage lengths at the intersection of MacArthur Causeway / Bridge Road has enough capacity to accommodate the projected 95th percentile back of queues.

The projected 95th percentile back of queue for the eastbound right turn lane at the MacArthur Causeway / Terminal Isle intersection is currently and projected to exceed the storage length during the AM peak hour. It should be noted this is an existing condition, the project adds the equivalent of less than five vehicles to the projected 95th percentile back of queue. The westbound left turn lane at the MacArthur Causeway / Terminal Isle intersection is also projected to exceed the storage length during the AM peak hour. The project adds the equivalent of less than four vehicles to the projected 95th percentile back of queue.

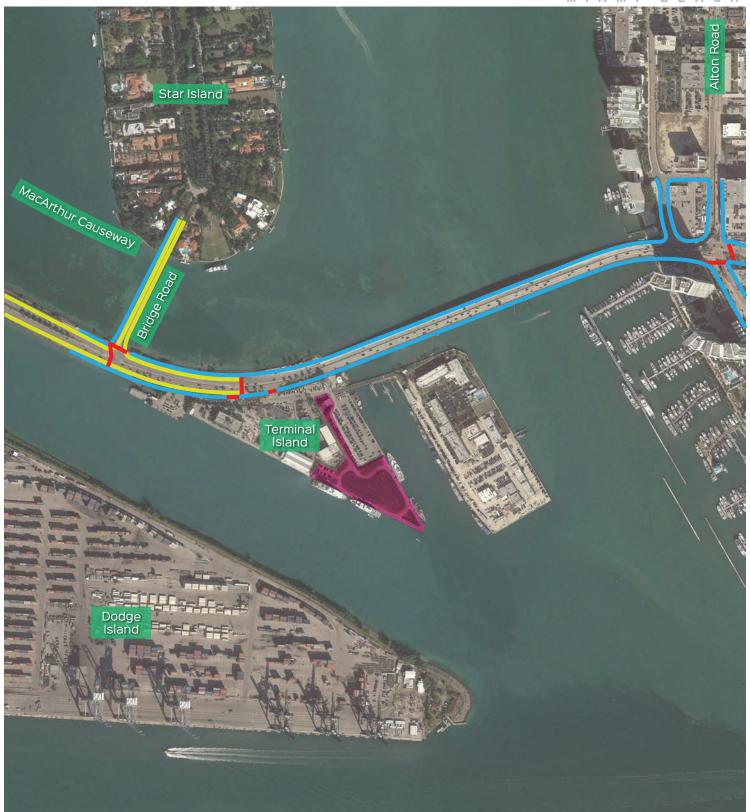
The Alton Road / 5th Street intersection eastbound right turning lane's 95th percentile back of queue is projected to exceed the existing storage length during the AM peak hour. The Alton Road / 5th Street intersection northbound left turning lane's 95th percentile back of queue is also projected to exceed the existing storage length during both the AM and PM peak hours. It should be noted that these are existing conditions, the project adds the equivalent of less than one vehicle to the projected 95th percentile back of queue at these turning lanes.

Exhibit 13: Projected 95th Percentile Back of Queues and Existing Storage Length (Feet)

Intersection	Direction	Existing		Future without Project		Future with Project		Existing Storage
		AM	PM	AM	PM	AM	PM	Length
MacArthur Causeway / Bridge Road (Star Island)	EBL WBR SBL	6 5 35	5 0 56	6 5 35	5 0 57	6 5 41	1 0 62	145 110 *
MacArthur Causeway / Terminal Isle	EBR _{SRA1A} WBL _{SRA1A}	144 131	70 73	147 132	70 75	264 210	126 119	120 150
Alton Road / 5 th Street	EBR WBL WBR NBL SBR	350 51 34 250 0	146 39 43 495 0	367 53 34 250 0	156 39 45 507 0	368 53 35 250 0	161 39 45 507 0	240 140 280 240 **

*SBL movement occurs from continues through lane

**SBR movement is free flow


Source: David Plummer & Associates

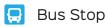
5.0 CIRCULATION PLAN

The project is located at 120 MacArthur Causeway (Terminal Island) in Miami Beach, Florida. Access to the site will be provided via the internal roadway on Terminal Island which provides access to MacArthur Causeway. MacArthur Causeway is the only roadway connecting Terminal Island to the mainland and the Miami Beach Island. The Terminal Isle roadway also provides access to the FPL Miami Beach Plant, the Fisher Island Ferry Terminal and the US Coast Guard Station all located within Terminal Island. The project is proposing a Waterfront Sculpture Plaza facing the Miami Municipal Channel along with several landscape gardens.

MacArthur Causeway provides sidewalks on both sides of the road starting from the bus stop bays just west of Fountain Street and just west of Bridge Road. Both of the signalized intersections have clearly marked crosswalks with pedestrian refuge areas, and provide pedestrian signals. The signalized intersection with Terminal Isle has clearly marked crosswalks and provides pedestrian signals. The sidewalk along both sides of the causeway continues toward Miami Beach Island protected by a guardrail/concrete barrier across the causeway bridge. The causeway provides bike lanes on both sides of the road which terminate at the base of the causeway bridge. Bicyclist are directed to use the protected bridge sidewalk. A mobility plan was prepared for the site (see Exhibit 14). The plan shows the project location, bike lanes, sidewalk connections, and pedestrian crosswalks.

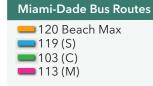
There are four bus routes that traverse this area of Miami Beach (Routes: 103, 113, 119, and 120). The closest bus stop to the project site is located on the south side of the MacArthur Causeway just east of the Terminal Isle intersection, approximately 300 feet west of the project. The City of Miami Beach Trolley provides the South Beach Loop which traverse along Alton Road. Exhibit 15 shows the available bus routes and bus stops in the area. Transit documentation is provided in Appendix G.

Project Location


Exhibit 14

Sidewalk Crosswalk Bike Lanes

Mobility - Pedestrians



Project Location

Exhibit 15

Mobility - Transit

■ Miami Beach Trolley

6.0 TRANSPORTATION MANAGEMENT PLAN

A Transportation Development Management is proposed as part of this project with the following goals:

- *Reducing congestion* by encouraging patrons to shift from single occupancy vehicle trips to use other available modes of transportation.
- *Conserving energy and reducing emissions* the damage caused by vehicle emissions and greenhouse gases is a major contributor to environmental degradation. Therefore, getting people to make better use of shared transportation options is one of the most important ways in which communities can do their part to encourage greener thinking.
- *Improving community health and fitness levels* TDM can lead to better levels of health and fitness among community members by encouraging people to be more active as they move around town. Improving the walkability of cities and adding cycling features are two of the most important ways TDM strategies can be used to promote healthier and more active lifestyles.
- Boosting urban livability Studies have shown that community-oriented modes of transportation can lead to significant improvements in personal satisfaction and happiness.
 People are more engaged when they are active stakeholders in the communities they live in. By improving social quality for residents, commuters, and visitors alike, TDM helps improve the overall livability of cities.

The development will promote the following strategies to further reduce vehicle trips:

- Encourage patrons to participate in ridesharing programs through South Florida Commuter Services. Available information will be obtained and distributed to residents and employees in the development.
- Miami-Dade County Transportation Agency current local and regional mass transit route and schedule information will be provided to potential transit users in a prominent public

- area of the development. The information provided and maintained on the premises will be updated, when necessary, at no less than six month intervals.
- Promote mass transit use by encouraging employers to purchase transit passes and make them available to employees at discounted prices or no charge, or in lieu of subsidized parking.
- Encourage employers to implement staggered work hours.

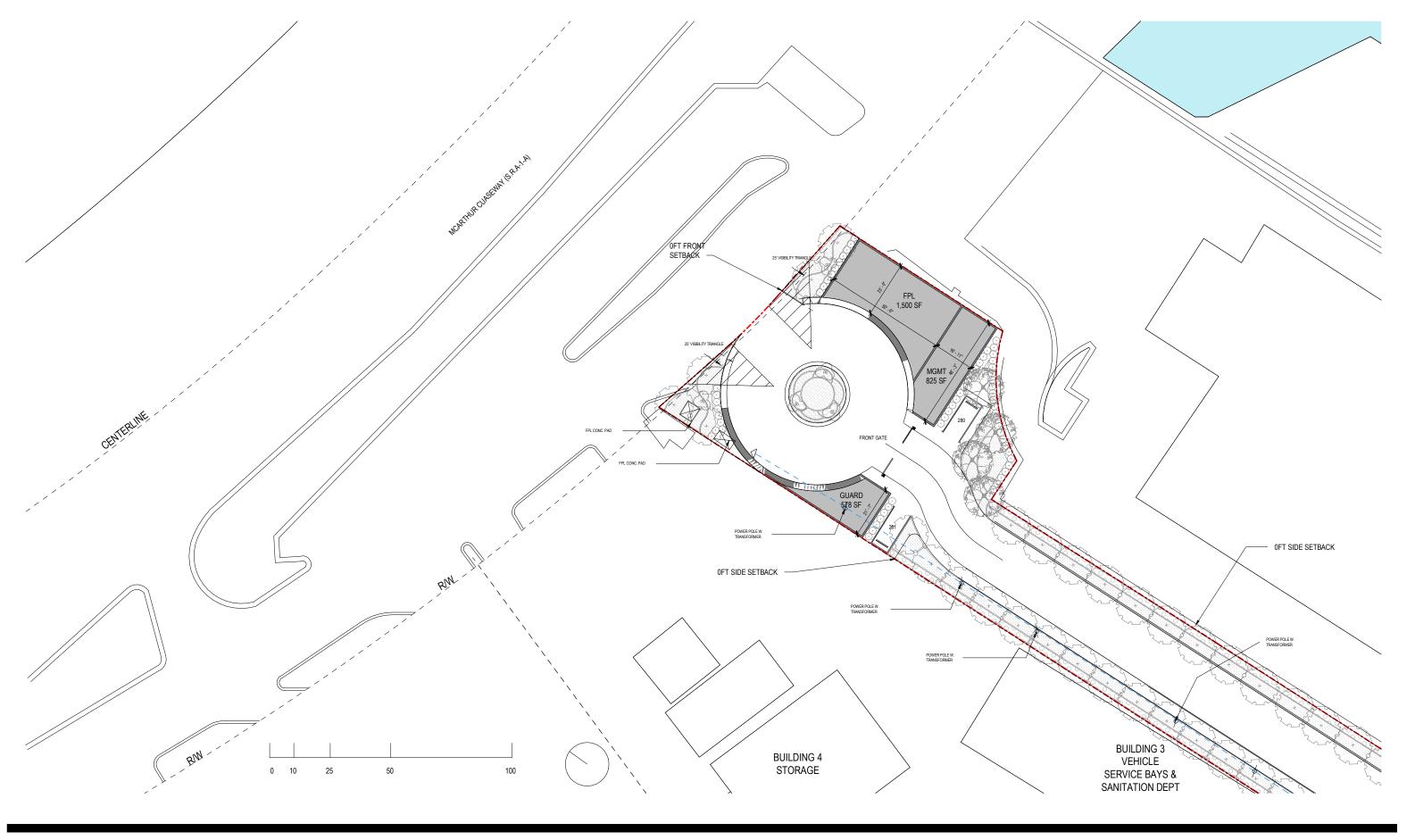
Implementation of these items will generate a shift from single vehicle drivers to use other modes of transportation and, thus, reducing the peak hour vehicle trips.

7.0 CONCLUSIONS

An assessment of the traffic impacts associated with the proposed Terminal Island project was performed in accordance with the requirements of the City of Miami Beach. The following intersections are currently operating and projected to operate at acceptable overall LOS:

- MacArthur Causeway / Bridge Road
- MacArthur Causeway / Terminal Isle (AM peak hour)
- Alton Road / 5th Street.

As with existing and future without project conditions, the eastbound and westbound approaches of the Terminal Isle at the intersection with MacArthur Causeway continue to experience delays during both the morning and afternoon peak hours. The westbound approach of the MacArthur Causeway at the intersection with Terminal Isle also continues to experience delays during the afternoon peak hour and the eastbound approach is projected to experience delays during the morning peak hour. It should be noted that these are existing conditions and the project represents less than a 3% of the total projected intersection volume during the morning and afternoon peak hours.


As with the existing and future without project conditions, the southbound approach of the MacArthur Causeway / Bridge Road intersection continues to experience delays during both the morning and afternoon peak hours. The northbound approach of the Alton Road and 5th Street intersection also continues to experience delays during both the morning and afternoon peak hours. This may be due to the fact that the county gives priority to vehicles travelling east/west through this area, therefore, accepting delays on cross-streets. The project driveway was analyzed and the results show adequate operations.

As part of the study, a mobility and circulation plan was completed. The plan shows that the project area is currently served by four Miami-Dade Transit bus routes and a Miami Beach Trolley route. The project is located in an area that provides sidewalk connectivity, clearly marked crosswalks, signalized intersections that provide pedestrian signals, and bike lanes. These conditions encourage the use of other modes of transportation and reduce the vehicular impact on the roadway network.

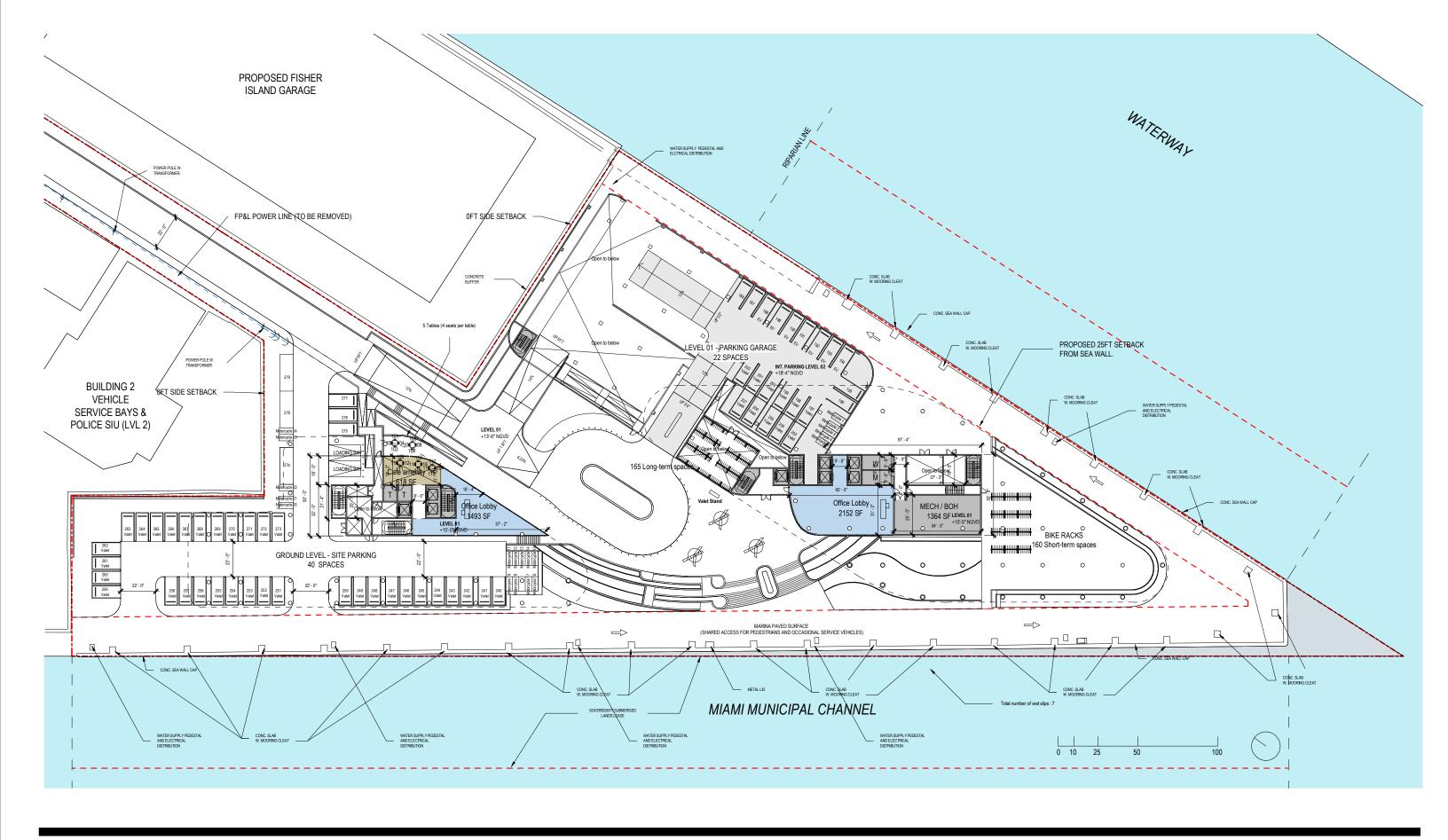
w:\20\20129\responses to comments june 2020\terminal island miami beach traffic study jun 2020.docx

Appendix A Site Plan

ARQUITECTONICA

2900 Oak Avenue, Miami, FL 33133 T 305.372.1812 F 305.372.1175

ALL DESIGNS INDICATED IN THESE DRAWINGS ARE PROPERTY OF ARQUITECTONICA INTERNATIONAL CORP, NO COPES, TRANSMISSIONS, REPRODUCTIONS OR ELECTRONIC MANIPULATION OF ANY PORTION OF THESE DRAWINGS IN THE WHOLE OR IN PART ARE TO BE MADE WITHOUT THE EXPRESS OF WRITTEN AUTHORIZATION OF ARQUITECTONICA INTERNATIONAL CORP. DESIGN INTENT SHOWN IS SUBJECT TO REVIEW AND APPROVAL OF ALL APPLICABLE LOCAL AND GOVERNMENTAL AUTHORITIES HAVING JUREDICTION. ALL COPYRIGHTS RESERVED © 2019. THE DATA INCLUDED IN THIS STUDY IS CONCEPTUAL IN NATURE AND WILL CONTINUE TO BE MODIFIED THROUGHOUT THE COURSE OF THE PROJECTS DEVELOPMENT WITH THE EVENTUAL INTEGRATION OF STRUCTURAL, MEP AND LIFE SAFETY SYSTEMS. AS THESE ARE FURTHER REFINED, THE NUMBERS WILL BE ADJUSTED ACCORDINGLY.


PB FINAL SUBMITTAL 120 MACARTHUR CAUSEWAY

MIAMI BEACH, FL, 33139

ENTRANCE PAVILLION - LEVEL 01

DATE: 11/30/2020

A1-10

ARQUITECTONICA

2900 Oak Avenue, Miami, FL 33133 T 305.372.1812 F 305.372.1175

ALL DESIGNS INDICATED IN THESE DRAWINGS ARE PROPERTY OF ARQUITECTONICA INTERNATIONAL CORP. NO COPES, TRANSMISSIONS, REPRODUCTIONS OR ELECTRONIC MANIPULATION OF ANY PORTION OF THESE DRAWINGS IN THE WHOLE OR IN PART ARE TO BE MADE WITHOUT THE EXPRESS OF WRITTEN AUTHORIZATION OF ARQUITECTONICA INTERNATIONAL CORP. DESIGN INTENT SHOWN IS SUBJECT TO REVIEW AND APPROVAL OF ALL APPLICABLE LOCAL AND GOVERNMENTAL AUTHORITES HAVING JURISDICTION. ALL COPYRIGHTS RESERVED © 2019. THE DATA INCLUDED IN THIS STUDY IS CONCEPTUAL IN NATURE AND WILL CONTINUE TO BE MODIFIED THROUGHOUT THE COURSE OF THE PROJECTS DEVELOPMENT WITH THE EVENTUAL INTEGRATION OF STRUCTURAL, MEP AND LIFE SAFETY SYSTEMS. AS THESE ARE FURTHER REFINED, THE NUMBERS WILL BE ADJUSTED ACCORDINGLY.

PB FINAL SUBMITTAL 120 MACARTHUR CAUSEWAY MIAMI BEACH, FL, 33139

SCALE: 1: 640

Appendix B Methodology

DAVID PLUMMER & ASSOCIATES

TRAFFIC ENGINEERING • CIVIL ENGINEERING • TRANSPORTATION PLANNING

1750 PONCE DE LEON BOULEVARD | CORAL GABLES, FLORIDA 33134 305•447•0900 | DPA@DPLUMMER.COM

Terminal Island Miami Beach Traffic Study Methodology

March 24, 2020 Revised: April 13, 2020

PROJECT LOCATION

The project is located at 120 MacArthur Causeway (Terminal Island) in Miami Beach, Florida. The project proposes a new 160,932 SF office building and an 11,250 SF restaurant. The existing six boat berth marina will remain.

PURPOSE

This methodology will provide the details of the Transportation Impact Study for the proposed development. Confirmation of this methodology will be requested from the City and/or its traffic consultant prior to performing the study.

TRAFFIC STUDY

- Traffic Counts (Intersections) Available turning movement counts collected during the AM (7
 9) and PM (4 6) peak hour conditions of a regular weekday will be used to analyze the following intersections:
 - MacArthur Causeway / Bridge Road (Star Island) (Signalized)
 - MacArthur Causeway / Terminal Island (Signalized)
 - Alton Road / 5th Street (Signalized)
 - Terminal Island / Project Driveway (Un-signalized)

Traffic counts used as part of this project will be included in the appendix of the Transportation Impact Study submitted to the City.

• Trip Generation – Trip generation for the project was estimated using trip generation information published by the Institute of Transportation Engineers (ITE) <u>Trip Generation Manual</u>, 10th Edition. Based on U.S. Census Bureau data, a 12.9% deduction for other modes of transportation may be applied. However, for a conservative analysis and as discussed with the City reviewer, a 3% reduction will be used for other modes of transportations. Furthermore as discussed with the City reviewer, a 10% reduction will be used for pass-by applied to restaurant trips.

Proposed Trip Generation

Proposed ITE Land Use Designation ¹	Size/Units	Daily (Two-way)		Peak H			Peak Hour chicle Trips		
Designation		(1 wo-way)	In	Out	Total	In	Out	Total	
Office (Land Use 710)	160,932 SF	1,684	153	25	178	29	150	179	
Restaurant (Land Use 931)	11,250 SF	944	4	4	8	59	29	88	
Gross External Trips		2,628	157	29	186	88	179	267	
Internalization AM,	PM	2.2%, 1.5%	-2	-2	-4	-2	-2	-4	
Other Modes of Transp	3%	-5	-1	-6	-3	-5	-8		
Pass-By Restaurant (10%	0	0	0	-4	-4	-8		
Proposed Net External T		150	26	176	79	168	247		

¹ Based on ITE Trip Generation Manual, 10th Edition

- Signal Location and Timing Existing signal phasing and timing for the signalized intersections
 will be obtained from Miami-Dade County. Signal data collected from the county will be
 included in the appendix of this study.
- Trip Distribution / Trip Assignment Net new external project traffic will be assigned to the adjacent street network using the appropriate cardinal distribution from the <u>Miami-Dade Long Range Transportation Plan Update</u>, published by the <u>Transportation Planning Organization</u>. Normal area traffic patterns will also be considered when assigning project trips. A figure showing all of the assigned trips to the adjacent transportation network will be provided as part of the study.

² Based on US Census (Tract 9810) is 12.9%, however a 3% was used.

³ Based on ITE Trip Generation Handbook, 3rd Edition (PM pass-by) is 44%, however 10% was used.

- Background Traffic Available Florida Department of Transportation (FDOT) and Miami-Dade
 County (MDC) traffic counts will be consulted to determine a growth factor consistent with
 historical annual growth in the area. The growth factor will be applied to the existing traffic
 volumes to establish background traffic. This will be documented in the study.
- Committed Developments The City will be consulted to determine committed developments in the area. Evidence of the data collected as part of the committed developments will be included in the appendix of the study.
- Future Transportation Projects The 2020 TIP and the 2040 LRTP will be reviewed and considered in the analysis at project build-out.
- Intersection Capacity Analysis The intersection capacity analyses will be conducted for the following conditions:
 - Existing conditions
 - o Future conditions with Committed Developments
 - Future conditions with Project and Committed Development

Intersection analysis will be done using the Synchro software based on the <u>Highway Capacity</u> Manual (HCM 6th Ed). Figures depicting trip distribution for each of these scenarios will be provided as part of this study. In addition to the intersections identified above, all projects driveways will be analyzed. If the results of the analysis show any intersection operating below the City's Level of Service standards, specific mitigation measures will be recommended.

• An extensive Transportation Demand Management plan (TDM) will be included in the report.

CIRCULATION ANALYSIS/PLAN

The study will provide a circulation plan depicting the parking garage circulation. The plan will also include a clear site plan defining all of the various land use categories assigned to the project site, driveways, delivery areas, location of street signs/signals, crosswalks, sidewalks, location of bus facilities, bike facilities, adjacent streets configuration (travel lanes, etc.) including names, on-street parking and any other pertinent transportation feature in the vicinity of this project.

As part of the study, any proposed/existing driveways will be analyzed. This analysis will include sight distance for vehicles entering/exiting the proposed driveway. An Auto-turn analysis will be conducted for the proposed building loading area. If deficiencies are determined, mitigation measures will be recommended.

Multimodal – Pedestrian, bicycle and transit facilities will be defined in the Circulation Plan. Existing bus routes including schedule and bus stop locations will be discussed as part of the study. An effort will be made to include bicycle parking facilities within the project site to be utilized either by employees or tenants.

QUEUING ANALYSIS

A queuing analysis will be performed at the gated entrance per the methods outlined in the Institute of Transportation Engineers (ITE) Transportation and Land Development. The vehicle queue (M) will be calculated based on processing rate, demand rate, service positions and utilization factor as necessary. The analysis will be done to ensure that there is sufficient on-site vehicle stacking so that there is no vehicle back-up onto the public right-of-way. Peak hour demand will be estimated at the project's entrances. The analysis will consider both demand and typical service times per vehicle. The gated entrances capacity will be a function of the numbers of lanes, type of service provided and geometrics. The analysis, conclusions and recommendations will be documented in the traffic report.

DOCUMENTATION

The applicant will submit an electronic copy of the report including the Synchro program output calculations for consideration/review by the consultant acting as the peer reviewer. Also included will be the latest version of the site plan, with an AutoCad version.

Other Considerations from the City

• As part of the intersection analysis, a table summarizing/comparing the existing storage length and the proposed queues for all turn lanes will be provided.

- The City reserves the right to request additional analyses including but not limited to, additional traffic counts and level of service analysis for any intersection City staff feels is necessary in order to complete the review process.
- The future layout of the Terminal Island Roadway configuration and intersections will be considered in the future scenario analysis if the latest FDOT plans are provided by the City reviewer.

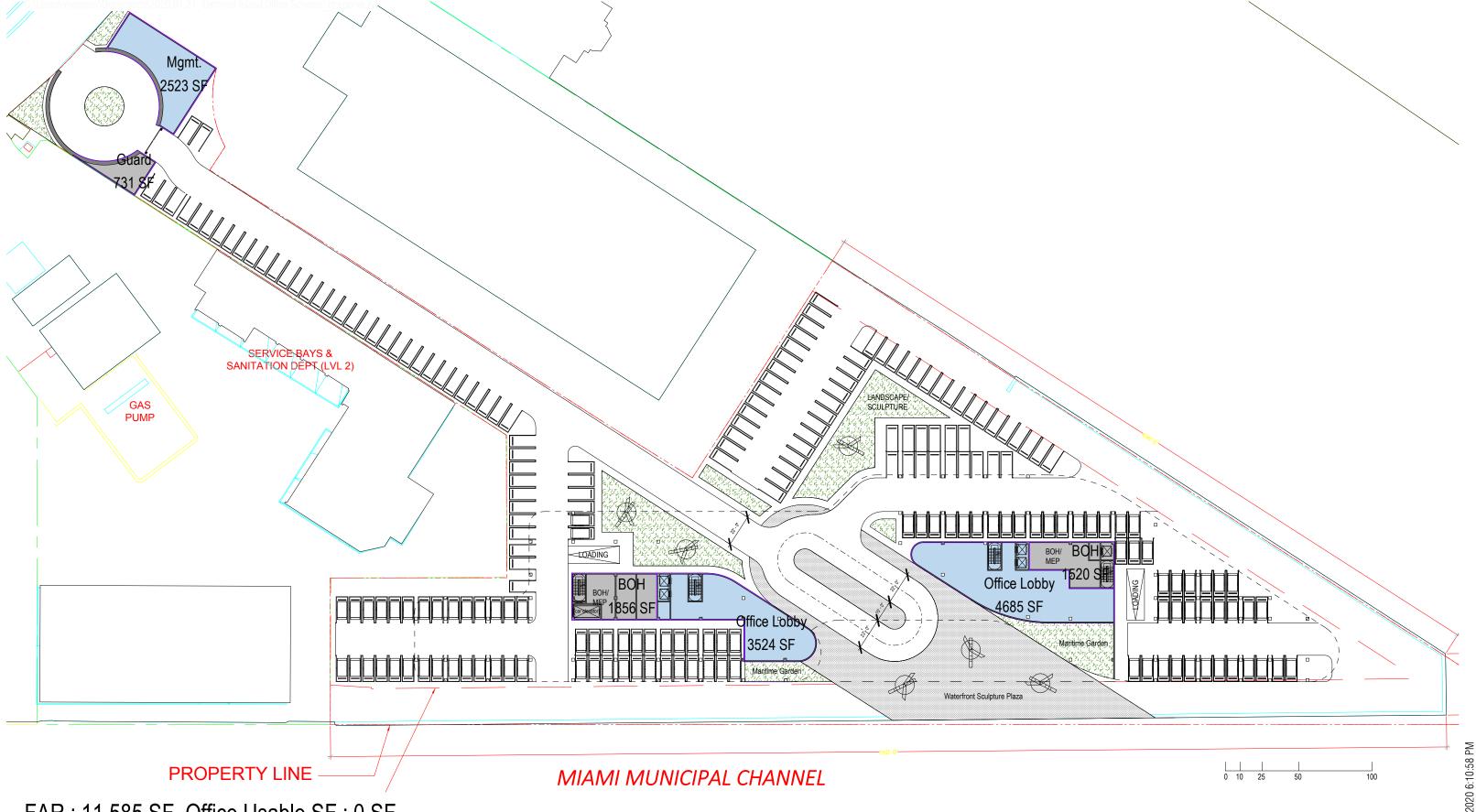
If you have any questions you can contact me at (305) 447-0900.

w:\20\20129\terminal island mb_traffic study methodology_revised.docx

THE OFFICE AT ONE ISLAND PARK

ARQUITECTONICA

2900 Oak Avenue Miami, Florida 33133 305.372.1812 TEL 305.372.1175 FAX


	West Building						East Building													
																			Surface Parki	ng
	Office Usable SF	Office BOMA*	GSF	FAR	Floorplate	Outdoor Café/ Restau.	Office Usable SF	Office BOMA*	GSF	FAR	Floorplate	Guard H	ouse							
Roof	0 SF	0 SF	4,075 SF	4,075 SF		11,250 SF	0 SF	0 SF	3,735 SF	3,735 SF	52,819 SF	[
Level 04	15,581 SF	17,399 SF	18,351 SF	18,351 SF	20,098 SF		21,232 SF	23,088 SF	23,932 SF	23,932 SF	26,048 SF									
Level 03	17,328 SF	19,146 SF	20,098 SF	20,098 SF	21,738 SF		23,350 SF	25,204 SF	26,048 SF	26,048 SF	28,145 SF	Office U	Jsable SF	Office BOMA*	Guard	GSF	FAR	Floorplate		
Level 02	18,967 SF	20,786 SF	21,738 SF	21,738 SF	21,738 SF		25,446 SF	27,301 SF	28,145 SF	28,145 SF	28,145 SF									
Level 01	0 SF	4,552 SF	5,380 SF	5,380 SF	5,380 SF		0 SF	5,494 SF	6,205 SF	6,205 SF	6,205 SF		2,523 SF	2,523 SF	731 SF	3,225 SF	3,254 SF	3,225 SF	308 Spaces	(100 Stackers)
TOTAL	51,876 SF	61,883 SF	69,642 SF	69,642 SF	68,954 SF		70,028 SF	81,087 SF	88,065 SF	88,065 SF	141,362 SF	-	2,523 SF	2,523 SF	731 SF	3,225 SF	3,254 SF	3,225 SF		

124,427 SF
145,493 SF
160,932 SF
160,961 SF
213,541 SF
308 Spaces

^{*}to be verified

ARQUITECTONICA

305.372.1812 TEL 305.372.1175 FAX

FAR: 11,585 SF, Office Usable SF: 0 SF

2900 Oak Avenue Miami, Florida 33133 305.372.1812 TEL 305.372.1175 FAX

Terminal Isl. - Office Scheme One Island Ave

Level 01

SCALE: 1'' = 60'-0''

DATE:

FS-03 03/06/20

						7
•	CO	na	171	n	-	п
_	50	ш.	ш	v		С

Scenario Name: Proposed User Group:

Dev. phase: 1 No. of Years to Project Traffic : 0

Analyst Note:

Warning: The time periods among the land uses do not appear to match.

VEHICLE TRIPS BEFORE REDUCTION

Land Use & Data Source	Location	IV	Size	Time Period	Method	Entry	Exit	Total
Land Ose & Data Source	Location	IV	3126	Tillie Feriou	Rate/Equation	Split%	Split%	Total
710 - General Office Building	General	1000 Sg. Ft. GFA	160.93	Weekday	Best Fit (LOG)	842	842	1684
Data Source: Trip Gen Manual, 10th Ed	Urban/Suburban	1000 3q. Ft. GFA	100.93	Weekday	Ln(T) =0.97Ln(X) + 2.50	50%	50%	1064
931 - Quality Restaurant	General	1000 Sg. Ft. GFA	11.25	Weekday	Average	472	472	944
Data Source: Trip Gen Manual, 10th Ed	Urban/Suburban	1000 3q. Ft. GFA	11.23	weekday	83.84	50%	50%	344
710(1) - General Office Building	General	1000 Sg. Ft. GFA	160.93	Weekday, Peak Hour of Adjacent Street Traffic,	Best Fit (LIN)	153	25	178
Data Source: Trip Gen Manual, 10th Ed	Urban/Suburban	1000 3q. Ft. GFA	100.93	One Hour Between 7 and 9 a.m.	T = 0.94(X) + 26.49	86%	14%	1/6
931(1) - Quality Restaurant	General	1000 Sg. Ft. GFA	11.25	Weekday, Peak Hour of Adjacent Street Traffic,	Average	4	4	0
Data Source: Trip Gen Manual, 10th Ed	Urban/Suburban	1000 3q. Ft. GFA	11.23	One Hour Between 7 and 9 a.m.	0.73	50%	50%	0
710(2) - General Office Building	General	1000 Sg. Ft. GFA	160.93	Weekday, Peak Hour of Adjacent Street Traffic,	Best Fit (LOG)	29	150	179
Data Source: Trip Gen Manual, 10th Ed	Urban/Suburban	1000 3q. Ft. GFA	100.93	One Hour Between 4 and 6 p.m.	Ln(T) = 0.95Ln(X) + 0.36	16%	84%	1/9
931(2) - Quality Restaurant	General	1000 Sg. Ft. GFA	11.25	Weekday, Peak Hour of Adjacent Street Traffic,	Average	59	29	88
Data Source: Trip Gen Manual, 10th Ed	Urban/Suburban	1000 Sq. Ft. GFA	Ft. GFA 11.25	One Hour Between 4 and 6 p.m.	7.80	67%	33%	00

Generated By OTISS Pro v2.1

AM Peak Hour Trip Generation and Internalization

Terminal Island Miami Beach

	Office	Restaurant				
Land	d Use 710		Land U	se 931		
160,	932 Sq Ft		11,250	Sq Ft		
In	Out		In	Out		
153	25		4	4		186 ITE Trips
	UNBALANC	ED INTERI		1		
4.407	63% 16	1	23% 1 31%			
14% 21		1		31% 1		
(Office					
In	Out		In	Out		
153	25		4	4		186 Vehicle Trips
	BALANCE	D INTERNA	ALIZATION			
	-1		-1			
-1				-1		
-1	-1		-1	-1		-4 Internal
152	24		3	3		182 External Trips
	1.1%			25.0%		2.2% % Internal
-5	-1		0	0		-6 -3.0% Transit/Pedestrian
147	23		3	3		176
			0	0		0 0% Passby (Restau
147	23		3	3		176 Net New External Trips

PM Peak Hour Trip Generation and Internalization

Terminal Island Miami Beach

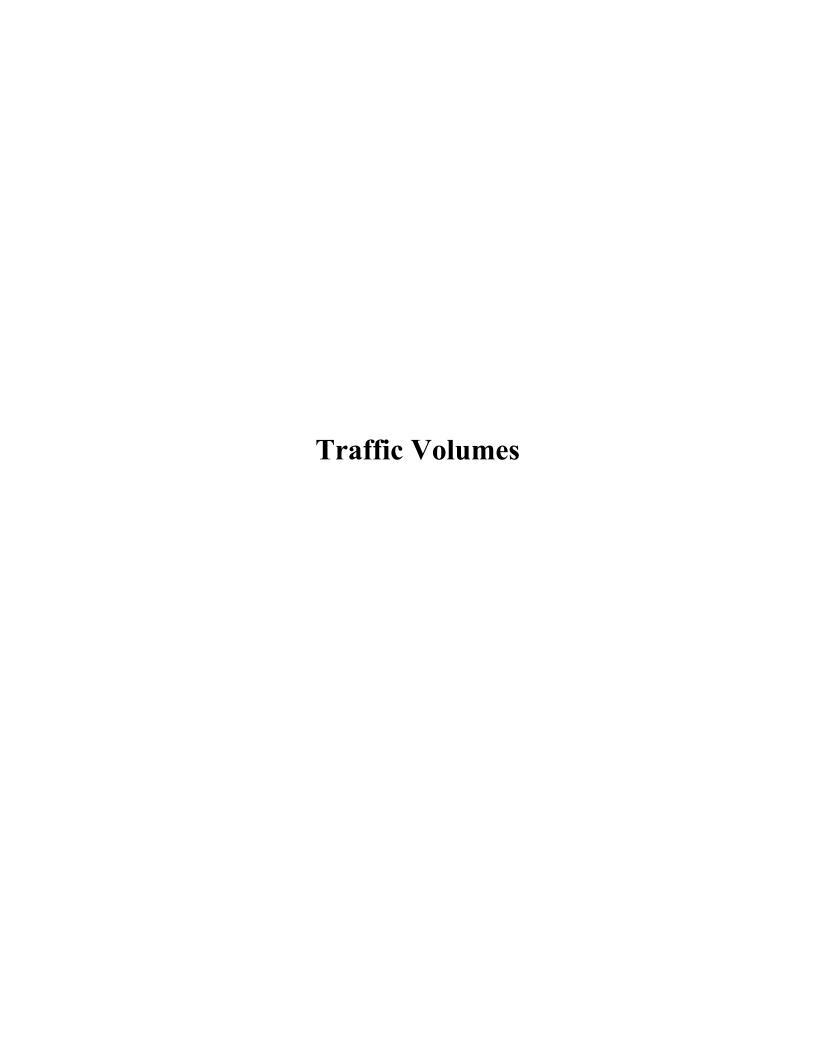
	Office d Use 710		Resta Land U			
	,932 Sq Ft			Sq Ft		
In	Out		In	Out		
29	150		59	29		267 ITE Trips
	UNBALANC	ED INTERI	NALIZATION	I		
	4% 6	1	2%			
30% 9		1		3% 1		
	Office					
In	Out		Restaurant In Out			
29	150		59	29		267 Vehicle Trips
	BALANCE	D INTERNA	ALIZATION			
-1	-1		-1	1		
,				•		
-1	-1		-1	-1		-4 Internal
28	149 1.1%		58	28 2.3%		263 External Trips 1.5% % Internal
-1 27	-4 145		-2 56	-1 27		-8 -3.0% Transit/Pedestrian
21	143		<u>-4</u>	-4		-8 -10% Passby (Restau
						•
27	145		52	23		247 Net New External Trips

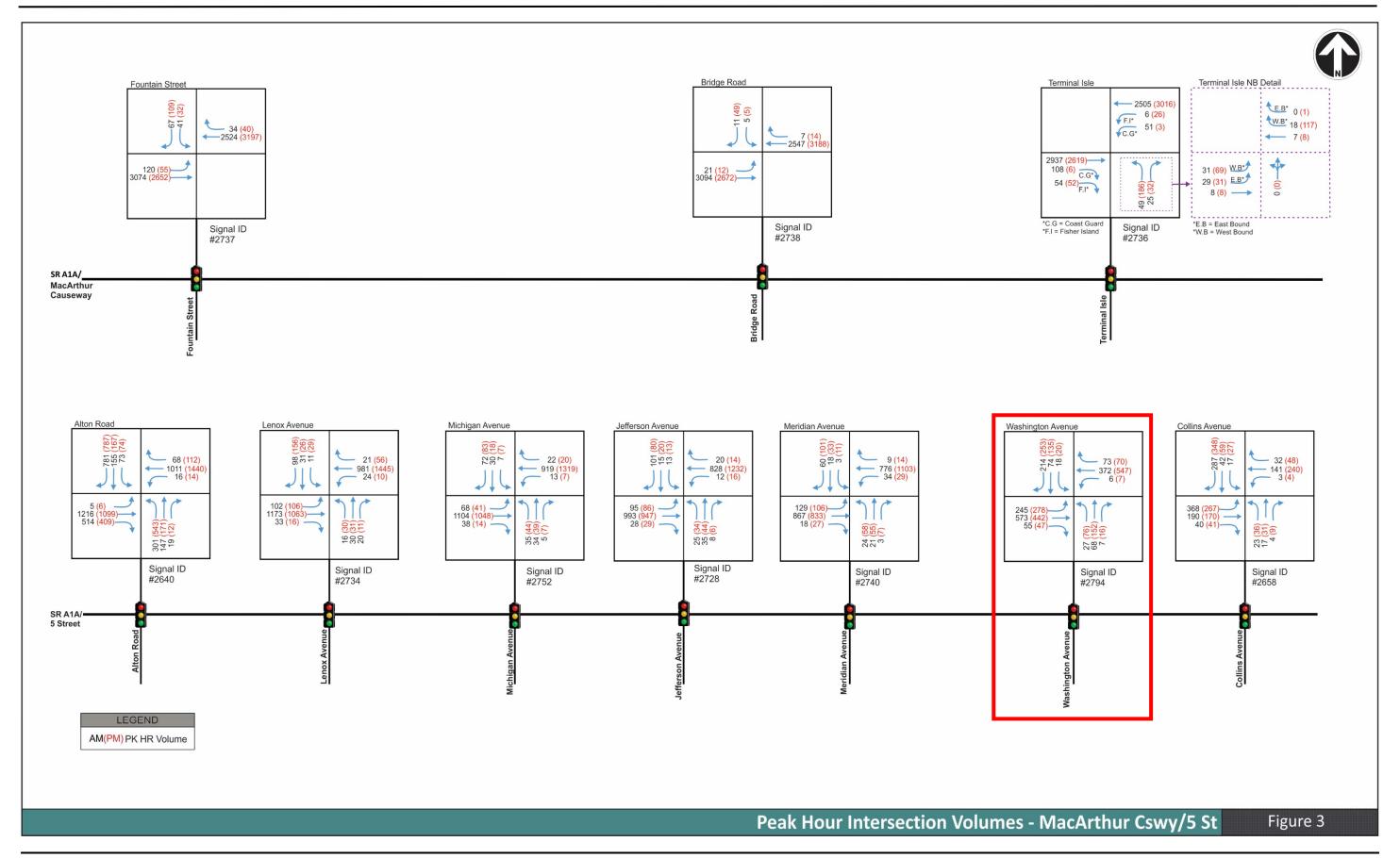
S0801

COMMUTING CHARACTERISTICS BY SEX

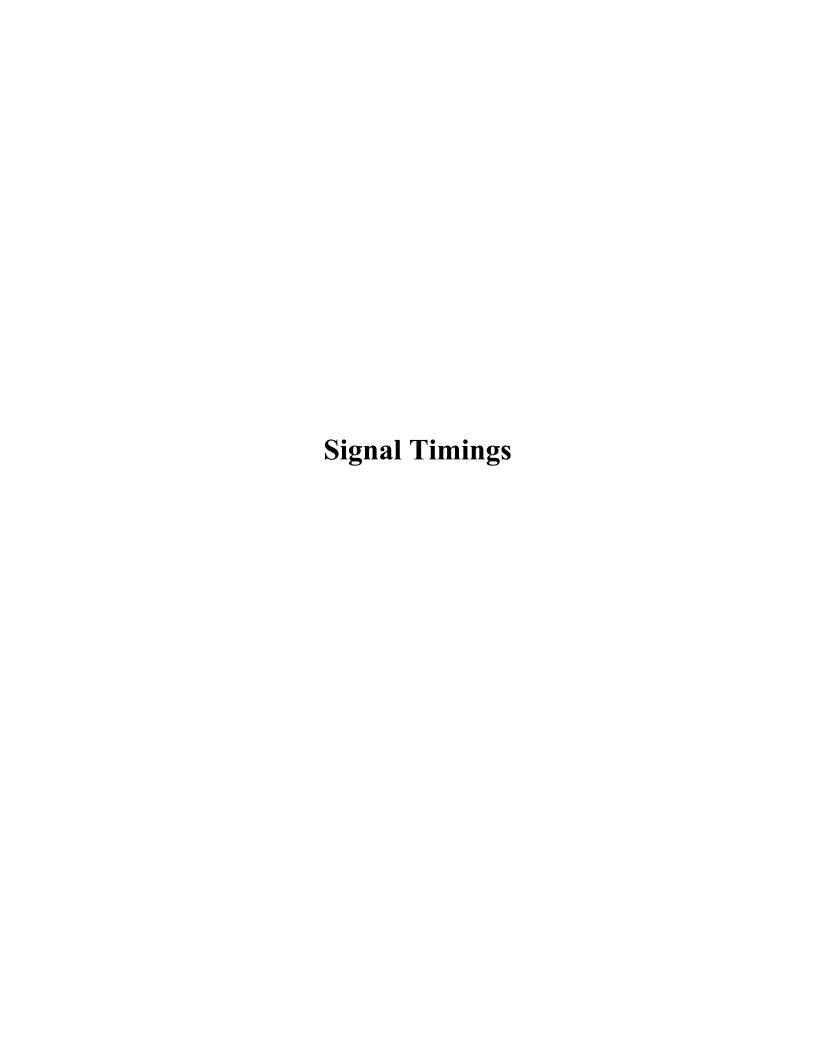
2013-2017 American Community Survey 5-Year Estimates

Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section.


Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section.


Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties.

Subject	Census Tract 9810, Miami-Dade County, Florida										
	Tota	al	Mal	е	Female						
	Estimate	Margin of Error	Estimate	Margin of Error	Estimate						
Workers 16 years and over	62	+/-21	53	+/-19	9						
MEANS OF TRANSPORTATION TO WORK											
Car, truck, or van	51.6%	+/-32.9	52.8%	+/-35.4	44.4%						
Drove alone	43.5%	+/-37.2	43.4%	+/-40.3	44.4%						
Carpooled	8.1%	+/-14.9	9.4%	+/-17.4	0.0%						
In 2-person carpool	8.1%	+/-14.9	9.4%	+/-17.4	0.0%						
In 3-person carpool	0.0%	+/-41.8	0.0%	+/-45.2	0.0%						
In 4-or-more person carpool	0.0%	+/-41.8	0.0%	+/-45.2	0.0%						
Workers per car, truck, or van	N	N	N	N	N						
Public transportation (excluding taxicab)	0.0%	+/-41.8	0.0%	+/-45.2	0.0%						
Walked	12.9%	+/-25.0	15.1%	+/-29.5	0.0%						
Bicycle	0.0%	+/-41.8	0.0%	+/-45.2	0.0%						
Taxicab, motorcycle, or other means	0.0%	+/-41.8	0.0%	+/-45.2	0.0%						
Worked at home	35.5%	+/-27.4	32.1%	+/-29.5	55.6%						
PLACE OF WORK											
Worked in state of residence	100.0%	+/-41.8	100.0%	+/-45.2	100.0%						
Worked in county of residence	100.0%	+/-41.8	100.0%	+/-45.2	100.0%						
Worked outside county of residence	0.0%	+/-41.8	0.0%	+/-45.2	0.0%						
Worked outside state of residence	0.0%	+/-41.8	0.0%	+/-45.2	0.0%						
Living in a place	100.0%	+/-41.8	100.0%	+/-45.2	100.0%						
Worked in place of residence	100.0%	+/-41.8	100.0%	+/-45.2	100.0%						
Worked outside place of residence	0.0%	+/-41.8	0.0%	+/-45.2	0.0%						
Not living in a place	0.0%	+/-41.8	0.0%	+/-45.2	0.0%						
Living in 12 selected states	0.0%	+/-41.8	0.0%	+/-45.2	0.0%						
Worked in minor civil division of residence	0.0%	+/-41.8	0.0%	+/-45.2	0.0%						
Worked outside minor civil division of residence	0.0%	+/-41.8	0.0%	+/-45.2	0.0%						
Not living in 12 selected states	100.0%	+/-41.8	100.0%	+/-45.2	100.0%						
Workers 16 years and over who did not work at home	40	+/-23	36	+/-18	4						
TIME LEAVING HOME TO GO TO WORK											


1 of 5 03/23/2020

Appendix C Traffic Data

Phase Bank 1

Active Phase Bank

Print Time: 10:38 AM

<u>Asset</u> 2640		Intersection Alton Rd&5	_		TOD Schedule OW-3	Op Mode	<u>Plar</u>	<u>ı #</u> N/A	<u>Cycle</u>	<u>Offset</u> 0	TOD Setting N/A	<u>Active</u> <u>PhaseBank</u> 0	Active Maximum Max 0
20.0		,		Splits_				. 47.	· ·	v	N/A	v	ax o
<u>PH 1</u> WBL	<u>PH 2</u> EBT	PH 3 NBT	<u>PH 4</u> SBT	<u>PH 5</u>	<u>PH 6</u> WBT	<u>PH 7</u> -	<u>PH 8</u>						
0	0	0	0	0	0	0	0						
F	\rightarrow		1		+	•							

<u>Phase</u>	<u>Walk</u>	Don't Walk	Min Initial	Veh Ext	Max Limit	<u>Max 2</u>	<u>Yellow</u>	Red
	Phase Bank							
	1 2 3	1 2 3	1 2 3	1 2 3	1 2 3	1 2 3		
1 WBL	0 - 0 - 0	0 - 0 - 0	5 - 5 - 5	2 - 2 - 2	5 - 5 - 5	25 - 20 - 7	4	2.3
2 EBT	7 - 7 - 7	22 - 22 - 22	5 - 5 - 5	1 - 1 - 1	30 - 30 - 30	0 - 30 - 30	4	2
3 NBT	7 - 7 - 7	10 - 10 - 10	7 - 7 - 7	3 - 3 - 3	18 - 18 - 16	33 - 30 - 30	4	2
4 SBT	7 - 7 - 7	18 - 18 - 18	7 - 7 - 7	3.5 - 3.5 - 3.5	15 - 17 - 8	38 - 38 - 28	4	2
5 -	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0	0
6 WBT	7 - 7 - 7	22 - 22 - 22	5 - 5 - 5	1 - 1 - 1	30 - 30 - 30	0 - 30 - 30	4	2
7 -	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0	0
8 -	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0	0

 Permitted Phases

 12345678

 Default
 1234-6-

 External Permit 0
 1234-6-

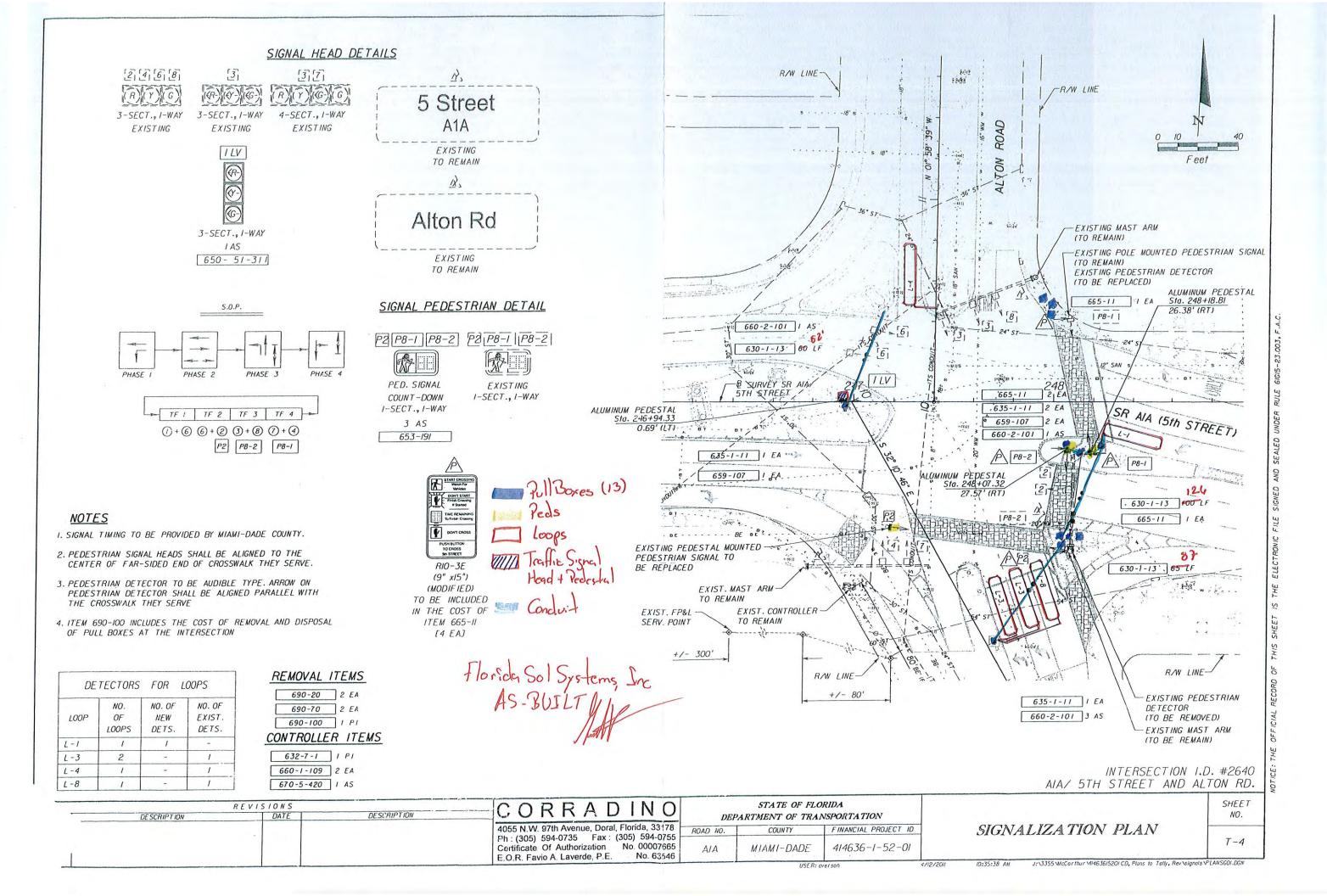
 External Permit 1
 1234-6-

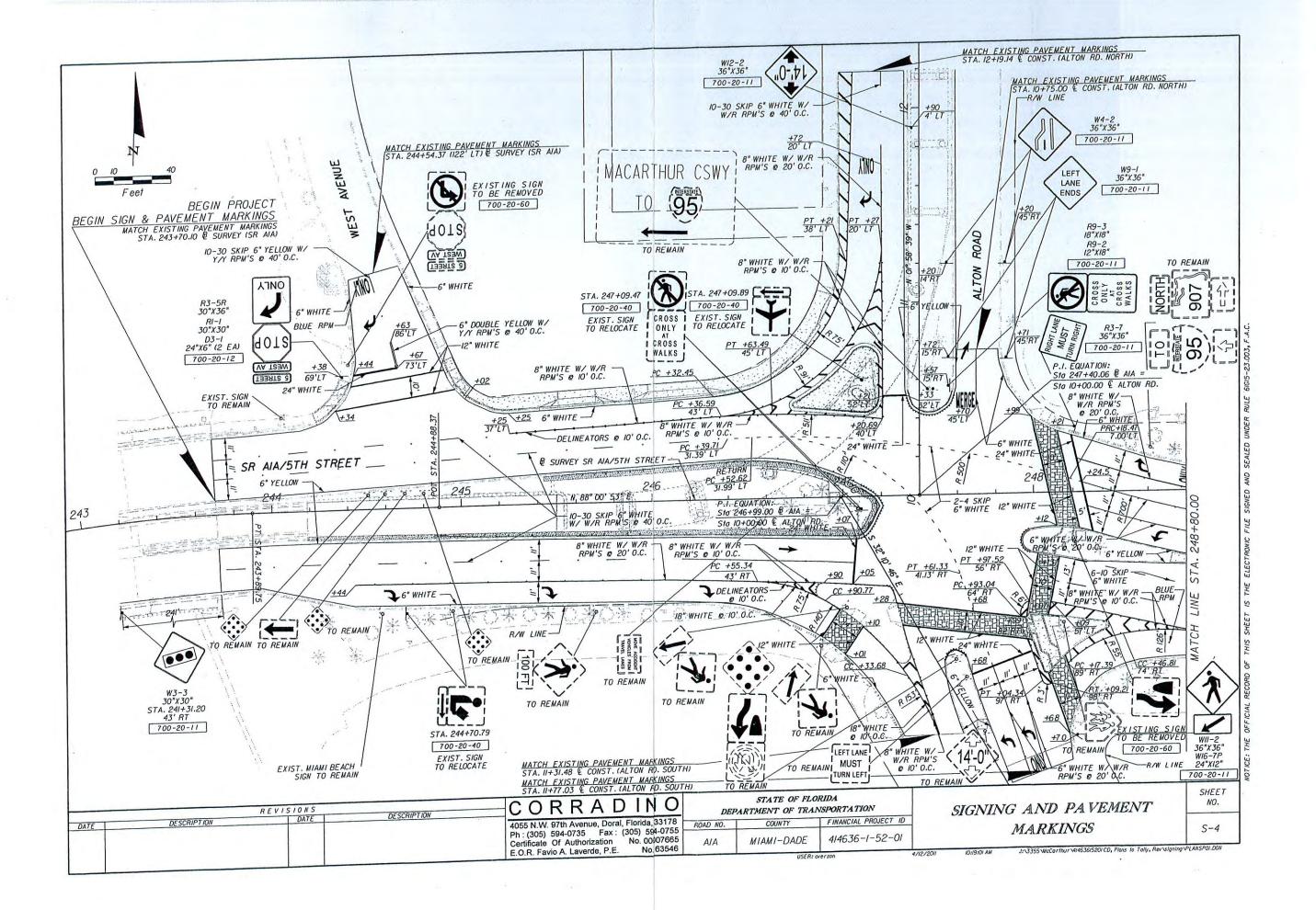
 External Permit 2
 1234-6-

unknown

Last In Service Date:

				<u>.</u>	Green 1	<u> ime</u>					
Current	m Cyala	1	2	3	4	5	6	7	8	Ding Officet	Officer
TOD Schedule Pla	<u>n Cycle</u>	WB	EBT	NBT	SBT	-	WBT	-	-	Ring Offset	<u>Offset</u>
1	170	10	90	19	27	0	106	0	0	0	61
2	150	5	64	30	27	0	75	0	0	0	27
3	120	5	45	18	28	0	56	0	0	0	96
4	150	5	80	16	25	0	91	0	0	0	109
5	150	5	64	21	36	0	75	0	0	0	29
6	180	5	86	27	38	0	97	0	0	0	114
7	170	5	78	30	33	0	89	0	0	0	99
8	160	5	68	30	33	0	79	0	0	0	55
10	160	10	80	20	26	0	96	0	0	0	55
14	120	5	45	20	26	0	56	0	0	0	118
15	130	5	51	27	23	0	62	0	0	0	127
16	120	5	45	20	26	0	56	0	0	0	23
21	220	10	138	20	28	0	154	0	0	0	44
22	110	5	35	18	28	0	46	0	0	0	42
23	110	5	35	18	28	0	46	0	0	0	20
24	160	5	73	30	28	0	84	0	0	0	44
25	140	5	65	18	28	0	76	0	0	0	57
26	200	5	113	30	28	0	124	0	0	0	44
27	140	5	65	18	28	0	76	0	0	0	0
28	220	10	138	20	28	0	154	0	0	0	44


Local TO	Local TOD Schedule										
<u>Time</u>	<u>Plan</u>	<u>DOW</u>									
0000	3	SuMTWThF S									
0500	2	M T W Th F									
0500	3	Su S									
0800	6	M T W Th F									
1000	10	Su S									
1130	5	M T W Th F									
1300	6	M T W Th F									
1615	25	M T W Th F									
1800	1	M T W Th F									
1800	7	Su S									
2200	8	M T W Th F									


Currer	nt Time of Day Function		
<u>Time</u>	<u>Function</u>	Settings *	Day of Week
0000	TOD OUTPUTS	83	SuM T W ThF S
0000	TOD LOCAL MULTIFU	4	SuM T W ThF S
0500	TOD LOCAL MULTIFU		SuM T W ThF S
0700	TOD OUTPUTS		M T W ThF
1000	TOD OUTPUTS	2-	SuM T W ThF
1500	TOD OUTPUTS		SuM T W ThF S
1800	TOD OUTPUTS	82-	M T W ThF
1800	PED RECALL	84	M T W ThF
2200	PED RECALL		M T W ThF

Local	Time of Day Function			
<u>Time</u>	<u>Function</u>	Settings *	Day of We	<u>eek</u>
0000	TOD OUTPUTS	83	SuM T W TI	hF S
0000	TOD LOCAL MULTIFUNG	T4	SuM T W TI	hF S
0000	PED RECALL	84	Su	S
0500	TOD LOCAL MULTIFUNG	T	SuM T W TI	hF S
0700	TOD OUTPUTS		MTWT	hF
0800	TOD OUTPUTS		Su	S
1000	TOD OUTPUTS	2-	SuM T W TI	hF
1500	TOD OUTPUTS		SuM T W TI	hF S
1800	TOD OUTPUTS	82-	MTWT	hF
1800	PED RECALL	84	MTWT	hF
2000	TOD OUTPUTS	82-	Su	S
2200	PED RECALL		MTWT	hF
2359	PED RECALL		Su	S

* Settings
Blank - FREE - Phase Bank 1, Max 1
Blank - Plan - Phase Bank 1, Max 2
1 - Phase Bank 2, Max 1
2 - Phase Bank 2, Max 2
3 - Phase Bank 3, Max 1
4 - Phase Bank 3, Max 2
5 - EXTERNAL PERMIT 1
6 - EXTERNAL PERMIT 2
7 - X-PED OMIT
8 - TBA

[8 ³				•		SIGNA	AL OF	PERA	TING	PLA	N				⇧
	D	irection	W	/B	EΒ		NB		S	BB	F	ed	Head	s	N
Timing Phases	H	ead No.	1 LV	6	2	3	3/8	8	7/4	4	P2_		P8-2	P8-1	Movements/Display/Actuation
(1+6)		Dwell	<g< td=""><td>G</td><td>R</td><td><r< td=""><td>R</td><td>R</td><td>R</td><td>R</td><td>DW</td><td></td><td>DW</td><td>DW</td><td></td></r<></td></g<>	G	R	<r< td=""><td>R</td><td>R</td><td>R</td><td>R</td><td>DW</td><td></td><td>DW</td><td>DW</td><td></td></r<>	R	R	R	R	DW		DW	DW	
WB	- ن	2+6	<y< td=""><td>G</td><td>R</td><td><r< td=""><td>R</td><td>R</td><td>R</td><td>R</td><td>DW</td><td></td><td>DW</td><td>DW</td><td>⊱ / 6 ← </td></r<></td></y<>	G	R	<r< td=""><td>R</td><td>R</td><td>R</td><td>R</td><td>DW</td><td></td><td>DW</td><td>DW</td><td>⊱ / 6 ← </td></r<>	R	R	R	R	DW		DW	DW	⊱ / 6 ←
	e	. 3	<y< td=""><td>Y</td><td>R</td><td><r< td=""><td>R</td><td>R</td><td>R</td><td>R</td><td>DW</td><td></td><td>DW</td><td>DW</td><td>1</td></r<></td></y<>	Y	R	<r< td=""><td>R</td><td>R</td><td>R</td><td>R</td><td>DW</td><td></td><td>DW</td><td>DW</td><td>1</td></r<>	R	R	R	R	DW		DW	DW	1
5 STREET	a	4	<y< td=""><td>Y</td><td>R</td><td><r_< td=""><td>R</td><td>R</td><td>R</td><td>R</td><td>DW</td><td></td><td>DW</td><td>DW</td><td>+ </td></r_<></td></y<>	Y	R	<r_< td=""><td>R</td><td>R</td><td>R</td><td>R</td><td>DW</td><td></td><td>DW</td><td>DW</td><td>+ </td></r_<>	R	R	R	R	DW		DW	DW	+
(ACTUATED)	t		ļ			<u> </u>									
(ACTUATED) (2+6)	0	Dwell	<r< td=""><td>G</td><td>G</td><td><r< td=""><td>R</td><td>R</td><td>R</td><td>R</td><td>W/F</td><td></td><td>DW</td><td>DW</td><td>· · · · · · · · · · · · · · · · · · ·</td></r<></td></r<>	G	G	<r< td=""><td>R</td><td>R</td><td>R</td><td>R</td><td>W/F</td><td></td><td>DW</td><td>DW</td><td>· · · · · · · · · · · · · · · · · · ·</td></r<>	R	R	R	R	W/F		DW	DW	· · · · · · · · · · · · · · · · · · ·
(2.0)		3	<r< td=""><td>Y</td><td>Y</td><td><r< td=""><td>R</td><td>R</td><td>R</td><td>R</td><td>DW</td><td></td><td>DW</td><td>DW</td><td>6 4</td></r<></td></r<>	Y	Y	<r< td=""><td>R</td><td>R</td><td>R</td><td>R</td><td>DW</td><td></td><td>DW</td><td>DW</td><td>6 4</td></r<>	R	R	R	R	DW		DW	DW	6 4
E/WB	С	4	<r< td=""><td>Ϋ́</td><td>Y</td><td><r< td=""><td>R</td><td>R</td><td>R</td><td>R</td><td>DW</td><td></td><td>DW</td><td>DW</td><td>° ←</td></r<></td></r<>	Ϋ́	Y	<r< td=""><td>R</td><td>R</td><td>R</td><td>R</td><td>DW</td><td></td><td>DW</td><td>DW</td><td>° ←</td></r<>	R	R	R	R	DW		DW	DW	° ←
L, W.D	e			'	'	-11	'\	- 1 \		1	DVV		שעט	DVV	
5 STREET	r		· · · · · · · · · · · · · · · · · · ·												. 2
	t														P2
(RECALL)	0														
(3)		Dwell	<r< td=""><td>R</td><td>R</td><td><g< td=""><td><g g<="" td=""><td>G</td><td>R</td><td>R</td><td>DW</td><td></td><td>DW</td><td>W/F</td><td>· · · · · · · · · · · · · · · · · · ·</td></g></td></g<></td></r<>	R	R	<g< td=""><td><g g<="" td=""><td>G</td><td>R</td><td>R</td><td>DW</td><td></td><td>DW</td><td>W/F</td><td>· · · · · · · · · · · · · · · · · · ·</td></g></td></g<>	<g g<="" td=""><td>G</td><td>R</td><td>R</td><td>DW</td><td></td><td>DW</td><td>W/F</td><td>· · · · · · · · · · · · · · · · · · ·</td></g>	G	R	R	DW		DW	W/F	· · · · · · · · · · · · · · · · · · ·
NB	С	3	<r< td=""><td>R</td><td>R</td><td>Y</td><td>Υ</td><td>Υ</td><td>R</td><td>R</td><td>DW</td><td></td><td>DW</td><td>DW</td><td>3 8</td></r<>	R	R	Y	Υ	Υ	R	R	DW		DW	DW	3 8
	1	4	<r< td=""><td>R</td><td>R</td><td><y< td=""><td>Υ</td><td>Υ</td><td>R</td><td>R</td><td>DW</td><td></td><td>DW</td><td>DW</td><td>▼ ▼ ↑ P8-2</td></y<></td></r<>	R	R	<y< td=""><td>Υ</td><td>Υ</td><td>R</td><td>R</td><td>DW</td><td></td><td>DW</td><td>DW</td><td>▼ ▼ ↑ P8-2</td></y<>	Υ	Υ	R	R	DW		DW	DW	▼ ▼ ↑ P8-2
ALTON RD	e a	1+6	<r< td=""><td>R</td><td>R</td><td><y< td=""><td>Υ</td><td>Υ</td><td>R</td><td>R</td><td>DW</td><td></td><td>DW</td><td>DW</td><td> </td></y<></td></r<>	R	R	<y< td=""><td>Υ</td><td>Υ</td><td>R</td><td>R</td><td>DW</td><td></td><td>DW</td><td>DW</td><td> </td></y<>	Υ	Υ	R	R	DW		DW	DW	
	ſ	2+6	<r< td=""><td>R</td><td>R</td><td><y< td=""><td>Υ</td><td>Υ</td><td>R</td><td>R</td><td>DW</td><td></td><td>DW</td><td>DW</td><td></td></y<></td></r<>	R	R	<y< td=""><td>Υ</td><td>Υ</td><td>R</td><td>R</td><td>DW</td><td></td><td>DW</td><td>DW</td><td></td></y<>	Υ	Υ	R	R	DW		DW	DW	
ĺ	t o														
(ACTUATED)												_			
(4)		Dwell	<r< td=""><td>R</td><td>R</td><td><r< td=""><td>R</td><td>R</td><td><g g<="" td=""><td>G</td><td>DW</td><td>_</td><td>W/F</td><td>DW</td><td>P8-1</td></g></td></r<></td></r<>	R	R	<r< td=""><td>R</td><td>R</td><td><g g<="" td=""><td>G</td><td>DW</td><td>_</td><td>W/F</td><td>DW</td><td>P8-1</td></g></td></r<>	R	R	<g g<="" td=""><td>G</td><td>DW</td><td>_</td><td>W/F</td><td>DW</td><td>P8-1</td></g>	G	DW	_	W/F	DW	P8-1
	С	1+6	<r< td=""><td>R</td><td>R</td><td><u> </u></td><td>R</td><td><u>R</u></td><td>Y</td><td>Y</td><td>DW</td><td>_</td><td>DW</td><td>DW</td><td></td></r<>	R	R	<u> </u>	R	<u>R</u>	Y	Y	DW	_	DW	DW	
NB	e e	2+6	<r< td=""><td>R</td><td>R</td><td><r< td=""><td>R</td><td>R</td><td>Υ</td><td>Y</td><td>DW</td><td>\dashv</td><td>DW</td><td>DW</td><td>\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \</td></r<></td></r<>	R	R	<r< td=""><td>R</td><td>R</td><td>Υ</td><td>Y</td><td>DW</td><td>\dashv</td><td>DW</td><td>DW</td><td>\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \</td></r<>	R	R	Υ	Y	DW	\dashv	DW	DW	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
AL TON DD	a r											\dashv			4 7
ALTON RD	t		<u>-</u>								 				
(ACTUATED)	٥											\dashv			
(AOTOATED)		Dwell													
· -	T														
managar.	C														
عاد	e a		· · · · · · · · · · · · · · · · · · ·	~	· · · · · · · · · · · · · · · · · · ·										
	r											\neg			
	t														
	٥														
	[Owell													
	c .														
	l e														
	а														
	, ,							····			\sqcup				
	t o											_			
Floable - O		io-													D 4 6 4
Flashing Ope	rati	ЮП				F <r< td=""><td></td><td>FR</td><td></td><td>FR</td><td>) o = = :</td><td>.4</td><td>2054</td><td></td><td>Page 1 of 1</td></r<>		FR		FR) o = = :	.4	2054		Page 1 of 1
Drawn			Date	ıam	-Dade	; COL	inty F	-upil	C VVO	rks I	Jepal	rM	ient		
William Rivera-Paz 2/3/2012							AL TO)N R	D & :	5.5	STR	EFT			
Checked ""			Date			Pla	aced in			- , , , ,			ing No		Asset Number
H. WELDS ND DE	_		2/13	12	Date 🕹	-			-55				5		2640

TOD Schedule Report

for 2736: Mac Arthur Cswy&Terminal Isle

Print Date: 1/8/2020

Print Time: 2:03 AM

<u>Asset</u>		Intersection		<u> </u>	TOD Schedule	Op Mode	<u>Plan #</u>	<u>Cycle</u>	Offset	TOD Setting	Active Active PhaseBank Maximum
2736	Mac Arthur Cswy&Terminal Isle D0			DW-4	TOD	[03] AM PEAK	120	37	N/A	3 Max 2	
			<u>s</u>	<u>plits</u>							
<u>PH 1</u>	<u>PH 2</u>	<u>PH 3</u>	<u>PH 4</u>	<u>PH 5</u>	<u>PH 6</u>	<u>PH 7</u>	<u>PH 8</u>				
-	WBT	WL+PED	-	WBL	EBT	WU-SERV	NBT				
0	96	23	71	53	36	7	18				
	—				_	•	A				
-	WBT	WL+PED	-	WBL	EBT		NBT				

Active Phase	Dalik. Fila	se Bank 3						
<u>Phase</u>	<u>Walk</u>	Don't Walk	Min Initial	Veh Ext	Max Limit	<u>Max 2</u>	<u>Yellow</u>	Red
	Phase Bank							
	1 2 3	1 2 3	1 2 3	1 2 3	1 2 3	1 2 3		
1 -	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0	0
2 WBT	0 - 0 - 0	0 - 0 - 0	20 - 20 - 20	1 - 1 - 1	30 - 50 - 60	0 - 98 - 60	4.8	2.5
3 WL+	4 - 4 - 4	19 - 19 - 19	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0	0
4 -	0 - 0 - 0	0 - 0 - 0	10 - 10 - 10	3 - 3 - 3	10 - 12 - 12	26 - 22 - 26	4	2
5 WBL	0 - 0 - 0	0 - 0 - 0	5 - 5 - 5	2 - 2 - 2	5 - 5 - 5	12 - 12 - 12	4.8	2
6 EBT	0 - 0 - 0	0 - 0 - 0	20 - 20 - 20	1 - 1 - 1	30 - 50 - 60	0 - 98 - 60	4.8	2.5
7 WU-	0 - 0 - 0	0 - 0 - 0	7 - 7 - 7	3 - 3 - 3	7 - 7 - 7	7 - 7 - 7	4	2
8 NBT	0 - 0 - 0	0 - 0 - 0	10 - 10 - 10	3 - 3 - 3	10 - 10 - 10	30 - 30 - 30	4	2

Permitted Phases

12345678

Default -2345678

External Permit 0 -2345678

External Permit 1 -2345678

External Permit 2 -2345678

06/24/2010 14:16

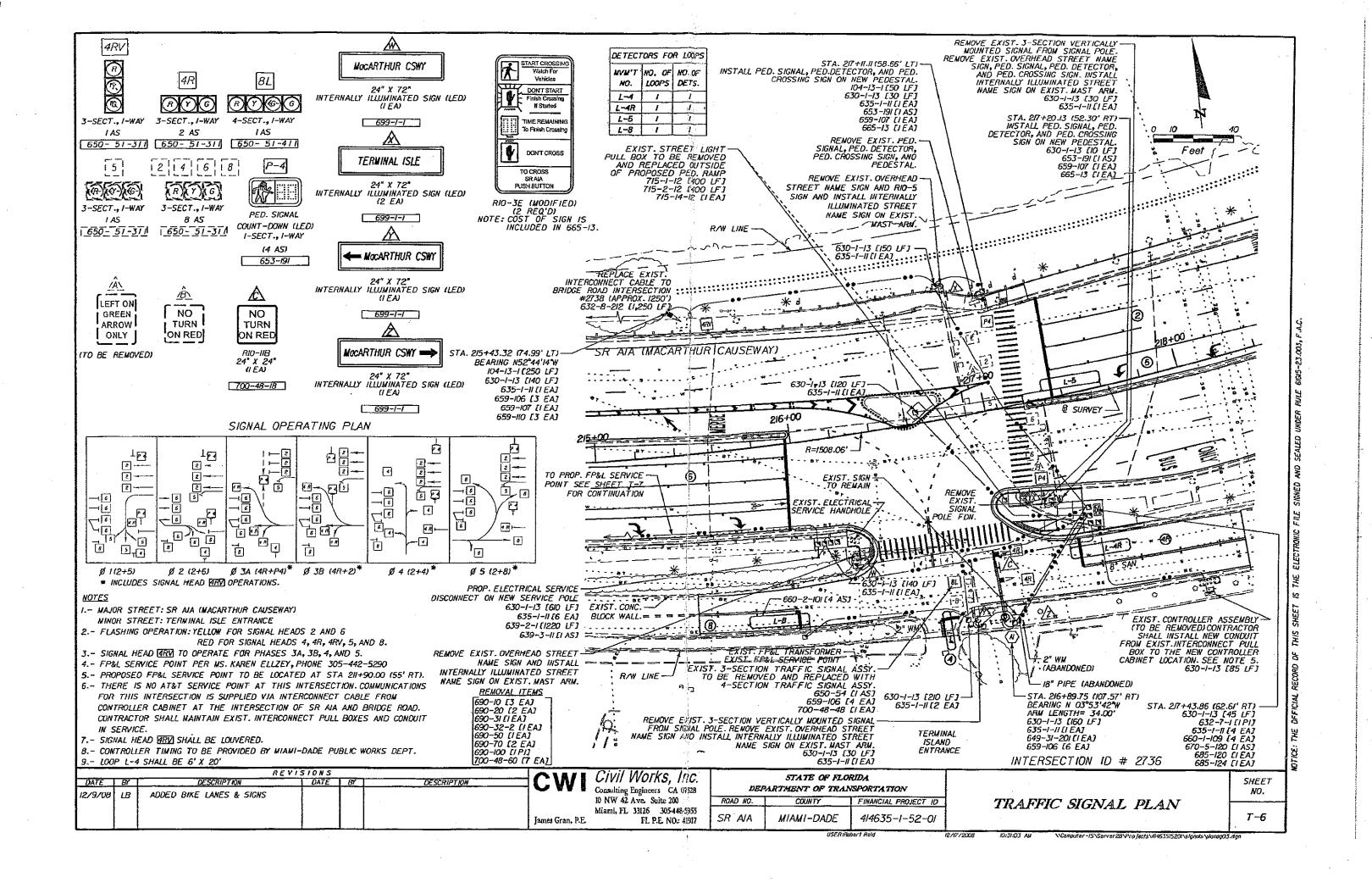
Last In Service Date:

Print Date: 1/8/2020

					9	Green 1	Г <u>ime</u>					
Current			1	2	3	4	5	6	7	8		
TOD Schedule	<u>Plan</u>	<u>Cycle</u>	-	WBT	WL+	-	WBL	EBT	WU-	NBT	Ring Offset	<u>Offset</u>
	1	170	0	79	23	10	12	60	7	26	0	155
	2	150	0	74	23	2	10	57	7	19	0	87
	3	120	0	96	23	71	53	36	7	18	0	37
	4	150	0	74	23	2	10	57	7	19	0	22
	5	150	0	74	23	2	10	57	7	19	0	87
	6	180	0	89	23	10	12	70	7	26	0	37
	7	170	0	74	23	10	9	58	7	31	0	158
	8	160	0	126	23	101	65	54	11	34	0	84
	9	140	0	116	23	91	53	56	7	18	0	49
	10	160	0	69	23	10	12	50	7	26	0	81
	15	150	0	74	23	2	10	57	7	19	0	87
	20	140	0	116	23	91	53	56	7	18	0	49
	21	200	0	104	23	10	9	88	7	31	0	1
	25	180	0	84	23	10	12	65	7	31	0	106
	26	200	0	104	23	10	9	88	7	31	0	71
	27	180	0	84	23	10	12	65	7	31	0	134
	28	220	0	124	23	10	12	105	7	31	0	114

Local TO	D Schedule		
<u>Time</u>	<u>Plan</u>	<u>DOW</u>	
0000	3	SuMTWThF S	
0500	2	M T W Th F	
0500	3	Su S	
0800	6	M T W Th F	
1000	10	Su S	
1130	5	M T W Th F	
1300	6	M T W Th F	
1615	7	M T W Th F	
1800	1	M T W Th F	
1800	7	Su S	
2200	8	M T W Th F	

Print Time:


2:03 AM

Currer	nt Time of Day Function		
<u>Time</u>	<u>Function</u>	Settings *	Day of Week
0000	TOD OUTPUTS	3	M T W ThF
0000	TOD LOCAL MULTIFU	4	SuM T W ThF S
0500	TOD OUTPUTS		M T W ThF
0500	TOD LOCAL MULTIFU		SuM T W ThF S
0630	TOD OUTPUTS	2-	M T W ThF
0930	TOD OUTPUTS		M T W ThF
1445	TOD OUTPUTS	4	M T W ThF
1615	TOD OUTPUTS	2-	M T W ThF
1845	TOD OUTPUTS		M T W ThF

Local	Time of Day Function			
<u>Time</u>	<u>Function</u>	Settings *	Day of V	<u>Veek</u>
0000	TOD OUTPUTS	3	MTW	ThF
0000	TOD OUTPUTS		Su	S
0000	TOD LOCAL MULTIFUNG	CT4	SuM T W	ThF S
0100	TOD OUTPUTS	3	Su	S
0500	TOD OUTPUTS		MTW	ThF
0500	TOD LOCAL MULTIFUNG	CT	SuM T W	ThF S
0600	TOD OUTPUTS		Su	S
0630	TOD OUTPUTS	2-	MTW	ThF
0930	TOD OUTPUTS		MTW	ThF
1000	TOD OUTPUTS	4	Su	S
1445	TOD OUTPUTS	4	MTW	ThF
1615	TOD OUTPUTS	2-	MTW	ThF
1800	TOD OUTPUTS		Su	S
1845	TOD OUTPUTS		MTW	ThF

* Settings Blank - FREE - Phase Bank 1, Max 1 Blank - Plan - Phase Bank 1, Max 2 1 - Phase Bank 2, Max 1 2 - Phase Bank 2, Max 2 3 - Phase Bank 3, Max 1 4 - Phase Bank 3, Max 2 5 - EXTERNAL PERMIT 1 6 - EXTERNAL PERMIT 2 7 - X-PED OMIT 8 - TBA

					;	SIGN	IAL	OPER.	ATIN	G P	LAN			☆ .
	D	irection	EB	W	В	W	В	NB	E	В		Р	ed Heads	, N
Timing Phases	Н	ead No.	6	5	2	4RV	4R	7	8L	8			P4	Movements/Display/Actuation
Ø(2+5)		Dwell	R	<g< td=""><td>G</td><td>R</td><td>R</td><td>R</td><td>R</td><td>R</td><td></td><td></td><td>DW</td><td>2 4</td></g<>	G	R	R	R	R	R			DW	2 4
WB	С	(2+6)	R	<y< td=""><td>G</td><td>R</td><td>R</td><td>R</td><td>R</td><td>R</td><td></td><td></td><td>DW</td><td></td></y<>	G	R	R	R	R	R			DW	
	l e				1									5
MacArthur Csw	a													□ 4
(ACTUATED)	0		i											
Ø(2+6)		Dwell	G	<r< td=""><td>G</td><td>R</td><td>R</td><td>R</td><td>R</td><td>R</td><td></td><td></td><td>DW</td><td></td></r<>	G	R	R	R	R	R			DW	
E/WB	С	3	Υ	<r< td=""><td>Υ</td><td>R</td><td>R</td><td>R</td><td>R</td><td>R</td><td></td><td></td><td>DW</td><td></td></r<>	Υ	R	R	R	R	R			DW	
	Ĭ,	4	Y	<r< td=""><td>G</td><td>R</td><td>R</td><td>R</td><td>R</td><td>R</td><td></td><td></td><td>DW</td><td></td></r<>	G	R	R	R	R	R			DW	
MacArthur Csw	e	7	Y	<r< td=""><td>G</td><td>R</td><td>R</td><td>. R</td><td>R</td><td>R</td><td></td><td></td><td>DW</td><td></td></r<>	G	R	R	. R	R	R			DW	
	٢	8	Y	<r< td=""><td>G</td><td>R</td><td>R</td><td>R</td><td>R</td><td>R</td><td></td><td></td><td>DW</td><td>6</td></r<>	G	R	R	R	R	R			DW	6
(RECALL)	ŧ	(2+5)	Υ	<r< td=""><td>G</td><td>R</td><td>R</td><td>R</td><td>R</td><td>R</td><td></td><td></td><td>DW</td><td></td></r<>	G	R	R	R	R	R			DW	
	٥													
Ø3		Dwell	R	<r< td=""><td>R</td><td>*Q</td><td>G</td><td>R</td><td>R</td><td>R</td><td></td><td></td><td>W/F</td><td>4RV P4 ¦'</td></r<>	R	*Q	G	R	R	R			W/F	4RV P4 ¦'
WB	С	7	R	<r< td=""><td>R</td><td>¥G.</td><td>Υ</td><td>R</td><td>R</td><td>R</td><td></td><td></td><td>DW</td><td></td></r<>	R	¥G.	Υ	R	R	R			DW	
) —	8	R	<r< td=""><td>R</td><td>¥G.</td><td>Υ</td><td>R</td><td>R</td><td>R</td><td></td><td></td><td>DW</td><td></td></r<>	R	¥ G.	Υ	R	R	R			DW	
COAST G. EXIT	e	(2+5)	R	<r< td=""><td>R</td><td>▼X</td><td>Υ</td><td>R</td><td>R</td><td>R</td><td></td><td></td><td>DW</td><td>☐ 4R \ •</td></r<>	R	▼ X	Υ	R	R	R			DW	☐ 4R \ •
+ PED	r	(2+6)	R	<r< td=""><td>R</td><td>TX.</td><td>Υ</td><td>R</td><td>R</td><td>R</td><td></td><td></td><td>DW</td><td></td></r<>	R	TX.	Υ	R	R	R			DW	
(ACTUATED)	ŧ									l				
,	0													
Ø4		Dwell	R	<r< td=""><td>G</td><td>VG.</td><td>G</td><td>R</td><td>R</td><td>R</td><td></td><td></td><td>DW</td><td>4RV</td></r<>	G	VG.	G	R	R	R			DW	4RV
WB	-	7	R	<r< td=""><td>G</td><td>₹G.</td><td>Υ</td><td>R</td><td>R</td><td>R</td><td></td><td></td><td>DW</td><td>2</td></r<>	G	₹G.	Υ	R	R	R			DW	2
	C I	8	R	<r< td=""><td>G</td><td>¥6.</td><td>Υ</td><td>R</td><td>R</td><td>R</td><td></td><td></td><td>DW</td><td>—</td></r<>	G	¥6.	Υ	R	R	R			DW	—
COAST G. EXIT	e a	(2+5)	R	<r< td=""><td>G</td><td>**</td><td>Y</td><td>R</td><td>R</td><td>R</td><td></td><td></td><td>DW</td><td>4R◆</td></r<>	G	* *	Y	R	R	R			DW	4R ◆
	r	(2+6)	R	<r< td=""><td>G</td><td>▼X</td><td>Υ</td><td>R</td><td>R</td><td>R</td><td></td><td></td><td>DW</td><td></td></r<>	G	▼ X	Υ	R	R	R			DW	
(ACTUATED)	t													
,	0				:									
Ø7		Dwell	R	<r< td=""><td>G</td><td>V€.</td><td>R</td><td>G</td><td>R</td><td>R</td><td></td><td></td><td>DW</td><td>4RV 2</td></r<>	G	V €.	R	G	R	R			DW	4RV 2
NB	_	8	R	<r< td=""><td>G</td><td>YG.</td><td>R</td><td>Y</td><td>R</td><td>R</td><td></td><td></td><td>DW</td><td></td></r<>	G	Y G.	R	Y	R	R			DW	
	C	(2+5)	R	<r< td=""><td>G</td><td>₹X</td><td>R</td><td>Y</td><td>R</td><td>R</td><td></td><td></td><td>DW</td><td>—</td></r<>	G	₹X	R	Y	R	R			DW	—
FPL EXIT	e a	(2+6)	R	<r< td=""><td>G</td><td>▼X</td><td>R</td><td>Y</td><td>R</td><td>R</td><td></td><td></td><td>DW</td><td>7 / 7</td></r<>	G	▼ X	R	Y	R	R			DW	7 / 7
	٢	`	Ŕ	<r< td=""><td>G</td><td>TX.</td><td>R</td><td>Y</td><td>R</td><td>R</td><td></td><td></td><td>DW</td><td></td></r<>	G	TX.	R	Y	R	R			DW	
(ACTUATED)	t													
`	0													
Ø8		Dwell	¦ R	<r< td=""><td>G</td><td>VG</td><td>R</td><td>R</td><td><g g<="" td=""><td>G</td><td></td><td></td><td>DW</td><td>4RV 2</td></g></td></r<>	G	V G	R	R	<g g<="" td=""><td>G</td><td></td><td></td><td>DW</td><td>4RV 2</td></g>	G			DW	4RV 2
EB	_	(2+5)	. R	<r< td=""><td>G</td><td>₹¥.</td><td>R</td><td>R</td><td>Υ</td><td>Υ</td><td></td><td></td><td>DW</td><td></td></r<>	G	₹¥.	R	R	Υ	Υ			DW	
	C I	(2+6)	R	<r< td=""><td>G</td><td>▼X</td><td>R</td><td>R</td><td>Υ</td><td>Y</td><td></td><td></td><td>DW</td><td></td></r<>	G	▼ X	R	R	Υ	Y			DW	
FERRY EXIT	e a							1		-				
	r		:			l	:		Ī					8 8
(ACTUATED)	t		:	— —	<u>-</u>				T	ļ				\square \square \square \square
(0													
Flashing Ope	erai	tion	FY	F <r< td=""><td>FΥ</td><td>FR</td><td>FR</td><td>FR</td><td>FR</td><td>FR</td><td></td><td><u> </u></td><td></td><td>Page 1 of 1</td></r<>	FΥ	FR	FR	FR	FR	FR		<u> </u>		Page 1 of 1
								y Pub			s De	pari	ment	
Drawn			Date					., . u.						
WILLIAM RIVE	RΑ	-PAZ	11/10/	2009							CSV	VY 8	& TERN	MINAL ISLE
	_		Date	1				ced in S			_		nasing No	o. Asset Number
Checked H. HEWON	00	ರ	11/24	109	Date	e /	/14/	10	Ву	Į	JPL		7	2736

TOD Schedule Report

for 2738: Mac Arthur Cswy&Star Isle

Print Date: 10/20/2019

Print Time: 2:01 AM

Max 2

3

						2:01 AM
TOD					<u>TOD</u>	Active Active
Schedule	Op Mode	<u>Plan #</u>	<u>Cycle</u>	<u>Offset</u>	Setting	PhaseBank Maximum

44

N/A

Last In Service Date:

120

<u>Asset</u>		Intersection		7	<u>Schedule</u>	<u>Op Mode</u>	<u>Plan #</u>		
2738	Mac A	rthur Cswy&S	Star Isle	D	OW-1		[03] AM PEAR		
			<u> </u>	Splits_					
<u>PH 1</u>	<u>PH 2</u>	<u>PH 3</u>	<u>PH 4</u>	<u>PH 5</u>	<u>PH 6</u>	<u>PH 7</u>	<u>PH 8</u>		
EBL	WBT	EL+PED	-	-	EBT	NBT	SBT+PE		
17	54	0	0	0	78	14	14		
_	←				\rightarrow	1			

Valk se Bank 2 3	Don't Walk 1 2 3 12 - 12 - 12	Min Initial 1 2 3	<u>Veh Ext</u> 1 2 3	<u>Max Limit</u> 1 2 3	Max 2 1 2 3	Yellow	<u>Red</u>
2 3		1 2 5	1 2 3	1 2 3	1 2 3		
		1 2 5	1 2 3	1 2 3	1 2 3		
- 5 - 5	12 - 12 - 12						
	12 12	7 - 7 - 7	2.5 - 2.5 - 2.5	7 - 7 - 7	25 - 14 - 22	4.8	2
- 0 - 0	0 - 0 - 0	18 - 18 - 18	1 - 1 - 1	45 - 45 - 45	0 - 45 - 60	4.8	2
- 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0	0
- 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0	0
- 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0	0
- 0 - 0	0 - 0 - 0	18 - 18 - 18	1 - 1 - 1	45 - 45 - 45	0 - 45 - 60	4.8	2
- 5 - 5	9 - 9 - 9	0 - 0 - 0	0 - 0 - 0	16 - 16 - 16	16 - 16 - 16	0	0
- 0 - 0	0 - 0 - 0	5 - 5 - 5	3 - 2 - 2	8 - 8 - 8	22 - 14 - 22	4.8	2
-	0 - 0 0 - 0 0 - 0 5 - 5	0 - 0 0 - 0 - 0 0 - 0 0 - 0 - 0 0 - 0 0 - 0 - 0 5 - 5 9 - 9 - 9	0 - 0 0 - 0 - 0 - 0 0 - 0 - 0 0 - 0 0 - 0 - 0 0 - 0 - 0 0 - 0 0 - 0 - 0 18 - 18 - 18 5 - 5 9 - 9 - 9 0 - 0 - 0	0 - 0 0 - 0 - 0 0 - 0 - 0 0 - 0 - 0 0 - 0 0 - 0 - 0 0 - 0 - 0 0 - 0 - 0 0 - 0 0 - 0 - 0 0 - 0 - 0 0 - 0 - 0 0 - 0 0 - 0 - 0 18 - 18 - 18 1 - 1 - 1 5 - 5 9 - 9 - 9 0 - 0 - 0 - 0 0 - 0 - 0	0 - 0 0 - 0 - 0	0 - 0 0 - 0 - 0	0 - 0 0 - 0 - 0

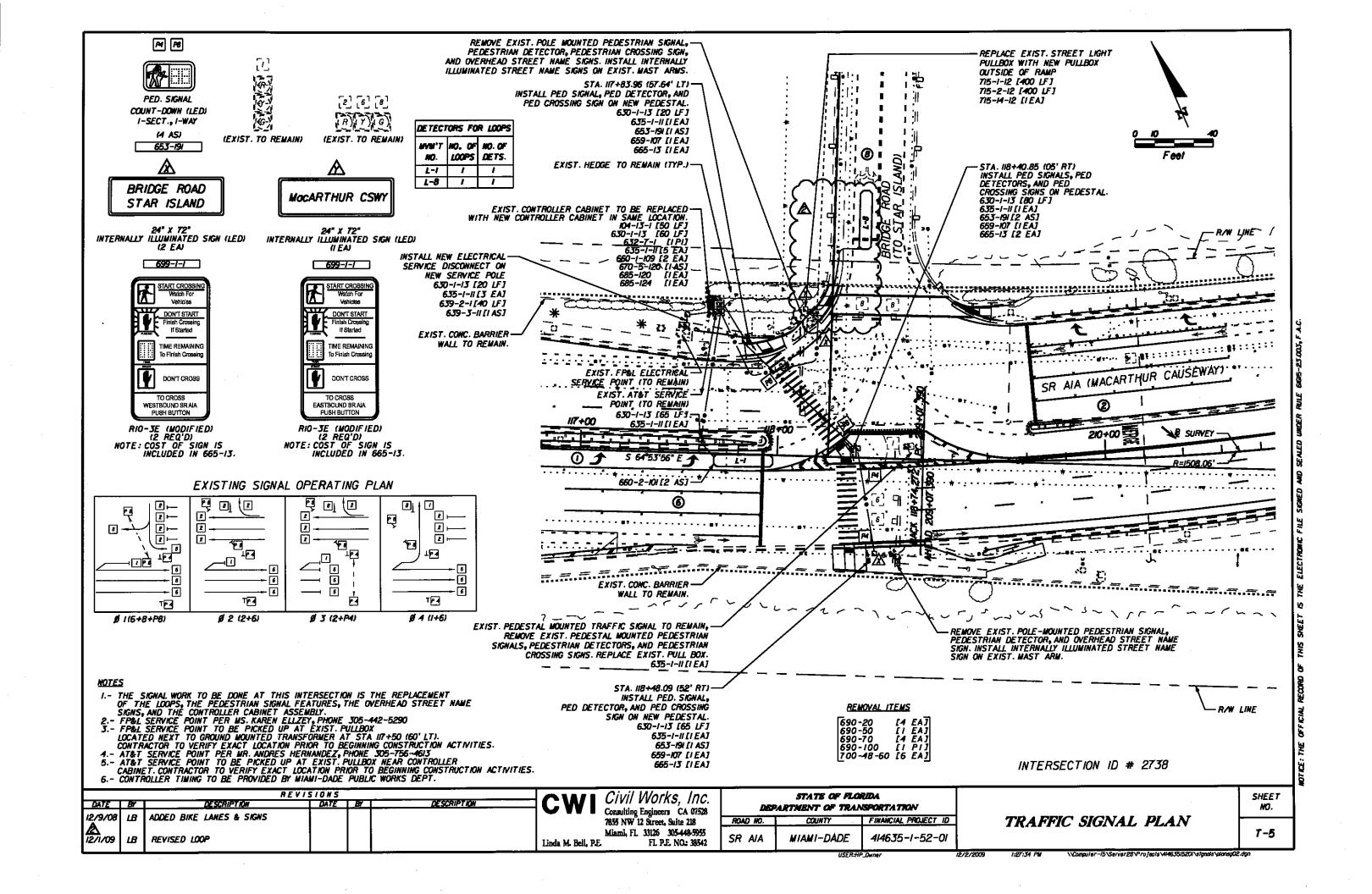
unknown

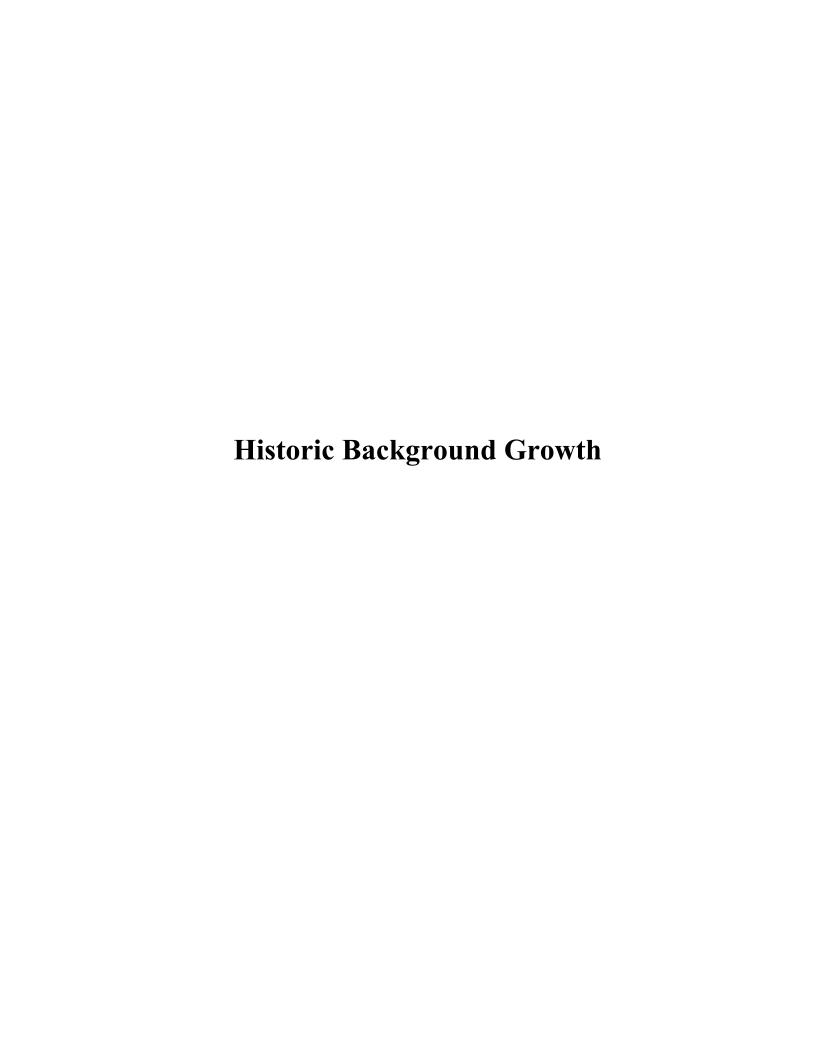
Print Date: 10/20/2019

ac Arthur Cswy&Star Isle Print Time: 2:01 AM

					<u>(</u>	Green	Time					
Current			1	2	3	4	5	6	7	8		
TOD Schedule	<u>Plan</u>	<u>Cycle</u>	EBL	WBT	EL+P	-	-	EBT	NBT	SBT	Ring Offset	<u>Offset</u>
	1	170	17	104	0	0	0	128	14	14	0	5
	2	150	17	84	0	0	0	108	14	14	0	90
	3	120	17	54	0	0	0	78	14	14	0	44
	4	150	17	84	0	0	0	108	14	14	0	60
	5	150	17	84	0	0	0	108	14	14	0	94
	6	180	17	114	0	0	0	138	14	14	0	58
	7	170	17	104	0	0	0	128	14	14	0	9
	8	160	17	94	0	0	0	118	14	14	0	101
	10	160	17	94	0	0	0	118	14	14	0	96
	15	150	17	84	0	0	0	108	14	14	0	49
	20	140	17	74	0	0	0	98	14	14	0	31
	21	200	17	134	0	0	0	158	14	14	0	34
	25	180	17	114	0	0	0	138	14	14	0	150
	26	200	17	134	0	0	0	158	14	14	0	133
	27	180	17	114	0	0	0	138	14	14	0	133
	28	220	17	154	0	0	0	178	14	14	0	133

Local TO	Local TOD Schedule									
<u>Time</u>	<u>Plan</u>	<u>DOW</u>								
0000	3	Su M T W Th F	S							
0500	2	MTWThF								
0500	3	Su	S							
0800	6	MTWThF								
1000	10	Su	S							
1130	5	M T W Th F								
1300	6	M T W Th F								
1615	7	M T W Th F								
1800	1	M T W Th F								
1800	7	Su	S							
2000	4	Su	S							
2200	8	M T W Th F								


Curren	t Time of Day Function		
<u>Time</u>	<u>Function</u>	Settings *	Day of Week
0000	TOD OUTPUTS	3	SuM T W ThF S
0000	TOD LOCAL MULTIFU	4	SuM T W ThF S
0500	TOD LOCAL MULTIFU		SuM T W ThF S
1000	TOD OUTPUTS		Su S


1	Local	Time of Day Function			
	<u>Time</u>	<u>Function</u>	Settings *	Day of Week	
١	0000	TOD OUTPUTS	3	SuM T W ThF	S
١	0000	TOD LOCAL MULTIFUN	CT4	SuM T W ThF	S
١	0500	TOD LOCAL MULTIFUN	CT	SuM T W ThF	S
١	0500	TOD OUTPUTS		M T W ThF	
_	0930	TOD OUTPUTS	2-	M T W ThF	
	1000	TOD OUTPUTS		Su	S
	1500	TOD OUTPUTS		M T W ThF	

* Settings
Blank - FREE - Phase Bank 1, Max 1 Blank - Plan - Phase Bank 1, Max 2
1 - Phase Bank 2, Max 1
2 - Phase Bank 2, Max 2 3 - Phase Bank 3, Max 1
4 - Phase Bank 3, Max 2
5 - EXTERNAL PERMIT 1
6 - EXTERNAL PERMIT 2 7 - X-PFD OMIT
8 - TBA

No Calendar Defined/Enabled

					SIG	NAL	OPE	RATII	NG P	LAN				·		
	Direction EB		WB SB				Pe	d Hea	ads							
Timing Phases	Не	ead No.	1	6		2				8		P4	1	Movements/Display/Actuat	ion	
Ø (1+6)		Dwell	<r< td=""><td>G</td><td></td><td>R</td><td></td><td></td><td></td><td>G</td><td></td><td>DW</td><td>W/F</td><td>· □</td><td></td></r<>	G		R				G		DW	W/F	· □		
	С	(2+6)	<r< td=""><td>G</td><td></td><td>R</td><td></td><td></td><td></td><td>Υ</td><td></td><td>DW</td><td>DW</td><td> `_ T</td><td></td></r<>	G		R				Υ		DW	DW	`_ T		
SB	ī	, ,												Y, , √		
	e													P8 [`] \ 8		
STAR ISLE	г													•		
	t													→ 6		
(ACTUATED)	0													,		
(2+6)		Dwell	<r< td=""><td>G</td><td></td><td>G</td><td></td><td></td><td></td><td>R</td><td></td><td>DW</td><td>DW</td><td>2 -</td><td>_</td></r<>	G		G				R		DW	DW	2 -	_	
	С	7	<r< td=""><td>Υ</td><td></td><td>G</td><td></td><td></td><td></td><td>R</td><td></td><td>DW</td><td>DW</td><td></td><td></td></r<>	Υ		G				R		DW	DW			
E/WB	1	8	<r< td=""><td>G</td><td></td><td>Υ</td><td></td><td></td><td></td><td>R</td><td></td><td>DW</td><td>DW</td><td></td><td></td></r<>	G		Υ				R		DW	DW			
	e a	(1+6)	<r< td=""><td>G</td><td></td><td>Υ</td><td></td><td></td><td></td><td>R</td><td></td><td>DW</td><td>DW</td><td></td><td></td></r<>	G		Υ				R		DW	DW			
MacARTHUR	r :													→ 6		
	t o															
(RECALL)	Ŷ															
Ø7		Dwell	<r< td=""><td>R</td><td></td><td>G</td><td></td><td></td><td></td><td>R</td><td></td><td>W/F</td><td>_</td><td></td><td></td></r<>	R		G				R		W/F	_			
	С	8	<r< td=""><td>R</td><td></td><td>Υ</td><td></td><td></td><td></td><td>R</td><td></td><td>DW</td><td></td><td>2 ◀</td><td>•</td></r<>	R		Υ				R		DW		2 ◀	•	
PED	1	(1+6)	<r< td=""><td>R</td><td></td><td>Υ</td><td></td><td></td><td></td><td>R</td><td></td><td>DW</td><td></td><td></td><td></td></r<>	R		Υ				R		DW				
	e	(2+6)	<r< td=""><td>R</td><td></td><td>G</td><td></td><td></td><td></td><td>R</td><td></td><td>DW</td><td>DW</td><td>1</td><td></td></r<>	R		G				R		DW	DW	1		
	r											<u> </u>		. P4 🔷	}	
	t													·	١.	
(ACTUATED)	Ĭ															
Ø 8		Dwell	Ç	G		R				R		DW	DW			
EB	C	(1+6)	<y< td=""><td>G</td><td></td><td>R</td><td></td><td></td><td>!</td><td>R</td><td><u> </u></td><td>_</td><td>DW</td><td></td><td></td></y<>	G		R			!	R	<u> </u>	_	DW			
	e	(2+6)	<y< td=""><td>G</td><td></td><td>R</td><td></td><td></td><td></td><td>R</td><td></td><td>DW</td><td>DW</td><td><u>}</u> 1</td><td></td></y<>	G		R				R		DW	DW	<u>}</u> 1		
MacARTHUR	a r															
	t													> 6		
(ACTUATED)	0		ļ											•		
												<u> </u>		,		
		Dwell									Ц.					
	O										oxdot					
	- e		į													
	а								į							
	r															
	t					_							ļ			
													<u> </u>			
		Dwell										_				
4	C -											ļ				
	е											↓				
	a r										$\sqcup \!\!\!\! \perp$	ऻ				
	t											<u> </u>				
	0										$oldsymbol{ol}}}}}}}}}}}}}}}}}}$		<u> </u>			
Flashing Op	era		FR	FY		FY				FR	<u> </u>			Page 1 of 1		
				าi-Da	de C	ount	y Pu	blic	Worl	(s D	epa	rtme	nt			
Drawn Date				T.	100	ΛD	TUI	ID	C_{Δ}	/ . /	Ω	Star Icla	-			
			2010	MacARTHUR Cswy 8 Placed in Service Phasing No												
			Date	.),	<u> </u>						Pha			Asset Number		
H. HEWSWOOD			1/25	10	Date :	2/3/	10	By 🖊	1414	7		6		2738		

Terminal Island Miami Beach

Background Growth Rate

Station	Location	2015	2016	2017	2018	2019
2528	SR A1A/Macarthur CSWY, 150' N of Meridian Ave	39,500	35,500	44,000	32,000	31,000
5159	SR A1A/Collins Ave, 200' N 5 ST	13,800	13,100	14,600	11,800	12,900
6059	Ramp from Macarthur CSWY to NB Alton	15,500	18,500	19,000	16,500	16,500
9080	SR A1A/Macarthur CSWY, 1000' W of Palm Isl Ent	87,000	87,500	92,000	88,500	85,500
	Total	155,800	154,600	169,600	148,800	145,900
	Yearly Growth	2.9%	-0.8%	9.7%	-12.3%	-1.9%
	Growth Trend				·	-0.5%

COUNTY: 87 - MIAMI-DADE

SITE: 2528 - SR A1A/MACARTHUR CSWY, 150' N OF MERIDIAN AVE

YEAR	AADT	DIRECTION 1	DIRECTION 2	*K FACTOR	D FACTOR	T FACTOR
2019	31000 F	E 15500	W 15500	9.00	54.00	5.00
2018	32000 C	E 16000	W 16000	9.00	55.20	5.60
2017	44000 C	E 20000	W 24000	9.00	54.00	5.30
2016	35500 C	E 18500	W 17000	9.00	55.50	7.80
2015	39500 C	E 20000	W 19500	9.00	55.10	4.60
2014	33000 C	E 17000	W 16000	9.00	54.30	5.10
2013	34000 C	E 17500	W 16500	9.00	54.10	6.10
2012	32500 C	E 14500	W 18000	9.00	53.40	8.40
2011	35000 C	E 16500	W 18500	9.00	51.90	7.50
2010	35000 C	E 16500	W 18500	7.16	52.27	8.80
2009	35500 C	E 16500	W 19000	9.21	57.60	8.40
2008	34500 C	E 16000	W 18500	7.42	52.15	5.30
2007	34000 C	E 16500	W 17500	7.11	53.51	4.90
2006	40500 C	E 19500	W 21000	7.18	52.50	2.20
2005	35000 C	E 16000	W 19000	7.30	52.50	5.50
2004	41500 C	E 20500	W 21000	7.40	52.00	8.20

AADT FLAGS: C = COMPUTED; E = MANUAL ESTIMATE; F = FIRST YEAR ESTIMATE

S = SECOND YEAR ESTIMATE; T = THIRD YEAR ESTIMATE; R = FOURTH YEAR ESTIMATE

V = FIFTH YEAR ESTIMATE; 6 = SIXTH YEAR ESTIMATE; X = UNKNOWN

COUNTY: 87 - MIAMI-DADE

SITE: 5159 - SR AIA/COLLINS AV, 200' N 5 ST(MIAMI BEACH)

YEAR	AADT	DIE	RECTION 1	DII	RECTION 2	*K FACTOR	D FACTOR	T FACTOR
2019	12900 C	N	6900	S	6000	9.00	54.60	5.00
2018	11800 C	N	6600	S	5200	9.00	54.30	5.60
2017	14600 C	N	8800	S	5800	9.00	55.00	5.30
2016	13100 C	N	6700	S	6400	9.00	54.50	7.80
2015	13800 C	N	5500	S	8300	9.00	54.70	4.60
2014	13400 C	N	6500	S	6900	9.00	54.50	5.10
2013	16400 C	N	7400	S	9000	9.00	52.40	6.10
2012	16700 C	N	7100	S	9600	9.00	55.70	8.40
2011	13600 C	N	6900	S	6700	9.00	55.10	7.50
2010	12900 C	N	6200	S	6700	8.98	54.08	8.80
2009	15300 C	N	7600	S	7700	8.99	53.24	8.40
2008	13600 C	N	6300	S	7300	9.09	55.75	5.30
2007	14300 C	N	6500	S	7800	8.01	54.34	4.90
2006	13100 C	N	5800	S	7300	7.97	54.22	2.20
2005	16100 C	N	7300	S	8800	8.80	53.80	5.50
2004	17400 C	N	8400	S	9000	9.00	53.30	8.20

AADT FLAGS: C = COMPUTED; E = MANUAL ESTIMATE; F = FIRST YEAR ESTIMATE

S = SECOND YEAR ESTIMATE; T = THIRD YEAR ESTIMATE; R = FOURTH YEAR ESTIMATE

V = FIFTH YEAR ESTIMATE; 6 = SIXTH YEAR ESTIMATE; X = UNKNOWN

COUNTY: 87 - MIAMI-DADE

SITE: 6059 - RAMP 87037200 FRM EB MACARTHUR CSWY TO NB ALTON RD, 300' E OF MACARTHUR CSWY

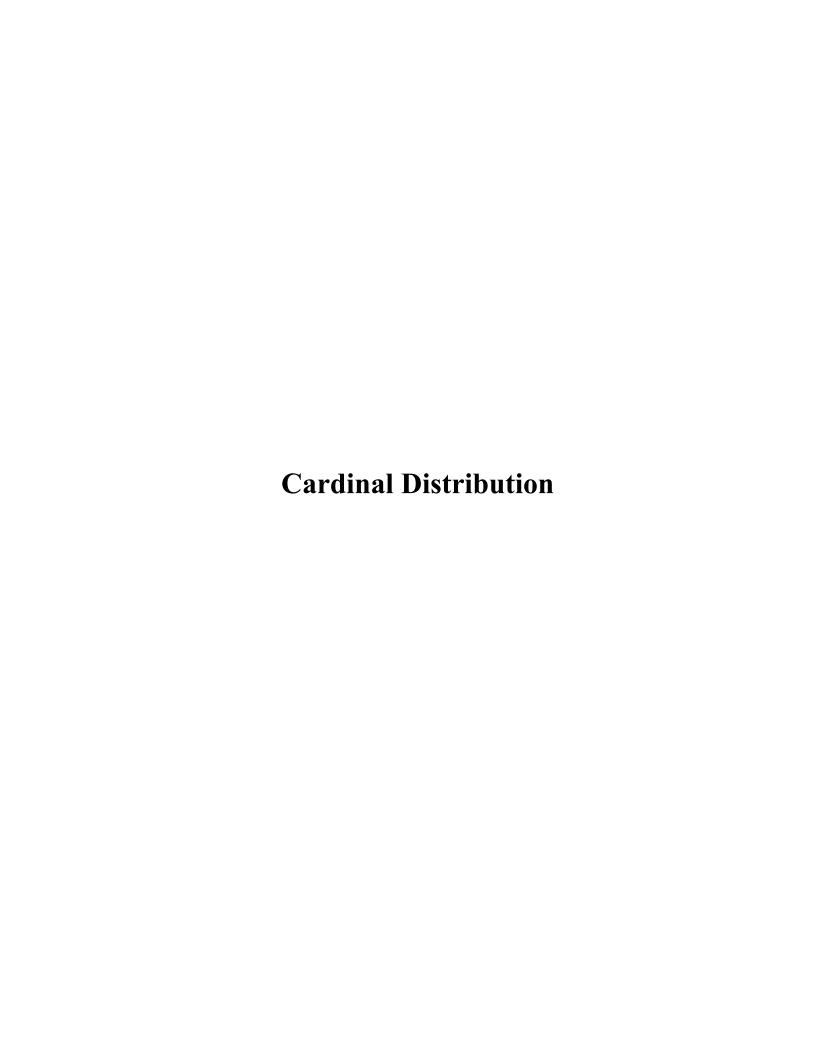
YEAR	AADT	DIF	RECTION 1	DIR	ECTION 2	*K	FACTOR	D F.	ACTOR	Т	FACTOR
2019	16500 F		0		0		9.00		99.90		3.80
2018	16500 C	N	16500		0		9.00		99.90		3.80
2017	19000 F		0		0		9.00		99.90		5.50
2016	18500 C	N	18500		0		9.00		99.90		5.50
2015	15500 F		0		0		9.00		99.90		18.00
2014	15000 C	N	15000				9.00		99.90		18.00
2013	19000 F		0		0		9.00		99.90		2.20
2012	19500 C	N	19500		0		9.00		99.90		2.20
2011	18000 F		0		0		9.00		99.90		2.70
2010	18000 C	N	18000		0		8.98		99.99		2.70
2009	17500 F		0		0		8.99		99.99		7.70
2008	18000 C	N	18000		0		9.09		99.99		7.70
2007	20500 F		0		0		8.01		99.99		1.40
2006	20500 C	N	20500		0		7.97		99.99		1.40
2005	17500 S	N		В			8.80		99.90		2.60
2004	17500 F	N		В			9.00		99.90		2.60

AADT FLAGS: C = COMPUTED; E = MANUAL ESTIMATE; F = FIRST YEAR ESTIMATE

S = SECOND YEAR ESTIMATE; T = THIRD YEAR ESTIMATE; R = FOURTH YEAR ESTIMATE

V = FIFTH YEAR ESTIMATE; 6 = SIXTH YEAR ESTIMATE; X = UNKNOWN

COUNTY: 87 - MIAMI-DADE

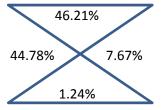

SITE: 9080 - SR A1A/MACARTHUR CSWY, 1000' W PALM ISL ENT @R31

YEAR	AADT	DIRECTION	1 DI	RECTION 2	*K FACTOR	D FACTOR	T FACTOR
2019	85500 C	E 43500	W	42000	9.00	54.00	3.10
2018	88500 C	E 45000	W	43500	9.00	55.20	3.10
2017	92000 C	E 46000	W	46000	9.00	54.00	2.50
2016	87500 C	E 44500	W	43000	9.00	55.50	3.80
2015	87000 C	E 43000	W	44000	9.00	55.10	4.30
2014	90000 C	E 44000	W	46000	9.00	54.30	4.00
2013	77000 C	E 41000	W	36000	9.00	54.10	3.00
2012	96500 C	E 48500	W	48000	9.00	53.40	4.40
2011	90500 C	E 45500	W	45000	9.00	51.90	4.20
2010	87000 C	E 42500	W	44500	7.16	52.27	4.20
2009	94000 C	E 49000	W	45000	9.21	57.60	3.50
2008	87500 C	E 43500	W	44000	7.42	52.15	2.80
2007	91000 C	E 45000	W	46000	7.11	53.51	2.30
2006	76000 C	E 33500	W	42500	7.18	52.50	4.00
2005	69000 C	E 35000	W	34000	7.30	52.50	4.90
2004	76000 C	E 37000	W	39000	7.40	52.00	4.90

AADT FLAGS: C = COMPUTED; E = MANUAL ESTIMATE; F = FIRST YEAR ESTIMATE

S = SECOND YEAR ESTIMATE; T = THIRD YEAR ESTIMATE; R = FOURTH YEAR ESTIMATE

V = FIFTH YEAR ESTIMATE; 6 = SIXTH YEAR ESTIMATE; X = UNKNOWN

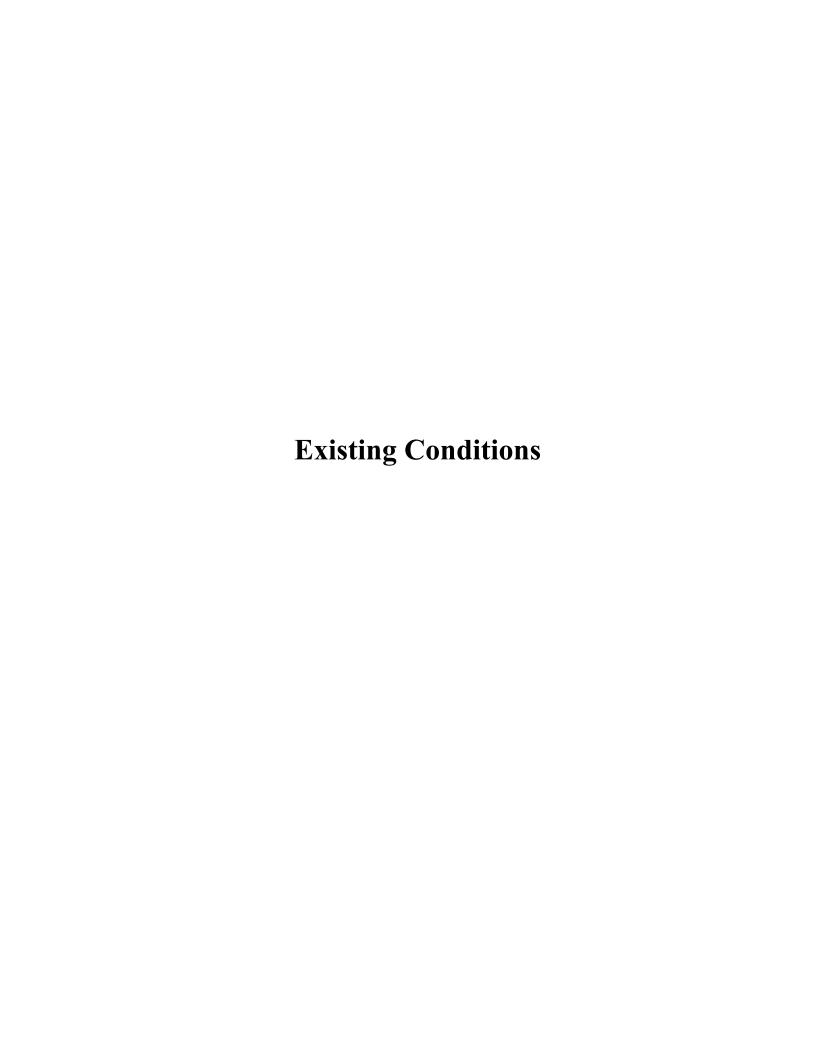


20129 - Terminal Island

TAZ 651

DIRECTION	2015	2045	2022
NNE	30.20%	18.60%	27.49%
ENE	2.00%	1.20%	1.81%
ESE	6.30%	4.40%	5.86%
SSE	0.00%	0.00%	0.00%
SSW	1.20%	1.36%	1.24%
WSW	13.40%	22.70%	15.57%
WNW	27.20%	35.80%	29.21%
NNW	19.60%	15.80%	18.71%

29.31%	47.92%
5.86%	16.81%


DIRECTIONAL TRIP DISTRIBUTION REPORT

		N	/liami-Dade	2015 Base	Year Direc	tion Trip D	istributio	ո Summary	/		
TAZ of	f Origin	Tring /				Cardinal D	irections				Total
County TAZ	Regional TAZ	Trips / Percent	NNE	ENE	ESE	SSE	ssw	wsw	WNW	NNW	Total Trips
651	3551	Trips	601	40	126	-	25	267	541	390	2,069
651	3551	Percent	30.2	2.0	6.3	-	1.2	13.4	27.2	19.6	
652	3552	Trips	740	133	112	92	80	539	627	907	3,332
652	3552	Percent	22.9	4.1	3.5	2.8	2.5	16.7	19.4	28.1	
653	3553	Trips	597	120	187	238	48	604	488	661	2,984
653	3553	Percent	20.3	4.1	6.4	8.1	1.6	20.5	16.6	22.5	
654	3554	Trips	648	-	246	192	190	739	849	890	3,940
654	3554	Percent	17.3	-	6.6	5.1	5.1	19.7	22.6	23.7	
655	3555	Trips	2,579	-	-	-	1,029	2,523	3,354	2,903	13,375
655	3555	Percent	20.8	-	-	-	8.3	20.4	27.1	23.4	
656	3556	Trips	683	-	-	-	187	546	1,103	960	3,541
656	3556	Percent	19.6	-	-	-	5.4	15.7	31.7	27.6	
657	3557	Trips	223	26	3	49	34	152	244	154	913
657	3557	Percent	25.2	2.9	0.4	5.5	3.8	17.2	27.6	17.4	
658	3558	Trips	385	-	74	12	19	212	362	296	1,384
658	3558	Percent	28.3	-	5.4	0.9	1.4	15.6	26.6	21.8	
659	3559	Trips	1,748	-	-	-	186	1,331	2,542	2,823	9,143
659	3559	Percent	20.3	-	-	-	2.2	15.4	29.5	32.7	
660	3560	Trips	445	-	-	-	26	214	438	582	1,786
660	3560	Percent	26.1	-	-	-	1.5	12.5	25.7	34.1	
661	3561	Trips	561	-	-	-	29	307	686	550	2,237
661	3561	Percent	26.3	-	-	-	1.4	14.4	32.2	25.8	
662	3562	Trips	247	-	-	-	367	663	1,138	583	3,054
662	3562	Percent	8.2	-	-	-	12.3	22.1	38.0	19.4	-,
663	3563	Trips	28	-	-	-	80	28	129	132	397
663	3563	Percent	7.1	-	_	-	20.3	7.0	32.4	33.2	
664	3564	Trips	690	1,278	_	2	5	504	1,465	2,405	8,087
664	3564	Percent	10.9	20.1	-	0.0	0.1	7.9	23.1	37.9	0,007
665	3565	Trips	1,047	-	-	16	12	2,003	2,621	4,069	11,382
665	3565	Percent	10.7	-	-	0.2	0.1	20.5	26.8	41.7	
666	3566	Trips	7	-	_	- 0.2	-	20.5	40	97	144
666	3566	Percent	4.6	-	_	_	_	-	27.9	67.5	477
667	3567	Trips	69	191	371	354	52	-		11	1,049
667	3567	Percent	6.6	18.3	35.4	33.8	5.0	-	_	1.1	1,043
668	3568		72	316	257	156	343	_	1	27	1,181
668	3568	Percent	6.2	27.0	21.9	13.3	29.2	-	0.1	2.3	1,101
669	3569	Trips	708	1,153	1,379	1,013	424	-	6	148	4,982
669	3569	Percent	14.7	23.9	28.6	21.0	8.8	-	0.1	3.1	-, ,302
670	3570	Trips	784	1,013	1,374	915	589	74	8	172	5,078
670	3570	Percent	15.9	20.6	27.9	18.6	11.9	1.5	0.2	3.5	3,070
671	3570	Trips	868	1,044	1,129	712	718	1.5	40	169	4,757
671	3571	Percent	18.5	22.3	24.1	15.2	15.4	0.0	0.9	3.6	4,/3/
	3571		262			125	162				074
672		Trips		156	186			2	24	57	974
672	3572	Percent	26.9	16.0	19.1	12.8	16.7	0.3	2.4	5.8	1 112
673	3573	Trips	172	261	359	224	207	12	36	140	1,412
673	3573	Percent	12.2	18.5	25.4	15.9	14.6	0.8	2.6	9.9	4 740
674	3574	Trips	866	641	1,000	863	613	112	90	488	4,718
674	3574	Percent	18.5	13.7	21.4	18.5	13.1	2.4	1.9	10.4	2 700
675	3575	Trips	904	864	749	472	371	46	31	226	3,703
675	3575	Percent	24.7	23.6	20.5	12.9	10.1	1.3	0.9	6.2	
676	3576	Trips	43	54	19	23	31	8	-	15	194
676	3576	Percent	22.4	27.9	9.7	11.7	16.2	4.3	-	7.9	

DIRECTIONAL TRIP DISTRIBUTION REPORT

		Miar	ni-Dade 204	5 Cost Fea	sible Plan l	Direction 1	rip Distrib	ution Sum	mary		
TAZ of	Origin	Trips /				Cardinal E	Directions				Total
County TAZ	Regional TAZ	- Trips / Percent	NNE	ENE	ESE	SSE	SSW	WSW	WNW	NNW	Trips
651	3551	Trips	500	33	118	-	44	610	964	424	2,777
651	3551	Percent	18.6	1.2	4.4	-	1.6	22.7	35.8	15.8	
652	3552	Trips	834	141	140	71	102	864	1,319	966	4,613
652	3552	Percent	18.8	3.2	3.2	1.6	2.3	19.5	29.7	21.8	
653	3553	Trips	563	73	181	185	40	875	1,115	522	3,691
653	3553	Percent	15.8	2.1	5.1	5.2	1.1	24.6	31.4	14.7	
654	3554	Trips	527	-	154	189	209	1,276	1,357	971	4,960
654	3554	Percent	11.3	-	3.3	4.0	4.5	27.2	29.0	20.7	
655	3555	Trips	2,507	-	-	-	984	3,119	4,529	3,116	15,245
655	3555	Percent	17.6	-	-	-	6.9	21.9	31.8	21.9	
656	3556	Trips	752	-	-	-	201	872	1,503	1,028	4,509
656	3556	Percent	17.3	-	-	-	4.6	20.0	34.5	23.6	
657	3557	Trips	255	42	13	51	17	325	482	206	1,441
657	3557	Percent	18.4	3.0	1.0	3.7	1.2	23.4	34.6	14.8	
658	3558	Trips	398	-	50	10	22	302	673	339	1,860
658	3558	Percent	22.2	-	2.8	0.6	1.2	16.8	37.5	18.9	
659	3559	Trips	1,874	-	-	-	244	1,675	3,472	2,524	10,393
659	3559	Percent	19.1	-	-	-	2.5	17.1	35.5	25.8	
660	3560	Trips	386	-	-	-	28	335	726	479	2,047
660	3560	Percent	19.8	-	-	-	1.5	17.2	37.1	24.5	
661	3561	Trips	756	-	-	-	54	536	1,539	649	3,810
661	3561	Percent	21.4	-	-	-	1.5	15.2	43.6	18.4	
662	3562	Trips	292	-	-	-	279	909	1,772	764	4,053
662	3562	Percent	7.3	-	-	-	7.0	22.6	44.1	19.0	
663	3563	Trips	23	-	-	-	29	57	119	164	393
663	3563	Percent	5.9	-	-	-	7.3	14.5	30.4	41.9	
664	3564	Trips	776	1,012	-	8	8	823	2,336	4,104	11,172
664	3564	Percent	8.6	11.2	-	0.1	0.1	9.1	25.8	45.3	
665	3565	Trips	896	-	-	16	21	1,811	3,091	5,025	12,548
665	3565	Percent	8.3	-	-	0.2	0.2	16.7	28.5	46.3	
666	3566	Trips	14	-	-	-	0	4	56	145	235
666	3566	Percent	6.4	-	-	-	0.0	2.0	25.5	66.1	
667	3567	Trips	62	202	356	394	51	-	-	12	1,076
667	3567	Percent	5.8	18.8	33.0	36.6	4.7	-	-	1.1	•
668	3568	Trips	190	394	278	333	392	-	1	32	1,620
668	3568	Percent	11.7	24.3	17.2	20.6	24.2	-	0.1	2.0	•
669	3569	Trips	1,117	1,381	1,871	1,307	750	-	10	135	6,631
669	3569	Percent	17.0	21.0	28.5	19.9	11.4	-	0.2	2.1	•
670	3570	Trips	1,284	1,233	1,894	1,616	1,059	85	15	177	7,535
670	3570	Percent	17.4	16.8	25.7	22.0	14.4	1.2	0.2	2.4	,
671	3571	Trips	1,240	959	1,638	945	797	1	46	211	5,998
671	3571	Percent	21.2	16.4	28.1	16.2	13.7	0.0	0.8	3.6	-,
672	3572	Trips	186	161	294	189	226	24	35	120	1,234
672	3572	Percent	15.0	13.0	23.8	15.4	18.3	1.9	2.8	9.7	,
673	3573	Trips	410	361	600	469	343	30	46	233	2,524
673	3573	Percent	16.5	14.5	24.1	18.8	13.8	1.2	1.8	9.4	-, ·
674	3574	Trips	1,543	1,530	2,122	1,962	1,401	177	145	1,154	10,169
674	3574	Percent	15.4	15.3	21.2	19.6	14.0	1.8	1.4	11.5	20,200
675	3575	Trips	896	1,067	1,015	818	747	40	74	465	5,206
675	3575	Percent	17.5	20.8	19.8	16.0	14.6	0.8	1.4	9.1	3,200
676	3576	Trips	151	160	192	100	100	18	-	45	766
676	3576	Percent	19.8	20.9	25.1	13.1	13.0	2.3	-	5.9	700
0/0	33/0	reitelli	19.8	20.9	23.1	13.1	13.0	2.3	-	5.9	

Appendix D Intersection Capacity Analysis Worksheets

	•	-	•	•	-	✓	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	ሻ	^ ^	^ ^	7	W		
Traffic Volume (vph)	21	3141	2585	7	5	11	
Future Volume (vph)	21	3141	2585	7	5	11	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	7.0	7.0	7.0	7.0	7.0		
Lane Util. Factor	1.00	0.91	0.91	1.00	1.00		
Frt	1.00	1.00	1.00	0.85	0.90		
Flt Protected	0.95	1.00	1.00	1.00	0.99		
Satd. Flow (prot)	1787	5136	5136	1599	1677		
Flt Permitted	0.03	1.00	1.00	1.00	0.99		
Satd. Flow (perm)	55	5136	5136	1599	1677		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	23	3414	2810	8	5	12	
RTOR Reduction (vph)	0	0	0	0	12	0	
Lane Group Flow (vph)	23	3414	2810	8	5	0	
Turn Type	pm+pt	NA	NA	Prot	Prot		
Protected Phases	1	6	2	2	8		
Permitted Phases	6	8					
Actuated Green, G (s)	161.7	166.0	150.5	150.5	4.3		
Effective Green, g (s)	161.7	166.0	150.5	150.5	4.3		
Actuated g/C Ratio	0.90	0.92	0.84	0.84	0.02		
Clearance Time (s)	7.0	7.0	7.0	7.0	7.0		
Vehicle Extension (s)	2.5	1.0	1.0	1.0	3.0		
Lane Grp Cap (vph)	89	5136	4294	1336	40		
v/s Ratio Prot	0.01	c0.60	0.55	0.00	0.00		
v/s Ratio Perm	0.23	0.07					
v/c Ratio	0.26	0.66	0.65	0.01	0.13		
Uniform Delay, d1	7.2	1.4	5.3	2.4	86.0		
Progression Factor	1.00	1.00	1.00	1.00	1.00		
Incremental Delay, d2	1.1	0.3	0.8	0.0	1.5		
Delay (s)	8.4	1.7	6.1	2.4	87.5		
Level of Service	А	Α	Α	Α	F		
Approach Delay (s)		1.8	6.1		87.5		
Approach LOS		Α	Α		F		
Intersection Summary							
HCM 2000 Control Delay 4.0				Н	CM 2000	Level of Service	Α
HCM 2000 Volume to Capa	0.76						
Actuated Cycle Length (s)	ctuated Cycle Length (s) 180.0					time (s)	23.0
Intersection Capacity Utilization	ation		76.5%	IC	U Level o	of Service	D
Analysis Period (min)			15				

Analysis Period (min) c Critical Lane Group

	•	-	←	•	-	4		
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	Ø7	
Lane Configurations	ች	^ ^	^ ^	7	¥			
Traffic Volume (vph)	21	3141	2585	7	5	11		
Future Volume (vph)	21	3141	2585	7	5	11		
Confl. Peds. (#/hr)								
Confl. Bikes (#/hr)								
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96		
Growth Factor	100%	100%	100%	100%	100%	100%		
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%		
Bus Blockages (#/hr)	0	0	0	0	0	0		
Parking (#/hr)								
Mid-Block Traffic (%)		0%	0%		0%			
Shared Lane Traffic (%)								
Turn Type	pm+pt	NA	NA	Prot	Prot			
Protected Phases	1	6	2	2	8		7	
Permitted Phases	6	8						
Detector Phase	1	6	2	2	8			
Switch Phase								
Minimum Initial (s)	7.0	18.0	18.0	18.0	5.0		1.0	
Minimum Split (s)	24.0	25.0	25.0	25.0	21.0		14.0	
Total Split (s)	24.0	145.0	121.0	121.0	21.0		14.0	
Total Split (%)	13.3%	80.6%	67.2%	67.2%	11.7%		8%	
Yellow Time (s)	5.0	5.0	5.0	5.0	5.0		2.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0		0.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0			
Total Lost Time (s)	7.0	7.0	7.0	7.0	7.0			
Lead/Lag	Lead		Lag	Lag	Lag		Lead	
Lead-Lag Optimize?	Yes		Yes	Yes	Yes		Yes	
Recall Mode	None	C-Max	C-Max	C-Max	None		None	

Cycle Length: 180 Actuated Cycle Length: 180

Offset: 58 (32%), Referenced to phase 2:WBT and 6:EBTL, Start of Yellow

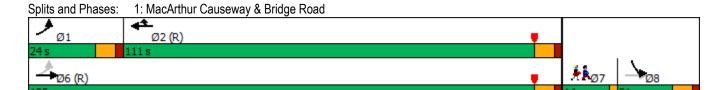
Natural Cycle: 135

1: MacArthur Causeway & Bridge Road

	•	→	←	•	\
Lane Group	EBL	EBT	WBT	WBR	SBL
Lane Group Flow (vph)	22	3272	2693	7	16
v/c Ratio	0.18	0.64	0.59	0.00	0.23
Control Delay	4.2	0.6	5.4	3.0	52.5
Queue Delay	0.0	0.0	0.3	0.0	0.0
Total Delay	4.2	0.6	5.8	3.0	52.5
Queue Length 50th (ft)	2	0	403	1	6
Queue Length 95th (ft)	6	0	465	5	35
Internal Link Dist (ft)		1033	477		902
Turn Bay Length (ft)	140			100	
Base Capacity (vph)	221	5136	4535	1412	140
Starvation Cap Reductn	0	0	1015	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.10	0.64	0.77	0.00	0.11
Intersection Summary					

	•	-	←	•	-	✓		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations	ሻ	^ ^	^ ^	7	¥			
Traffic Volume (vph)	12	2712	3236	14	5	50		
Future Volume (vph)	12	2712	3236	14	5	50		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	7.0	7.0	7.0	7.0	7.0			
Lane Util. Factor	1.00	0.91	0.91	1.00	1.00			
Frt	1.00	1.00	1.00	0.85	0.88			
Flt Protected	0.95	1.00	1.00	1.00	1.00			
Satd. Flow (prot)	1787	5136	5136	1599	1642			
Flt Permitted	0.03	1.00	1.00	1.00	1.00			
Satd. Flow (perm)	51	5136	5136	1599	1642			
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	13	2948	3517	15	5	54		
RTOR Reduction (vph)	0	0	0	1	52	0		
Lane Group Flow (vph)	13	2948	3517	14	7	0		
Turn Type	pm+pt	NA	NA	Prot	Prot			
Protected Phases	1	6	2	2	8			
Permitted Phases	6	8						
Actuated Green, G (s)	150.0	156.0	140.2	140.2	6.0			
Effective Green, g (s)	150.0	156.0	140.2	140.2	6.0			
Actuated g/C Ratio	0.88	0.92	0.82	0.82	0.04			
Clearance Time (s)	7.0	7.0	7.0	7.0	7.0			
Vehicle Extension (s)	2.5	1.0	1.0	1.0	3.0			
Lane Grp Cap (vph)	73	5136	4235	1318	57			
v/s Ratio Prot	0.00	c0.51	c0.68	0.01	0.00			
v/s Ratio Perm	0.15	0.07						
v/c Ratio	0.18	0.57	0.83	0.01	0.12			
Uniform Delay, d1	20.1	1.2	8.3	2.6	79.4			
Progression Factor	1.00	1.00	0.51	0.75	1.00			
Incremental Delay, d2	0.9	0.2	0.2	0.0	1.0			
Delay (s)	21.0	1.4	4.5	2.0	80.4			
Level of Service	С	Α	Α	Α	F			
Approach Delay (s)		1.5	4.4		80.4			
Approach LOS		Α	Α		F			
Intersection Summary								
HCM 2000 Control Delay			3.8	H	CM 2000	Level of Service	Α	
•		0.88						
Actuated Cycle Length (s)				Sı	um of lost	time (s)	23.0	
	ersection Capacity Utilization 78.49				U Level o		D	
Analysis Period (min)			15					

1: MacArthur Causeway & Bridge Road


	•	-	•	•	-	4		
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	Ø7	
Lane Configurations	ħ	ተተተ	ተተተ	7	W			
Traffic Volume (vph)	12	2712	3236	14	5	50		
Future Volume (vph)	12	2712	3236	14	5	50		
Confl. Peds. (#/hr)								
Confl. Bikes (#/hr)								
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Growth Factor	100%	100%	100%	100%	100%	100%		
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%		
Bus Blockages (#/hr)	0	0	0	0	0	0		
Parking (#/hr)								
Mid-Block Traffic (%)		0%	0%		0%			
Shared Lane Traffic (%)								
Turn Type	pm+pt	NA	NA	Prot	Prot			
Protected Phases	1	6	2	2	8		7	
Permitted Phases	6	8						
Detector Phase	1	6	2	2	8			
Switch Phase								
Minimum Initial (s)	7.0	18.0	18.0	18.0	5.0		1.0	
Minimum Split (s)	24.0	25.0	25.0	25.0	21.0		14.0	
Total Split (s)	24.0	135.0	111.0	111.0	21.0		14.0	
Total Split (%)	14.1%	79.4%	65.3%	65.3%	12.4%		8%	
Yellow Time (s)	5.0	5.0	5.0	5.0	5.0		2.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0		0.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0			
Total Lost Time (s)	7.0	7.0	7.0	7.0	7.0			
Lead/Lag	Lead		Lag	Lag	Lag		Lead	
Lead-Lag Optimize?	Yes		Yes	Yes	Yes		Yes	
Recall Mode	None	C-Max	C-Max	C-Max	None		None	

Intersection Summary

Cycle Length: 170 Actuated Cycle Length: 170

Offset: 9 (5%), Referenced to phase 2:WBT and 6:EBTL, Start of Yellow

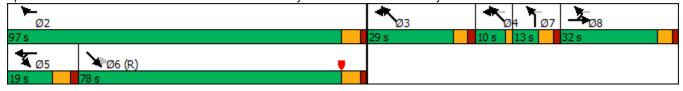
Natural Cycle: 145

	•	→	•	•	\
Lana Craun	EDI	ГОТ	WDT	WDD	CDI
Lane Group	EBL	EBT	WBT	WBR	SBL
Lane Group Flow (vph)	13	2948	3517	15	59
v/c Ratio	0.11	0.57	0.79	0.01	0.49
Control Delay	3.5	0.5	5.7	0.6	34.4
Queue Delay	0.0	0.0	1.3	0.0	0.0
Total Delay	3.5	0.5	6.9	0.6	34.4
Queue Length 50th (ft)	1	0	54	0	6
Queue Length 95th (ft)	5	0	m78	m0	56
Internal Link Dist (ft)		1033	477		902
Turn Bay Length (ft)	140			100	
Base Capacity (vph)	219	5136	4445	1384	184
Starvation Cap Reductn	0	0	653	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.06	0.57	0.93	0.01	0.32
Intersection Summary					

m Volume for 95th percentile queue is metered by upstream signal.

	>	→	\rightarrow	~	←	*_	ሻ	\	\mathbf{x}	4	*	*
Movement	EBL	EBT	EBR2	WBL2	WBT	WBR	NBL	SEL	SET	SER2	NWL	NWT
Lane Configurations		4			†	777	, A	444	f)			4
Traffic Volume (vph)	29	31	8	52	6	2543	0	2981	110	55	7	18
Future Volume (vph)	29	31	8	52	6	2543	0	2981	110	55	7	18
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0			7.0	7.0		7.0	7.0			6.0
Lane Util. Factor		1.00			1.00	0.76		0.94	1.00			1.00
Frt		0.98			1.00	0.85		1.00	0.95			1.00
Flt Protected		0.98			0.96	1.00		0.95	1.00			0.99
Satd. Flow (prot)		1812			1801	3646		5040	1787			1855
Flt Permitted		0.98			0.96	1.00		0.94	1.00			0.99
Satd. Flow (perm)		1812			1801	3646		4987	1787			1855
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	32	34	9	57	7	2764	0	3240	120	60	8	20
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	0	0
Lane Group Flow (vph)	0	75	0	0	64	2764	0	3240	180	0	0	28
Turn Type	Split	NA		Split	NA	custom	Prot	Perm	NA		Split	NA
Protected Phases	8	8		5	5	2	7		6		3 4	3 4
Permitted Phases						487		6				
Actuated Green, G (s)		13.3			10.8	157.3		117.8	117.8			17.1
Effective Green, g (s)		13.3			10.8	155.3		117.8	117.8			17.1
Actuated g/C Ratio		0.07			0.06	0.86		0.65	0.65			0.09
Clearance Time (s)		6.0			7.0	7.0		7.0	7.0			
Vehicle Extension (s)		3.0			2.0	1.0		1.0	1.0			
Lane Grp Cap (vph)		133			107	3128		3245	1163			175
v/s Ratio Prot		0.04			0.04	c0.66			0.10			c0.02
v/s Ratio Perm						0.10		c0.65				
v/c Ratio		0.56			0.60	0.88		1.00	0.15			0.16
Uniform Delay, d1		81.0			83.0	7.5		31.5	12.3			75.3
Progression Factor		1.00			1.00	1.00		1.00	1.00			1.00
Incremental Delay, d2		5.4			5.9	3.2		15.4	0.3			0.2
Delay (s)		86.4			88.9	10.8		47.0	12.6			75.5
Level of Service		F			F	В		D	В			Е
Approach Delay (s)		86.4			12.5		0.0		45.1			75.5
Approach LOS		F			В		Α		D			Е
Intersection Summary												
HCM 2000 Control Delay			31.2	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	city ratio		1.02									
Actuated Cycle Length (s)			181.0			st time (s)			34.0			
Intersection Capacity Utiliza	ition		86.8%	IC	CU Level	of Service	!		Е			
Analysis Period (min)			15									

Analysis Period (min) c Critical Lane Group


	>	→	•	•	•	*_	ሽ	\	\mathbf{x}	4	*	×
Lane Group	EBL	EBT	EBR2	WBL2	WBT	WBR	NBL	SEL	SET	SER2	NWL	NWT
Lane Configurations		4			†	777	, M	444	f)			4
Traffic Volume (vph)	29	31	8	52	6	2543	0	2981	110	55	7	18
Future Volume (vph)	29	31	8	52	6	2543	0	2981	110	55	7	18
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%		0%		0%			0%
Shared Lane Traffic (%)												
Turn Type	Split	NA		Split	NA	custom	Prot	Perm	NA		Split	NA
Protected Phases	8	8		5	5	2	7		6		3 4	3 4
Permitted Phases						487		6				
Detector Phase	8	8		5	5	2	7	6	6		3 4	3 4
Switch Phase												
Minimum Initial (s)	10.0	10.0		5.0	5.0	20.0	7.0	20.0	20.0			
Minimum Split (s)	24.0	24.0		19.0	19.0	27.0	13.0	27.0	27.0			
Total Split (s)	32.0	32.0		19.0	19.0	97.0	13.0	78.0	78.0			
Total Split (%)	17.7%	17.7%		10.5%	10.5%	53.6%	7.2%	43.1%	43.1%			
Yellow Time (s)	4.0	4.0		5.0	5.0	5.0	4.0	5.0	5.0			
All-Red Time (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0			
Lost Time Adjust (s)		0.0			0.0	0.0	0.0	0.0	0.0			
Total Lost Time (s)		6.0			7.0	7.0	6.0	7.0	7.0			
Lead/Lag	Lag	Lag		Lead	Lead		Lead	Lag	Lag			
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes	Yes			
Recall Mode	None	None		None	None	None	None	C-Max	C-Max			

Cycle Length: 181
Actuated Cycle Length: 181

Offset: 37 (20%), Referenced to phase 6:SETL, Start of Yellow

Natural Cycle: 145

Lane Group	Ø3	Ø4				
Lane Configurations	200	דע				
Traffic Volume (vph)						
Future Volume (vph)						
Confl. Peds. (#/hr)						
Confl. Bikes (#/hr)						
Peak Hour Factor						
Growth Factor						
Heavy Vehicles (%)						
Bus Blockages (#/hr)						
Parking (#/hr)						
Mid-Block Traffic (%)						
Shared Lane Traffic (%)						
Turn Type						
Protected Phases	3	4				
Permitted Phases						
Detector Phase						
Switch Phase						
Minimum Initial (s)	1.0	8.0				
Minimum Split (s)	29.0	10.0				
Total Split (s)	29.0	10.0				
Total Split (%)	16%	6%				
Yellow Time (s)	4.0	2.0				
All-Red Time (s)	2.0	0.0				
Lost Time Adjust (s)						
Total Lost Time (s)						
Lead/Lag	Lead	Lag				
Lead-Lag Optimize?	Yes	Yes				
Recall Mode	None	None				
Intersection Summary						

	-	←	*_	\	×	×
Lane Group	EBT	WBT	WBR	SEL	SET	NWT
Lane Group Flow (vph)	75	64	2764	3240	180	28
v/c Ratio	0.56	0.60	0.83	0.98	0.15	0.20
Control Delay	96.9	104.5	6.5	42.8	14.1	79.8
Queue Delay	0.0	0.0	0.0	41.2	0.0	0.0
Total Delay	96.9	104.5	6.5	84.0	14.1	79.8
Queue Length 50th (ft)	88	76	427	~1429	82	32
Queue Length 95th (ft)	147	131	580	#1622	144	68
Internal Link Dist (ft)	459	1327			265	705
Turn Bay Length (ft)						
Base Capacity (vph)	260	127	3341	3290	1179	235
Starvation Cap Reductn	0	0	0	392	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.29	0.50	0.83	1.12	0.15	0.12

Volume exceeds capacity, queue is theoretically infinite.

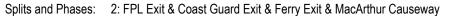
Queue shown is maximum after two cycles.

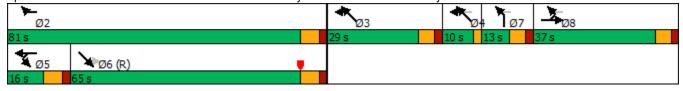
^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	>	→	\rightarrow	~	←	*_	ሻ	\	\mathbf{x}	4	*	×
Movement	EBL	EBT	EBR2	WBL2	WBT	WBR	NBL	SEL	SET	SER2	NWL	NWT
Lane Configurations		4			†	777	¥	444	f)			र्स
Traffic Volume (vph)	31	70	8	3	26	3061	0	2658	6	53	8	119
Future Volume (vph)	31	70	8	3	26	3061	0	2658	6	53	8	119
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0			7.0	7.0		7.0	7.0			6.0
Lane Util. Factor		1.00			1.00	0.76		0.94	1.00			1.00
Frt		0.99			1.00	0.85		1.00	0.87			1.00
Flt Protected		0.99			1.00	1.00		0.95	1.00			1.00
Satd. Flow (prot)		1836			1872	3646		5040	1629			1873
Flt Permitted		0.99			1.00	1.00		0.92	1.00			1.00
Satd. Flow (perm)		1836			1872	3646		4859	1629			1873
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	34	76	9	3	28	3327	0	2889	7	58	9	129
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	0	0
Lane Group Flow (vph)	0	119	0	0	31	3327	0	2889	65	0	0	139
Turn Type	Split	NA		Split	NA	custom	Prot	Perm	NA		Split	NA
Protected Phases	8	8		5	5	2	7		6		3 4	3 4
Permitted Phases						478		6				
Actuated Green, G (s)		16.3			6.4	136.6		96.9	96.9			28.4
Effective Green, g (s)		16.3			6.4	134.6		96.9	96.9			28.4
Actuated g/C Ratio		0.10			0.04	0.79		0.57	0.57			0.17
Clearance Time (s)		6.0			7.0	7.0		7.0	7.0			
Vehicle Extension (s)		3.0			2.0	1.0		1.0	1.0			
Lane Grp Cap (vph)		176			70	2886		2769	928			312
v/s Ratio Prot		0.06			0.02	c0.75			0.04			c0.07
v/s Ratio Perm						0.16		0.59				
v/c Ratio		0.68			0.44	1.15		1.04	0.07			0.45
Uniform Delay, d1		74.3			80.1	17.7		36.5	16.4			63.7
Progression Factor		1.00			1.00	1.00		1.00	1.00			1.00
Incremental Delay, d2		9.8			1.6	73.2		28.4	0.1			0.4
Delay (s)		84.1			81.7	90.9		64.9	16.5			64.1
Level of Service		F			F	F		Е	В			Е
Approach Delay (s)		84.1			90.8		0.0		63.9			64.1
Approach LOS		F			F		Α		Е			Е
Intersection Summary												
HCM 2000 Control Delay			78.0	Н	CM 2000	Level of	Service		Е			
HCM 2000 Volume to Capa	city ratio		1.20									
Actuated Cycle Length (s)			170.0	S	um of los	st time (s)			34.0			
Intersection Capacity Utiliza	ition		102.3%	IC	CU Level	of Service			G			
Analysis Period (min)			15									

Analysis Period (min) c Critical Lane Group


Movement	NWR
Lane Configurations	
Traffic Volume (vph)	1
Future Volume (vph)	1
Ideal Flow (vphpl)	1900
Total Lost time (s)	
Lane Util. Factor	
Frt	
Flt Protected	
Satd. Flow (prot)	
Flt Permitted	
Satd. Flow (perm)	
Peak-hour factor, PHF	0.92
Adj. Flow (vph)	1
RTOR Reduction (vph)	0
Lane Group Flow (vph)	0
Turn Type	
Protected Phases	
Permitted Phases	
Actuated Green, G (s)	
Effective Green, g (s)	
Actuated g/C Ratio	
Clearance Time (s)	
Vehicle Extension (s)	
Lane Grp Cap (vph)	
v/s Ratio Prot	
v/s Ratio Perm	
v/c Ratio	
Uniform Delay, d1	
Progression Factor	
Incremental Delay, d2	
Delay (s)	
Level of Service	
Approach Delay (s)	
Approach LOS	
Intersection Summary	
intersection outlinary	


	*	→	\rightarrow	~	•	*_	ሽ	\	\mathbf{x}	4	*	×
Lane Group	EBL	EBT	EBR2	WBL2	WBT	WBR	NBL	SEL	SET	SER2	NWL	NWT
Lane Configurations		4				777	N/	ሻሻሻ	₽			र्स
Traffic Volume (vph)	31	70	8	3	26	3061	0	2658	6	53	8	119
Future Volume (vph)	31	70	8	3	26	3061	0	2658	6	53	8	119
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%		0%		0%			0%
Shared Lane Traffic (%)												
Turn Type	Split	NA		Split	NA	custom	Prot	Perm	NA		Split	NA
Protected Phases	8	8		5	5	2	7		6		3 4	3 4
Permitted Phases						478		6				
Detector Phase	8	8		5	5	2	7	6	6		3 4	3 4
Switch Phase												
Minimum Initial (s)	10.0	10.0		5.0	5.0	20.0	7.0	20.0	20.0			
Minimum Split (s)	24.0	24.0		16.0	16.0	27.0	13.0	27.0	27.0			
Total Split (s)	37.0	37.0		16.0	16.0	81.0	13.0	65.0	65.0			
Total Split (%)	21.8%	21.8%		9.4%	9.4%	47.6%	7.6%	38.2%	38.2%			
Yellow Time (s)	4.0	4.0		5.0	5.0	5.0	4.0	5.0	5.0			
All-Red Time (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0			
Lost Time Adjust (s)		0.0			0.0	0.0	0.0	0.0	0.0			
Total Lost Time (s)		6.0			7.0	7.0	6.0	7.0	7.0			
Lead/Lag	Lag	Lag		Lead	Lead		Lead	Lag	Lag			
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes	Yes			
Recall Mode	None	None		None	None	None	None	C-Max	C-Max			

Cycle Length: 170 Actuated Cycle Length: 170

Offset: 158 (93%), Referenced to phase 6:SETL, Start of Yellow

Natural Cycle: 150

Lane Group	NWR	Ø3	Ø4	
Lane Configurations				
Traffic Volume (vph)	1			
Future Volume (vph)	1			
Confl. Peds. (#/hr)				
Confl. Bikes (#/hr)				
Peak Hour Factor	0.92			
Growth Factor	100%			
Heavy Vehicles (%)	1%			
Bus Blockages (#/hr)	0			
Parking (#/hr)				
Mid-Block Traffic (%)				
Shared Lane Traffic (%)				
Turn Type				
Protected Phases		3	4	
Permitted Phases				
Detector Phase				
Switch Phase				
Minimum Initial (s)		1.0	8.0	
Minimum Split (s)		29.0	10.0	
Total Split (s)		29.0	10.0	
Total Split (%)		17%	6%	
Yellow Time (s)		4.0	2.0	
All-Red Time (s)		2.0	0.0	
Lost Time Adjust (s)				
Total Lost Time (s)				
Lead/Lag		Lead	Lag	
Lead-Lag Optimize?		Yes	Yes	
Recall Mode		None	None	
Intersection Summary				

	-	•	*_	\	×	×
Lane Group	EBT	WBT	WBR	SEL	SET	NWT
Lane Group Flow (vph)	119	31	3327	2889	65	139
v/c Ratio	0.68	0.38	1.09	1.03	0.07	0.52
Control Delay	92.4	91.7	61.7	58.2	19.5	73.8
Queue Delay	0.0	0.0	4.7	0.0	0.0	0.0
Total Delay	92.4	91.7	66.4	58.2	19.5	73.8
Queue Length 50th (ft)	131	34	~1818	~1239	32	146
Queue Length 95th (ft)	199	73	#1942	#1474	70	214
Internal Link Dist (ft)	459	1327			265	705
Turn Bay Length (ft)						
Base Capacity (vph)	334	102	3059	2810	942	273
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	30	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.36	0.30	1.10	1.03	0.07	0.51

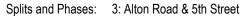
Volume exceeds capacity, queue is theoretically infinite.

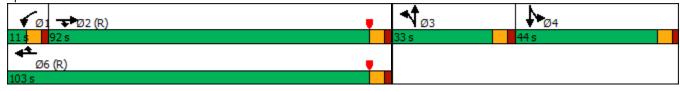
Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	۶	→	•	•	•	•	•	†	<i>></i>	-	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		^	7	ሻ	^	7	ሻሻ	ĵ∍			ર્ન	7
Traffic Volume (vph)	0	1239	522	16	1026	69	312	149	19	74	157	793
Future Volume (vph)	0	1239	522	16	1026	69	312	149	19	74	157	793
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0	6.0	6.0	6.0	6.0	6.0	6.0			6.0	4.0
Lane Util. Factor		0.95	1.00	1.00	0.95	1.00	0.97	1.00			1.00	1.00
Frpb, ped/bikes		1.00	1.00	1.00	1.00	1.00	1.00	0.98			1.00	1.00
Flpb, ped/bikes		1.00	1.00	1.00	1.00	1.00	1.00	1.00			1.00	1.00
Frt		1.00	0.85	1.00	1.00	0.85	1.00	0.98			1.00	0.85
Flt Protected		1.00	1.00	0.95	1.00	1.00	0.95	1.00			0.98	1.00
Satd. Flow (prot)		3217	1439	1608	3217	1439	3120	1632			1666	1439
Flt Permitted		1.00	1.00	0.95	1.00	1.00	0.95	1.00			0.98	1.00
Satd. Flow (perm)		3217	1439	1608	3217	1439	3120	1632			1666	1439
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	0	1291	544	17	1069	72	325	155	20	77	164	826
RTOR Reduction (vph)	0	0	141	0	0	25	0	3	0	0	0	0
Lane Group Flow (vph)	0	1291	403	17	1069	47	325	172	0	0	241	826
Confl. Peds. (#/hr)			30	30					48	48		
Confl. Bikes (#/hr)			12			1			5			
Turn Type		NA	Prot	Prot	NA	Prot	Split	NA		Split	NA	Free
Protected Phases		2	2	1	6	6	3	3		4	4	
Permitted Phases												Free
Actuated Green, G (s)		97.5	97.5	3.7	107.2	107.2	23.8	23.8			31.0	180.0
Effective Green, g (s)		97.5	97.5	3.7	107.2	107.2	23.8	23.8			31.0	180.0
Actuated g/C Ratio		0.54	0.54	0.02	0.60	0.60	0.13	0.13			0.17	1.00
Clearance Time (s)		6.0	6.0	6.0	6.0	6.0	6.0	6.0			6.0	
Vehicle Extension (s)		1.0	1.0	2.0	1.0	1.0	3.0	3.0			3.5	
Lane Grp Cap (vph)		1742	779	33	1915	857	412	215			286	1439
v/s Ratio Prot		c0.40	0.28	0.01	0.33	0.03	0.10	c0.11			c0.14	
v/s Ratio Perm												c0.57
v/c Ratio		0.74	0.52	0.52	0.56	0.06	0.79	0.80			0.84	0.57
Uniform Delay, d1		31.6	26.3	87.3	22.1	15.2	75.7	75.8			72.1	0.0
Progression Factor		1.00	1.00	1.00	1.00	1.00	1.00	1.00			1.00	1.00
Incremental Delay, d2		2.9	2.5	5.5	1.2	0.1	9.7	19.0			20.1	1.7
Delay (s)		34.5	28.7	92.8	23.2	15.3	85.3	94.8			92.2	1.7
Level of Service		С	С	F	С	В	F	F			F	Α
Approach Delay (s)		32.8			23.8			88.6			22.1	
Approach LOS		С			С			F			С	
Intersection Summary												
HCM 2000 Control Delay			34.1	Н	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capaci	ty ratio		0.79									
Actuated Cycle Length (s)			180.0	S	um of los	t time (s)			24.0			
Intersection Capacity Utilizati	on		80.2%			of Service			D			
Analysis Period (min)			15									


c Critical Lane Group


	•	→	\rightarrow	•	←	•	4	†	/	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		^	7	7	^	7	ሻሻ	f)			4	7
Traffic Volume (vph)	0	1239	522	16	1026	69	312	149	19	74	157	793
Future Volume (vph)	0	1239	522	16	1026	69	312	149	19	74	157	793
Confl. Peds. (#/hr)			30	30					48	48		
Confl. Bikes (#/hr)			12			1			5			
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Shared Lane Traffic (%)												
Turn Type		NA	Prot	Prot	NA	Prot	Split	NA		Split	NA	Free
Protected Phases		2	2	1	6	6	3	3		4	4	
Permitted Phases												Free
Detector Phase		2	2	1	6	6	3	3		4	4	
Switch Phase												
Minimum Initial (s)		5.0	5.0	5.0	5.0	5.0	7.0	7.0		7.0	7.0	
Minimum Split (s)		35.0	35.0	11.0	35.0	35.0	24.0	24.0		31.0	31.0	
Total Split (s)		92.0	92.0	11.0	103.0	103.0	33.0	33.0		44.0	44.0	
Total Split (%)		51.1%	51.1%	6.1%	57.2%	57.2%	18.3%	18.3%		24.4%	24.4%	
Yellow Time (s)		4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	
All-Red Time (s)		2.0	2.0	2.0	2.0	2.0	2.0	2.0		2.0	2.0	
Lost Time Adjust (s)		0.0	0.0	0.0	0.0	0.0	0.0	0.0			0.0	
Total Lost Time (s)		6.0	6.0	6.0	6.0	6.0	6.0	6.0			6.0	
Lead/Lag		Lag	Lag	Lead			Lead	Lead		Lag	Lag	
Lead-Lag Optimize?		Yes	Yes	Yes			Yes	Yes		Yes	Yes	
Recall Mode		C-Max	C-Max	None	C-Max	C-Max	None	None		None	None	

Cycle Length: 180 Actuated Cycle Length: 180

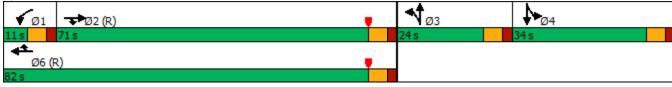
Offset: 114 (63%), Referenced to phase 2:EBT and 6:WBT, Start of Yellow

Natural Cycle: 115

	-	•	1	←	*	•	†	.↓	4	
I O	EDT	- EDD	WDI	WDT	WDD	NDI	NDT	CDT	CDD	
Lane Group	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBT	SBR	
Lane Group Flow (vph)	1291	544	17	1069	72	325	175	241	826	
v/c Ratio	0.72	0.58	0.33	0.56	0.08	0.79	0.80	0.84	0.57	
Control Delay	35.6	14.9	102.3	24.7	5.6	89.6	100.3	96.1	1.7	
Queue Delay	0.0	0.0	0.0	0.7	0.0	0.0	0.0	0.0	0.0	
Total Delay	35.6	14.9	102.3	25.4	5.6	89.6	100.3	96.1	1.7	
Queue Length 50th (ft)	640	194	20	403	5	193	199	278	0	
Queue Length 95th (ft)	797	350	51	524	34	250	291	374	0	
Internal Link Dist (ft)	549			717			263	439		
Turn Bay Length (ft)		225	150							
Base Capacity (vph)	1784	934	51	1915	881	468	247	351	1439	
Starvation Cap Reductn	0	0	0	462	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.72	0.58	0.33	0.74	0.08	0.69	0.71	0.69	0.57	
Intersection Summary										

	۶	→	•	•	-	4	•	†	/	/	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		† †	7	J.	^	7	1,1	£			ર્ન	7
Traffic Volume (vph)	0	1122	415	14	1462	114	551	174	12	75	170	799
Future Volume (vph)	0	1122	415	14	1462	114	551	174	12	75	170	799
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0	6.0	6.0	6.0	6.0	6.0	6.0			6.0	4.0
Lane Util. Factor		0.95	1.00	1.00	0.95	1.00	0.97	1.00			1.00	1.00
Frpb, ped/bikes		1.00	1.00	1.00	1.00	1.00	1.00	0.99			1.00	1.00
Flpb, ped/bikes		1.00	1.00	1.00	1.00	1.00	1.00	1.00			1.00	1.00
Frt		1.00 1.00	0.85	1.00	1.00	0.85	1.00	0.99			1.00	0.85
Flt Protected		3217	1.00 1439	0.95 1608	1.00 3217	1.00 1439	0.95 3120	1.00 1664			0.98 1668	1.00 1439
Satd. Flow (prot) Flt Permitted		1.00	1.00	0.95	1.00	1.00	0.95	1.00			0.98	1.00
Satd. Flow (perm)		3217	1439	1608	3217	1439	3120	1664			1668	1439
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	0.94	1194	441	15	1555	121	586	185	13	80	181	850
RTOR Reduction (vph)	0	0	168	0	0	40	0	2	0	0	0	0
Lane Group Flow (vph)	0	1194	273	15	1555	81	586	196	0	0	261	850
Confl. Peds. (#/hr)			34	34	.000	<u> </u>	000	100	33	33		
Confl. Bikes (#/hr)			11			2			14			
Turn Type		NA	Prot	Prot	NA	Prot	Split	NA		Split	NA	Free
Protected Phases		2	2	1	6	6	3	3		4	4	
Permitted Phases												Free
Actuated Green, G (s)		70.4	70.4	2.0	78.4	78.4	18.0	18.0			25.6	140.0
Effective Green, g (s)		70.4	70.4	2.0	78.4	78.4	18.0	18.0			25.6	140.0
Actuated g/C Ratio		0.50	0.50	0.01	0.56	0.56	0.13	0.13			0.18	1.00
Clearance Time (s)		6.0	6.0	6.0	6.0	6.0	6.0	6.0			6.0	
Vehicle Extension (s)		1.0	1.0	2.0	1.0	1.0	3.0	3.0			3.5	
Lane Grp Cap (vph)		1617	723	22	1801	805	401	213			305	1439
v/s Ratio Prot		0.37	0.19	0.01	c0.48	0.06	c0.19	0.12			c0.16	
v/s Ratio Perm												0.59
v/c Ratio		0.74	0.38	0.68	0.86	0.10	1.46	0.92			0.86	0.59
Uniform Delay, d1		27.5	21.4	68.7	26.2	14.4	61.0	60.3			55.4	0.0
Progression Factor		1.00	1.00	1.00	1.00	1.00	1.00	1.00			1.00	1.00
Incremental Delay, d2		3.1	1.5	52.0	5.8	0.2	221.0	40.4			20.7	1.8
Delay (s)		30.6	22.9	120.7	32.0	14.6	282.0	100.7			76.1	1.8
Level of Service		C	С	F	C	В	F	F			E	Α
Approach LOS		28.5 C			31.6 C			236.2 F			19.2 B	
Approach LOS		C			C			Г			D	
Intersection Summary												
HCM 2000 Control Delay			58.7	Н	CM 2000	Level of	Service		Е			
HCM 2000 Volume to Capac	ity ratio		1.00									
Actuated Cycle Length (s)			140.0		um of lost				24.0			
Intersection Capacity Utilizat	ion		91.9%	IC	CU Level	of Service	;		F			
Analysis Period (min)			15									

c Critical Lane Group


	٠	→	\rightarrow	•	•	•	4	†	/	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		^	7	7	^	7	14	f)			4	7
Traffic Volume (vph)	0	1122	415	14	1462	114	551	174	12	75	170	799
Future Volume (vph)	0	1122	415	14	1462	114	551	174	12	75	170	799
Confl. Peds. (#/hr)			34	34					33	33		
Confl. Bikes (#/hr)			11			2			14			
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Shared Lane Traffic (%)												
Turn Type		NA	Prot	Prot	NA	Prot	Split	NA		Split	NA	Free
Protected Phases		2	2	1	6	6	3	3		4	4	
Permitted Phases												Free
Detector Phase		2	2	1	6	6	3	3		4	4	
Switch Phase												
Minimum Initial (s)		5.0	5.0	5.0	5.0	5.0	7.0	7.0		7.0	7.0	
Minimum Split (s)		35.0	35.0	11.0	35.0	35.0	24.0	24.0		31.0	31.0	
Total Split (s)		71.0	71.0	11.0	82.0	82.0	24.0	24.0		34.0	34.0	
Total Split (%)		50.7%	50.7%	7.9%	58.6%	58.6%	17.1%	17.1%		24.3%	24.3%	
Yellow Time (s)		4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	
All-Red Time (s)		2.0	2.0	2.0	2.0	2.0	2.0	2.0		2.0	2.0	
Lost Time Adjust (s)		0.0	0.0	0.0	0.0	0.0	0.0	0.0			0.0	
Total Lost Time (s)		6.0	6.0	6.0	6.0	6.0	6.0	6.0			6.0	
Lead/Lag		Lag	Lag	Lead			Lead	Lead		Lag	Lag	
Lead-Lag Optimize?		Yes	Yes	Yes			Yes	Yes		Yes	Yes	
Recall Mode		C-Max	C-Max	None	C-Max	C-Max	None	None		None	None	

Cycle Length: 140 Actuated Cycle Length: 140

Offset: 57 (41%), Referenced to phase 2:EBT and 6:WBT, Start of Yellow

Natural Cycle: 125

	→	•	•	•	•	1	†	↓	4	
Lane Group	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBT	SBR	
Lane Group Flow (vph)	1194	441	15	1555	121	586	198	261	850	
v/c Ratio	0.70	0.48	0.26	0.86	0.14	1.46	0.92	0.86	0.59	
Control Delay	29.1	7.4	77.2	33.1	5.2	262.5	103.1	80.4	1.8	
Queue Delay	0.0	0.0	0.0	2.6	0.0	0.0	0.0	0.0	0.0	
Total Delay	29.1	7.4	77.2	35.7	5.2	262.5	103.1	80.4	1.8	
Queue Length 50th (ft)	402	45	14	638	12	~375	179	228	0	
Queue Length 95th (ft)	575	146	39	761	43	#495	#333	#358	0	
Internal Link Dist (ft)	549			717			263	439		
Turn Bay Length (ft)		225	150							
Base Capacity (vph)	1699	919	57	1801	846	401	215	333	1439	
Starvation Cap Reductn	0	0	0	149	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.70	0.48	0.26	0.94	0.14	1.46	0.92	0.78	0.59	

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Future without Project Conditions

	•	-	←	•	\	✓		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations	ሻ	^ ^	ተተተ	7	W	02.1		
Traffic Volume (vph)	22	3204	2637	7	5	11		
Future Volume (vph)	22	3204	2637	7	5	11		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	7.0	7.0	7.0	7.0	7.0			
Lane Util. Factor	1.00	0.91	0.91	1.00	1.00			
Frt	1.00	1.00	1.00	0.85	0.91			
Flt Protected	0.95	1.00	1.00	1.00	0.98			
Satd. Flow (prot)	1787	5136	5136	1599	1680			
Flt Permitted	0.03	1.00	1.00	1.00	0.98			
Satd. Flow (perm)	60	5136	5136	1599	1680			
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96		
Adj. Flow (vph)	23	3338	2747	7	5	11		
RTOR Reduction (vph)	0	0	0	0	11	0		
Lane Group Flow (vph)	23	3338	2747	7	5	0		
Turn Type	pm+pt	NA	NA	Prot	Prot			
Protected Phases	1	6	2	2	8			
Permitted Phases	6	8						
Actuated Green, G (s)	161.7	166.0	150.5	150.5	4.3			
Effective Green, g (s)	161.7	166.0	150.5	150.5	4.3			
Actuated g/C Ratio	0.90	0.92	0.84	0.84	0.02			
Clearance Time (s)	7.0	7.0	7.0	7.0	7.0			
Vehicle Extension (s)	2.5	1.0	1.0	1.0	3.0			
Lane Grp Cap (vph)	94	5136	4294	1336	40			
v/s Ratio Prot	0.01	c0.58	0.53	0.00	0.00			
v/s Ratio Perm	0.21	0.07						
v/c Ratio	0.24	0.65	0.64	0.00	0.13			
Uniform Delay, d1	6.4	1.4	5.2	2.4	86.0			
Progression Factor	1.00	1.00	1.00	1.00	1.00			
Incremental Delay, d2	1.0	0.3	0.7	0.0	1.5			
Delay (s)	7.4	1.6	5.9	2.4	87.5			
Level of Service	А	A	Α	Α	F			
Approach Delay (s)		1.7	5.9		87.5			
Approach LOS		Α	Α		F			
Intersection Summary								
HCM 2000 Control Delay			3.8	Н	CM 2000	Level of Service	Α	
HCM 2000 Volume to Capa	acity ratio		0.75					
Actuated Cycle Length (s)			180.0	Sı	um of lost	time (s)	23.0	
Intersection Capacity Utiliz	ation		77.7%	IC	U Level o	of Service	D	
Analysis Period (min)			15					
o Critical Lana Croup								

	۶	→	•	•	\	4					
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	Ø7				
Lane Configurations	ሻ	ተተተ	ተተተ	7	W						
Traffic Volume (vph)	22	3204	2637	7	5	11					
Future Volume (vph)	22	3204	2637	7	5	11					
Confl. Peds. (#/hr)											
Confl. Bikes (#/hr)											
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96					
Growth Factor	100%	100%	100%	100%	100%	100%					
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%					
Bus Blockages (#/hr)	0	0	0	0	0	0					
Parking (#/hr)											
Mid-Block Traffic (%)		0%	0%		0%						
Shared Lane Traffic (%)											
Turn Type	pm+pt	NA	NA	Prot	Prot						
Protected Phases	1	6	2	2	8		7				
Permitted Phases	6	8									
Detector Phase	1	6	2	2	8						
Switch Phase											
Minimum Initial (s)	7.0	18.0	18.0	18.0	5.0		1.0				
Minimum Split (s)	24.0	25.0	25.0	25.0	21.0		14.0				
Total Split (s)	24.0	145.0	121.0	121.0	21.0		14.0				
Total Split (%)	13.3%	80.6%	67.2%	67.2%	11.7%		8%				
Yellow Time (s)	5.0	5.0	5.0	5.0	5.0		2.0				
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0		0.0				
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0						
Total Lost Time (s)	7.0	7.0	7.0	7.0	7.0						
Lead/Lag	Lead		Lag	Lag	Lag		Lead				
Lead-Lag Optimize?	Yes		Yes	Yes	Yes		Yes				
Recall Mode	None	C-Max	C-Max	C-Max	None		None				
Intersection Summary											
Cycle Length: 180											
Actuated Cycle Length: 180											
Offset: 58 (32%), Reference	d to phase	e 2:WBT a	and 6:EB	ΓL, Start o	of Yellow						
Natural Cycle: 135											
Control Type: Actuated-Cool	rdinated										
Splits and Phases: 1: Mad	Arthur Ca	useway 8	Rridae F	Road							
*	y warar oa	acomay c	k Bridge i	toda							
Ø1 Ø2	(R)							•	┙		
24 s 121 s											
2 06 (R)								•	₹ k ø7	→ Ø8	

1: MacArthur Causeway & Bridge Road

	•	→	•	•	\
Lane Group	EBL	EBT	WBT	WBR	SBL
Lane Group Flow (vph)	23	3338	2747	7	16
v/c Ratio	0.19	0.65	0.61	0.00	0.23
Control Delay	4.6	0.6	5.6	3.0	52.5
Queue Delay	0.0	0.0	0.3	0.0	0.0
Total Delay	4.6	0.6	5.9	3.0	52.5
Queue Length 50th (ft)	2	0	420	1	6
Queue Length 95th (ft)	6	0	484	5	35
Internal Link Dist (ft)		1033	477		902
Turn Bay Length (ft)	140			100	
Base Capacity (vph)	217	5136	4535	1412	140
Starvation Cap Reductn	0	0	991	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.11	0.65	0.78	0.00	0.11
Intersection Summary					

	•	-	•	•	-	4		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations	ኝ	^ ^	^ ^	1	W			
Traffic Volume (vph)	12	2767	3301	14	5	51		
Future Volume (vph)	12	2767	3301	14	5	51		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	7.0	7.0	7.0	7.0	7.0			
Lane Util. Factor	1.00	0.91	0.91	1.00	1.00			
Frt	1.00	1.00	1.00	0.85	0.88			
Flt Protected	0.95	1.00	1.00	1.00	1.00			
Satd. Flow (prot)	1787	5136	5136	1599	1642			
Flt Permitted	0.03	1.00	1.00	1.00	1.00			
Satd. Flow (perm)	51	5136	5136	1599	1642			
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	13	3008	3588	15	5	55		
RTOR Reduction (vph)	0	0	0	1	53	0		
Lane Group Flow (vph)	13	3008	3588	14	7	0		
Turn Type	pm+pt	NA	NA	Prot	Prot			
Protected Phases	1	6	2	2	8			
Permitted Phases	6	8	_	_				
Actuated Green, G (s)	149.9	156.0	140.1	140.1	6.1			
Effective Green, g (s)	149.9	156.0	140.1	140.1	6.1			
Actuated g/C Ratio	0.88	0.92	0.82	0.82	0.04			
Clearance Time (s)	7.0	7.0	7.0	7.0	7.0			
Vehicle Extension (s)	2.5	1.0	1.0	1.0	3.0			
Lane Grp Cap (vph)	73	5136	4232	1317	58			
v/s Ratio Prot	0.00	c0.52	c0.70	0.01	0.00			
v/s Ratio Perm	0.15	0.07						
v/c Ratio	0.18	0.59	0.85	0.01	0.12			
Uniform Delay, d1	22.9	1.2	8.7	2.7	79.4			
Progression Factor	1.00	1.00	0.78	0.20	1.00			
Incremental Delay, d2	0.9	0.2	0.2	0.0	0.9			
Delay (s)	23.8	1.4	7.0	0.5	80.3			
Level of Service	С	Α	A	Α	F			
Approach Delay (s)		1.5	7.0		80.3			
Approach LOS		Α	Α		F			
Intersection Summary								
HCM 2000 Control Delay			5.2	Н	CM 2000	Level of Service	Α	
HCM 2000 Volume to Capa	acity ratio		0.90					
Actuated Cycle Length (s)	•		170.0	Sı	um of lost	time (s)	23.0	
Intersection Capacity Utiliz	ation		79.6%			of Service	D	
Analysis Period (min)			15					
0.111 0								

	۶	→	←	•	\	✓					
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	Ø7				
Lane Configurations	ሻ	ተተተ	ተተተ	7	¥						
Traffic Volume (vph)	12	2767	3301	14	5	51					
Future Volume (vph)	12	2767	3301	14	5	51					
Confl. Peds. (#/hr)											
Confl. Bikes (#/hr)											
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92					
Growth Factor	100%	100%	100%	100%	100%	100%					
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%					
Bus Blockages (#/hr)	0	0	0	0	0	0					
Parking (#/hr)											
Mid-Block Traffic (%)		0%	0%		0%						
Shared Lane Traffic (%)											
Turn Type	pm+pt	NA	NA	Prot	Prot						
Protected Phases	1	6	2	2	8		7				
Permitted Phases	6	8									
Detector Phase	1	6	2	2	8						
Switch Phase											
Minimum Initial (s)	7.0	18.0	18.0	18.0	5.0		1.0				
Minimum Split (s)	24.0	25.0	25.0	25.0	21.0		14.0				
Total Split (s)	24.0	135.0	111.0	111.0	21.0		14.0				
Total Split (%)	14.1%	79.4%	65.3%	65.3%	12.4%		8%				
Yellow Time (s)	5.0	5.0	5.0	5.0	5.0		2.0				
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0		0.0				
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0						
Total Lost Time (s)	7.0	7.0	7.0	7.0	7.0						
Lead/Lag	Lead		Lag	Lag	Lag		Lead				
Lead-Lag Optimize?	Yes		Yes	Yes	Yes		Yes				
Recall Mode	None	C-Max	C-Max	C-Max	None		None				
Intersection Summary											
Cycle Length: 170											
Actuated Cycle Length: 170											
Offset: 9 (5%), Referenced		:WBT and	d 6:EBTL	Start of `	Yellow						
Natural Cycle: 145			-	,							
Control Type: Actuated-Coo	rdinated										
,	cArthur Ca	useway 8	& Bridae F	Road							
42	2 (R)								T		
24s 111s	- (11)							<u> </u>			
[A									1.5	_ \	

1: MacArthur Causeway & Bridge Road

	•	→	•	•	\
Lane Group	EBL	EBT	WBT	WBR	SBL
Lane Group Flow (vph)	13	3008	3588	15	60
v/c Ratio	0.11	0.59	0.81	0.01	0.50
Control Delay	3.5	0.5	6.8	0.6	34.4
Queue Delay	0.0	0.0	1.8	0.0	0.0
Total Delay	3.5	0.5	8.5	0.6	34.4
Queue Length 50th (ft)	1	0	58	0	6
Queue Length 95th (ft)	5	0	m78	m0	57
Internal Link Dist (ft)		1033	477		902
Turn Bay Length (ft)	140			100	
Base Capacity (vph)	219	5136	4445	1384	185
Starvation Cap Reductn	0	0	653	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.06	0.59	0.95	0.01	0.32
Intersection Summary					

m Volume for 95th percentile queue is metered by upstream signal.

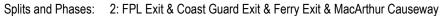
	>	-	\rightarrow	~	•	*_	ኘ	\	\mathbf{x}	4	•	×
Movement	EBL	EBT	EBR2	WBL2	WBT	WBR	NBL	SEL	SET	SER2	NWL	NWT
Lane Configurations		4			↑	777	**	444	f)			र्स
Traffic Volume (vph)	30	32	8	53	6	2594	0	3041	112	56	7	19
Future Volume (vph)	30	32	8	53	6	2594	0	3041	112	56	7	19
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0			7.0	7.0		7.0	7.0			6.0
Lane Util. Factor		1.00			1.00	0.76		0.94	1.00			1.00
Frt		0.98			1.00	0.85		1.00	0.95			1.00
Flt Protected		0.98			0.96	1.00		0.95	1.00			0.99
Satd. Flow (prot)		1813			1801	3646		5040	1787			1856
Flt Permitted		0.98			0.96	1.00		0.94	1.00			0.99
Satd. Flow (perm)		1813			1801	3646		4987	1787			1856
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	33	35	9	58	7	2820	0	3305	122	61	8	21
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	0	0
Lane Group Flow (vph)	0	77	0	0	65	2820	0	3305	183	0	0	29
Turn Type	Split	NA		Split	NA	custom	Prot	Perm	NA		Split	NA
Protected Phases	8	8		5	5	2	7		6		3 4	3 4
Permitted Phases						478		6				
Actuated Green, G (s)		13.4			10.9	157.2		117.5	117.5			17.2
Effective Green, g (s)		13.4			10.9	155.2		117.5	117.5			17.2
Actuated g/C Ratio		0.07			0.06	0.86		0.65	0.65			0.10
Clearance Time (s)		6.0			7.0	7.0		7.0	7.0			
Vehicle Extension (s)		3.0			2.0	1.0		1.0	1.0			
Lane Grp Cap (vph)		134			108	3126		3237	1160			176
v/s Ratio Prot		0.04			0.04	c0.67			0.10			c0.02
v/s Ratio Perm						0.10		c0.66				
v/c Ratio		0.57			0.60	0.90		1.02	0.16			0.16
Uniform Delay, d1		81.0			82.9	8.1		31.8	12.4			75.3
Progression Factor		1.00			1.00	1.00		1.00	1.00			1.00
Incremental Delay, d2		5.8			6.3	4.0		21.4	0.3			0.2
Delay (s)		86.9			89.3	12.1		53.1	12.7			75.5
Level of Service		F			F	В		D	В			E
Approach Delay (s)		86.9			13.8		0.0		51.0			75.5
Approach LOS		F			В		Α		D			Е
Intersection Summary												
HCM 2000 Control Delay			35.0	Н	CM 2000	Level of S	Service		D			
HCM 2000 Volume to Capacit	ty ratio		1.04									
Actuated Cycle Length (s)			181.0	S	um of los	st time (s)			34.0			
Intersection Capacity Utilization	on		88.0%	IC	U Level	of Service			Е			
Analysis Period (min)			15									
0 111 0												

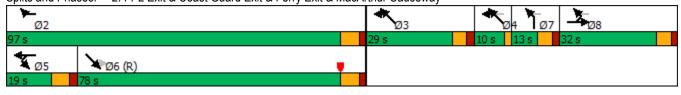
	-	←	*_	\	\mathbf{x}	×
Lane Group	EBT	WBT	WBR	SEL	SET	NWT
Lane Group Flow (vph)	77	65	2820	3305	183	29
v/c Ratio	0.57	0.60	0.84	1.01	0.16	0.21
Control Delay	97.1	104.5	7.3	48.4	14.3	79.8
Queue Delay	0.0	0.0	0.0	36.4	0.0	0.0
Total Delay	97.1	104.5	7.3	84.8	14.3	79.8
Queue Length 50th (ft)	90	77	468	~1490	84	33
Queue Length 95th (ft)	149	132	643	#1682	147	70
Internal Link Dist (ft)	459	1327			265	705
Turn Bay Length (ft)						
Base Capacity (vph)	260	128	3339	3280	1175	235
Starvation Cap Reductn	0	0	0	373	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.30	0.51	0.84	1.14	0.16	0.12

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.


Queue shown is maximum after two cycles.


	*	→	\rightarrow	~	•	*_	ሽ	\	\mathbf{x}	4	•	×
Lane Group	EBL	EBT	EBR2	WBL2	WBT	WBR	NBL	SEL	SET	SER2	NWL	NWT
Lane Configurations		4			†	777	14	444	f)			र्स
Traffic Volume (vph)	30	32	8	53	6	2594	0	3041	112	56	7	19
Future Volume (vph)	30	32	8	53	6	2594	0	3041	112	56	7	19
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%		0%		0%			0%
Shared Lane Traffic (%)												
Turn Type	Split	NA		Split	NA	custom	Prot	Perm	NA		Split	NA
Protected Phases	8	8		5	5	2	7		6		3 4	3 4
Permitted Phases						478		6				
Detector Phase	8	8		5	5	2	7	6	6		3 4	3 4
Switch Phase												
Minimum Initial (s)	10.0	10.0		5.0	5.0	20.0	7.0	20.0	20.0			
Minimum Split (s)	24.0	24.0		19.0	19.0	27.0	13.0	27.0	27.0			
Total Split (s)	32.0	32.0		19.0	19.0	97.0	13.0	78.0	78.0			
Total Split (%)	17.7%	17.7%		10.5%	10.5%	53.6%	7.2%	43.1%	43.1%			
Yellow Time (s)	4.0	4.0		5.0	5.0	5.0	4.0	5.0	5.0			
All-Red Time (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0			
Lost Time Adjust (s)		0.0			0.0	0.0	0.0	0.0	0.0			
Total Lost Time (s)		6.0			7.0	7.0	6.0	7.0	7.0			
Lead/Lag	Lag	Lag		Lead	Lead		Lead	Lag	Lag			
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes	Yes			
Recall Mode	None	None		None	None	None	None	C-Max	C-Max			

Cycle Length: 181 Actuated Cycle Length: 181

Offset: 37 (20%), Referenced to phase 6:SETL, Start of Yellow

Natural Cycle: 145

Lane Group	Ø3	Ø4
LaneConfigurations		
Traffic Volume (vph)		
Future Volume (vph)		
Confl. Peds. (#/hr)		
Confl. Bikes (#/hr)		
Peak Hour Factor		
Growth Factor		
Heavy Vehicles (%)		
Bus Blockages (#/hr)		
Parking (#/hr)		
Mid-Block Traffic (%)		
Shared Lane Traffic (%)		
Turn Type		
Protected Phases	3	4
Permitted Phases		
Detector Phase		
Switch Phase		
Minimum Initial (s)	1.0	8.0
Minimum Split (s)	29.0	10.0
Total Split (s)	29.0	10.0
Total Split (%)	16%	6%
Yellow Time (s)	4.0	2.0
All-Red Time (s)	2.0	0.0
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag	Lead	Lag
Lead-Lag Optimize?	Yes	Yes
Recall Mode	None	None
Intersection Summary		

2: FPL Exit & Coast Guard Exit & Ferry Exit & MacArthur Causeway

	>	→	•	•	•	*_	ኘ	\	\mathbf{x}	4	*	×
Movement	EBL	EBT	EBR2	WBL2	WBT	WBR	NBL	SEL	SET	SER2	NWL	NWT
Lane Configurations		4			+	777	W	444	f)			4
Traffic Volume (vph)	32	71	8	3	27	3123	0	2712	6	54	8	121
Future Volume (vph)	32	71	8	3	27	3123	0	2712	6	54	8	121
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0			7.0	7.0		7.0	7.0			6.0
Lane Util. Factor		1.00			1.00	0.76		0.94	1.00			1.00
Frt		0.99			1.00	0.85		1.00	0.87			1.00
Flt Protected		0.99			1.00	1.00		0.95	1.00			1.00
Satd. Flow (prot)		1836			1872	3646		5040	1629			1873
Flt Permitted		0.99			1.00	1.00		0.92	1.00			1.00
Satd. Flow (perm)		1836			1872	3646		4858	1629			1873
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	35	77	9	3	29	3395	0	2948	7	59	9	132
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	0	0
Lane Group Flow (vph)	0	121	0	0	32	3395	0	2948	66	0	0	142
Turn Type	Split	NA		Split	NA	custom	Prot	Perm	NA		Split	NA
Protected Phases	. 8	8		5	5	2	7		6		3 4	3 4
Permitted Phases						478		6				
Actuated Green, G (s)		16.5			6.5	136.4		96.4	96.4			28.6
Effective Green, g (s)		16.5			6.5	134.4		96.4	96.4			28.6
Actuated g/C Ratio		0.10			0.04	0.79		0.57	0.57			0.17
Clearance Time (s)		6.0			7.0	7.0		7.0	7.0			
Vehicle Extension (s)		3.0			2.0	1.0		1.0	1.0			
Lane Grp Cap (vph)		178			71	2882		2754	923			315
v/s Ratio Prot		0.07			0.02	c0.76			0.04			c0.08
v/s Ratio Perm						0.17		0.61				
v/c Ratio		0.68			0.45	1.18		1.07	0.07			0.45
Uniform Delay, d1		74.2			80.0	17.8		36.8	16.6			63.6
Progression Factor		1.00			1.00	1.00		1.00	1.00			1.00
Incremental Delay, d2		9.9			1.7	84.0		38.4	0.1			0.4
Delay (s)		84.1			81.7	101.8		75.2	16.7			64.0
Level of Service		F			F	F		Е	В			Е
Approach Delay (s)		84.1			101.7		0.0		73.9			64.0
Approach LOS		F			F		Α		Е			E
Intersection Summary												
HCM 2000 Control Delay			88.1	Н	CM 2000	D Level of	Service		F			
HCM 2000 Volume to Capaci	ity ratio		1.22									
Actuated Cycle Length (s)			170.0	S	um of los	st time (s)			34.0			
Intersection Capacity Utilizati	on		103.9%			of Service			G			
Analysis Period (min)			15									
o Critical Lana Craus												

Movement	NWR
Lane Configurations	
Traffic Volume (vph)	1
Future Volume (vph)	1
Ideal Flow (vphpl)	1900
Total Lost time (s)	
Lane Util. Factor	
Frt	
Flt Protected	
Satd. Flow (prot)	
Flt Permitted	
Satd. Flow (perm)	
Peak-hour factor, PHF	0.92
Adj. Flow (vph)	1
RTOR Reduction (vph)	0
Lane Group Flow (vph)	0
Turn Type	
Protected Phases	
Permitted Phases	
Actuated Green, G (s)	
Effective Green, g (s)	
Actuated g/C Ratio	
Clearance Time (s)	
Vehicle Extension (s)	
Lane Grp Cap (vph)	
v/s Ratio Prot	
v/s Ratio Perm	
v/c Ratio	
Uniform Delay, d1	
Progression Factor	
Incremental Delay, d2	
Delay (s)	
Level of Service	
Approach Delay (s)	
Approach LOS	
Intersection Summary	
intersection Summary	

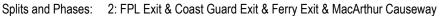
	-	•	*_	\	×	×
Lane Group	EBT	WBT	WBR	SEL	SET	NWT
Lane Group Flow (vph)	121	32	3395	2948	66	142
v/c Ratio	0.68	0.39	1.11	1.06	0.07	0.52
Control Delay	92.2	91.9	72.2	67.3	19.8	73.7
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	92.2	91.9	72.2	67.3	19.8	73.7
Queue Length 50th (ft)	133	35	~1889	~1293	33	149
Queue Length 95th (ft)	201	75	#2010	#1529	m70	218
Internal Link Dist (ft)	459	1327			265	705
Turn Bay Length (ft)						
Base Capacity (vph)	334	102	3053	2794	937	274
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	39	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.36	0.31	1.13	1.06	0.07	0.52

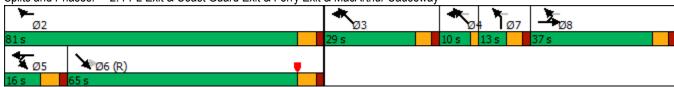
Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.


m Volume for 95th percentile queue is metered by upstream signal.


	*	→	\rightarrow	~	•	*_	ሽ	\	\mathbf{x}	4	•	×
Lane Group	EBL	EBT	EBR2	WBL2	WBT	WBR	NBL	SEL	SET	SER2	NWL	NWT
Lane Configurations		4			↑	777	, A	ት የ	f)			र्स
Traffic Volume (vph)	32	71	8	3	27	3123	0	2712	6	54	8	121
Future Volume (vph)	32	71	8	3	27	3123	0	2712	6	54	8	121
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%		0%		0%			0%
Shared Lane Traffic (%)												
Turn Type	Split	NA		Split	NA	custom	Prot	Perm	NA		Split	NA
Protected Phases	8	8		5	5	2	7		6		3 4	3 4
Permitted Phases						478		6				
Detector Phase	8	8		5	5	2	7	6	6		3 4	3 4
Switch Phase												
Minimum Initial (s)	10.0	10.0		5.0	5.0	20.0	7.0	20.0	20.0			
Minimum Split (s)	24.0	24.0		16.0	16.0	27.0	13.0	27.0	27.0			
Total Split (s)	37.0	37.0		16.0	16.0	81.0	13.0	65.0	65.0			
Total Split (%)	21.8%	21.8%		9.4%	9.4%	47.6%	7.6%	38.2%	38.2%			
Yellow Time (s)	4.0	4.0		5.0	5.0	5.0	4.0	5.0	5.0			
All-Red Time (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0			
Lost Time Adjust (s)		0.0			0.0	0.0	0.0	0.0	0.0			
Total Lost Time (s)		6.0			7.0	7.0	6.0	7.0	7.0			
Lead/Lag	Lag	Lag		Lead	Lead		Lead	Lag	Lag			
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes	Yes			
Recall Mode	None	None		None	None	None	None	C-Max	C-Max			

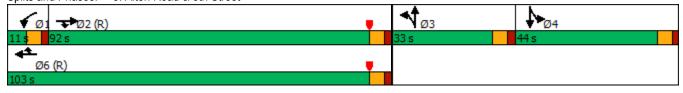
Cycle Length: 170
Actuated Cycle Length: 170

Offset: 158 (93%), Referenced to phase 6:SETL, Start of Yellow

Natural Cycle: 150

	104/D	~^	~ .
Lane Group	NWR	Ø3	Ø4
Lane Configurations			
Traffic Volume (vph)	1		
Future Volume (vph)	1		
Confl. Peds. (#/hr)			
Confl. Bikes (#/hr)			
Peak Hour Factor	0.92		
Growth Factor	100%		
Heavy Vehicles (%)	1%		
Bus Blockages (#/hr)	0		
Parking (#/hr)			
Mid-Block Traffic (%)			
Shared Lane Traffic (%)			
Turn Type			
Protected Phases		3	4
Permitted Phases			
Detector Phase			
Switch Phase			
Minimum Initial (s)		1.0	8.0
Minimum Split (s)		29.0	10.0
Total Split (s)		29.0	10.0
Total Split (%)		17%	6%
Yellow Time (s)		4.0	2.0
All-Red Time (s)		2.0	0.0
Lost Time Adjust (s)			
Total Lost Time (s)			
Lead/Lag		Lead	Lag
Lead-Lag Optimize?		Yes	Yes
Recall Mode		None	None
Interception Cumment			
Intersection Summary			

	۶	→	•	•	—	4	1	†	/	/	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		^	7	, N	†	7	1,1	f)			ર્ન	7
Traffic Volume (vph)	0	1264	532	17	1047	70	312	152	20	76	160	809
Future Volume (vph)	0	1264	532	17	1047	70	312	152	20	76	160	809
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0	6.0	6.0	6.0	6.0	6.0	6.0			6.0	4.0
Lane Util. Factor		0.95	1.00	1.00	0.95	1.00	0.97	1.00			1.00	1.00
Frpb, ped/bikes		1.00	1.00	1.00	1.00	1.00	1.00	0.98			1.00	1.00
Flpb, ped/bikes		1.00	1.00	1.00	1.00	1.00	1.00	1.00			1.00	1.00
Frt		1.00	0.85	1.00	1.00	0.85	1.00	0.98			1.00	0.85
Flt Protected		1.00	1.00	0.95	1.00	1.00	0.95	1.00			0.98	1.00
Satd. Flow (prot)		3217	1439	1608	3217	1439	3120	1631			1666	1439
Flt Permitted		1.00	1.00	0.95	1.00	1.00	0.95	1.00			0.98	1.00
Satd. Flow (perm)		3217	1439	1608	3217	1439	3120	1631			1666	1439
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	0	1317	554	18	1091	73	325	158	21	79	167	843
RTOR Reduction (vph)	0	0	141	0	0	25	0	3	0	0	0	0
Lane Group Flow (vph)	0	1317	413	18	1091	48	325	176	0	0	246	843
Confl. Peds. (#/hr)			30	30		4			48	48		
Confl. Bikes (#/hr)			12			11	0 "		5	0 !!!		
Turn Type		NA	Prot	Prot	NA	Prot	Split	NA		Split	NA	Free
Protected Phases		2	2	1	6	6	3	3		4	4	-
Permitted Phases		07.0	07.0	2.7	400.7	100.7	00.0	02.0			24.4	Free
Actuated Green, G (s)		97.0	97.0	3.7	106.7	106.7	23.9	23.9			31.4	180.0
Effective Green, g (s)		97.0	97.0	3.7	106.7	106.7	23.9	23.9			31.4	180.0
Actuated g/C Ratio		0.54 6.0	0.54 6.0	0.02 6.0	0.59 6.0	0.59 6.0	0.13 6.0	0.13 6.0			0.17 6.0	1.00
Clearance Time (s) Vehicle Extension (s)		1.0	1.0	2.0	1.0	1.0	3.0	3.0			3.5	
				33				216				1420
Lane Grp Cap (vph) v/s Ratio Prot		1733 c0.41	775 0.29	0.01	1906 0.34	853 0.03	414				290	1439
v/s Ratio Prot v/s Ratio Perm		CU.4 I	0.29	0.01	0.34	0.03	0.10	c0.11			c0.15	c0.59
v/c Ratio		0.76	0.53	0.55	0.57	0.06	0.79	0.82			0.85	0.59
Uniform Delay, d1		32.4	26.8	87.3	22.6	15.4	75.6	75.9			72.0	0.0
Progression Factor		1.00	1.00	1.00	1.00	1.00	1.00	1.00			1.00	1.00
Incremental Delay, d2		3.2	2.6	9.5		0.1	9.4	20.7			20.4	1.8
Delay (s)		35.6	29.5	96.8	1.3 23.8	15.6	85.0	96.6			92.4	1.8
Level of Service		55.0 D	29.5 C	90.0 F	23.0 C	13.0 B	65.0 F	90.0 F			52.4 F	1.0 A
Approach Delay (s)		33.8	U		24.4	U	ļ.	89.1			22.2	Л
Approach LOS		C			C			F			C	
Intersection Summary												
HCM 2000 Control Delay	., .,		34.7	Н	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capac	city ratio		0.80	=					010			
Actuated Cycle Length (s)			180.0		um of lost				24.0			
Intersection Capacity Utilizat	tion		81.3%	IC	U Level	of Service			D			
Analysis Period (min)			15									


	۶	→	•	•	•	•	4	†	/	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		^	7	7	^	7	ሻሻ	f)			4	7
Traffic Volume (vph)	0	1264	532	17	1047	70	312	152	20	76	160	809
Future Volume (vph)	0	1264	532	17	1047	70	312	152	20	76	160	809
Confl. Peds. (#/hr)			30	30					48	48		
Confl. Bikes (#/hr)			12			1			5			
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Shared Lane Traffic (%)												
Turn Type		NA	Prot	Prot	NA	Prot	Split	NA		Split	NA	Free
Protected Phases		2	2	1	6	6	3	3		4	4	
Permitted Phases												Free
Detector Phase		2	2	1	6	6	3	3		4	4	
Switch Phase												
Minimum Initial (s)		5.0	5.0	5.0	5.0	5.0	7.0	7.0		7.0	7.0	
Minimum Split (s)		35.0	35.0	11.0	35.0	35.0	24.0	24.0		31.0	31.0	
Total Split (s)		92.0	92.0	11.0	103.0	103.0	33.0	33.0		44.0	44.0	
Total Split (%)		51.1%	51.1%	6.1%	57.2%	57.2%	18.3%	18.3%		24.4%	24.4%	
Yellow Time (s)		4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	
All-Red Time (s)		2.0	2.0	2.0	2.0	2.0	2.0	2.0		2.0	2.0	
Lost Time Adjust (s)		0.0	0.0	0.0	0.0	0.0	0.0	0.0			0.0	
Total Lost Time (s)		6.0	6.0	6.0	6.0	6.0	6.0	6.0			6.0	
Lead/Lag		Lag	Lag	Lead			Lead	Lead		Lag	Lag	
Lead-Lag Optimize?		Yes	Yes	Yes			Yes	Yes		Yes	Yes	
Recall Mode		C-Max	C-Max	None	C-Max	C-Max	None	None		None	None	

Cycle Length: 180
Actuated Cycle Length: 180

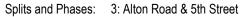
Offset: 114 (63%), Referenced to phase 2:EBT and 6:WBT, Start of Yellow

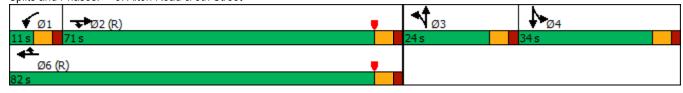
Natural Cycle: 115

	→	\rightarrow	•	←	•	1	†	ļ	4	
Lane Group	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBT	SBR	
Lane Group Flow (vph)	1317	554	18	1091	73	325	179	246	843	
v/c Ratio	0.74	0.60	0.35	0.57	0.08	0.79	0.82	0.85	0.59	
Control Delay	36.6	15.6	104.1	25.4	5.7	89.2	101.9	96.5	1.8	
Queue Delay	0.0	0.0	0.0	0.7	0.0	0.0	0.0	0.0	0.0	
Total Delay	36.6	15.6	104.1	26.1	5.7	89.2	101.9	96.5	1.8	
Queue Length 50th (ft)	671	210	21	423	6	192	203	284	0	
Queue Length 95th (ft)	824	367	53	540	34	250	#299	382	0	
Internal Link Dist (ft)	549			717			263	439		
Turn Bay Length (ft)		225	150							
Base Capacity (vph)	1776	931	51	1906	877	468	247	351	1439	
Starvation Cap Reductn	0	0	0	448	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.74	0.60	0.35	0.75	0.08	0.69	0.72	0.70	0.59	

Intersection Summary
95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.


	•	→	•	•	←	•	1	†	/	/	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		^	7	J.	^	7	1,1	f)			ર્ન	7
Traffic Volume (vph)	0	1144	424	14	1491	116	562	177	12	77	173	815
Future Volume (vph)	0	1144	424	14	1491	116	562	177	12	77	173	815
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0	6.0	6.0	6.0	6.0	6.0	6.0			6.0	4.0
Lane Util. Factor		0.95	1.00	1.00	0.95	1.00	0.97	1.00			1.00	1.00
Frpb, ped/bikes		1.00	1.00	1.00	1.00	1.00	1.00	0.99			1.00	1.00
Flpb, ped/bikes		1.00	1.00	1.00	1.00	1.00	1.00	1.00			1.00	1.00
Frt		1.00	0.85	1.00	1.00	0.85	1.00	0.99			1.00	0.85
Flt Protected		1.00	1.00	0.95	1.00	1.00	0.95	1.00			0.98	1.00
Satd. Flow (prot)		3217	1439	1608	3217	1439	3120	1664			1667	1439
FIt Permitted		1.00	1.00	0.95	1.00	1.00	0.95	1.00			0.98	1.00
Satd. Flow (perm)		3217	1439	1608	3217	1439	3120	1664			1667	1439
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	0	1217	451	15	1586	123	598	188	13	82	184	867
RTOR Reduction (vph)	0	0	169	0	0	40	0	2	0	0	0	0
Lane Group Flow (vph)	0	1217	282	15	1586	83	598	199	0	0	266	867
Confl. Peds. (#/hr)			34	34					33	33		
Confl. Bikes (#/hr)			11			2			14			
Turn Type		NA	Prot	Prot	NA	Prot	Split	NA		Split	NA	Free
Protected Phases		2	2	1	6	6	3	3		4	4	
Permitted Phases												Free
Actuated Green, G (s)		70.2	70.2	2.0	78.2	78.2	18.0	18.0			25.8	140.0
Effective Green, g (s)		70.2	70.2	2.0	78.2	78.2	18.0	18.0			25.8	140.0
Actuated g/C Ratio		0.50	0.50	0.01	0.56	0.56	0.13	0.13			0.18	1.00
Clearance Time (s)		6.0	6.0	6.0	6.0	6.0	6.0	6.0			6.0	
Vehicle Extension (s)		1.0	1.0	2.0	1.0	1.0	3.0	3.0			3.5	
Lane Grp Cap (vph)		1613	721	22	1796	803	401	213			307	1439
v/s Ratio Prot		0.38	0.20	0.01	c0.49	0.06	c0.19	0.12			c0.16	
v/s Ratio Perm												0.60
v/c Ratio		0.75	0.39	0.68	0.88	0.10	1.49	0.94			0.87	0.60
Uniform Delay, d1		28.0	21.7	68.7	26.9	14.5	61.0	60.4			55.4	0.0
Progression Factor		1.00	1.00	1.00	1.00	1.00	1.00	1.00			1.00	1.00
Incremental Delay, d2		3.3	1.6	52.0	6.7	0.3	233.9	43.5			22.1	1.9
Delay (s)		31.3	23.3	120.7	33.6	14.7	294.9	104.0			77.6	1.9
Level of Service		С	С	F	С	В	F	F			Е	Α
Approach Delay (s)		29.1			33.0			246.9			19.6	
Approach LOS		С			С			F			В	
Intersection Summary												
HCM 2000 Control Delay			61.1	Н	CM 2000	Level of	Service		Е			
HCM 2000 Volume to Capa	city ratio		1.02									
Actuated Cycle Length (s)			140.0	S	um of lost	time (s)			24.0			
Intersection Capacity Utiliza	tion		93.5%	IC	CU Level	of Service			F			
Analysis Period (min)			15									


	۶	→	•	•	←	•	4	†	/	/	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		^	7	ř	^	7	14.4	^			ર્ન	7
Traffic Volume (vph)	0	1144	424	14	1491	116	562	177	12	77	173	815
Future Volume (vph)	0	1144	424	14	1491	116	562	177	12	77	173	815
Confl. Peds. (#/hr)			34	34					33	33		
Confl. Bikes (#/hr)			11			2			14			
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Shared Lane Traffic (%)												
Turn Type		NA	Prot	Prot	NA	Prot	Split	NA		Split	NA	Free
Protected Phases		2	2	1	6	6	3	3		4	4	
Permitted Phases												Free
Detector Phase		2	2	1	6	6	3	3		4	4	
Switch Phase												
Minimum Initial (s)		5.0	5.0	5.0	5.0	5.0	7.0	7.0		7.0	7.0	
Minimum Split (s)		35.0	35.0	11.0	35.0	35.0	24.0	24.0		31.0	31.0	
Total Split (s)		71.0	71.0	11.0	82.0	82.0	24.0	24.0		34.0	34.0	
Total Split (%)		50.7%	50.7%	7.9%	58.6%	58.6%	17.1%	17.1%		24.3%	24.3%	
Yellow Time (s)		4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	
All-Red Time (s)		2.0	2.0	2.0	2.0	2.0	2.0	2.0		2.0	2.0	
Lost Time Adjust (s)		0.0	0.0	0.0	0.0	0.0	0.0	0.0			0.0	
Total Lost Time (s)		6.0	6.0	6.0	6.0	6.0	6.0	6.0			6.0	
Lead/Lag		Lag	Lag	Lead			Lead	Lead		Lag	Lag	
Lead-Lag Optimize?		Yes	Yes	Yes			Yes	Yes		Yes	Yes	
Recall Mode		C-Max	C-Max	None	C-Max	C-Max	None	None		None	None	

Cycle Length: 140 Actuated Cycle Length: 140

Offset: 57 (41%), Referenced to phase 2:EBT and 6:WBT, Start of Yellow

Natural Cycle: 135

	-	•	•	←	•	•	†	↓	4	
Lane Group	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBT	SBR	
Lane Group Flow (vph)	1217	451	15	1586	123	598	201	266	867	
v/c Ratio	0.72	0.49	0.26	0.88	0.15	1.49	0.93	0.87	0.60	
Control Delay	29.7	7.7	77.2	34.6	5.4	274.6	105.8	81.5	1.9	
Queue Delay	0.0	0.0	0.0	3.8	0.0	0.0	0.0	0.0	0.0	
Total Delay	29.7	7.7	77.2	38.5	5.4	274.6	105.8	81.5	1.9	
Queue Length 50th (ft)	415	49	14	663	13	~387	182	233	0	
Queue Length 95th (ft)	592	156	39	789	45	#507	#339	#369	0	
Internal Link Dist (ft)	549			717			263	439		
Turn Bay Length (ft)		225	150							
Base Capacity (vph)	1695	918	57	1796	843	401	215	333	1439	
Starvation Cap Reductn	0	0	0	146	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.72	0.49	0.26	0.96	0.15	1.49	0.93	0.80	0.60	

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

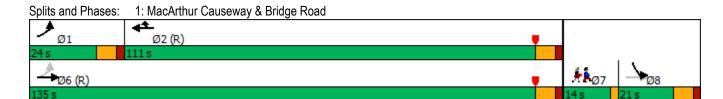
^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Future with Project Conditions

	•	-	←	•	-	4		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations	ኝ	^	ተተተ	7	W	52 . (
Traffic Volume (vph)	22	3301	2654	8	8	11		
Future Volume (vph)	22	3301	2654	8	8	11		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	7.0	7.0	7.0	7.0	7.0			
Lane Util. Factor	1.00	0.91	0.91	1.00	1.00			
Frt	1.00	1.00	1.00	0.85	0.92			
Flt Protected	0.95	1.00	1.00	1.00	0.98			
Satd. Flow (prot)	1787	5136	5136	1599	1698			
Flt Permitted	0.03	1.00	1.00	1.00	0.98			
Satd. Flow (perm)	58	5136	5136	1599	1698			
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96		
Adj. Flow (vph)	23	3439	2765	8	8	11		
RTOR Reduction (vph)	0	0	0	0	11	0		
Lane Group Flow (vph)	23	3439	2765	8	8	0		
Turn Type	pm+pt	NA	NA	Prot	Prot	-		
Protected Phases	1	6	2	2	8			
Permitted Phases	6	8		_				
Actuated Green, G (s)	161.5	166.0	150.3	150.3	4.5			
Effective Green, g (s)	161.5	166.0	150.3	150.3	4.5			
Actuated g/C Ratio	0.90	0.92	0.84	0.84	0.02			
Clearance Time (s)	7.0	7.0	7.0	7.0	7.0			
Vehicle Extension (s)	2.5	1.0	1.0	1.0	3.0			
Lane Grp Cap (vph)	92	5136	4288	1335	42			
v/s Ratio Prot	0.01	c0.60	0.54	0.00	0.00			
v/s Ratio Perm	0.22	0.07	3.01	0.00	0.00			
v/c Ratio	0.25	0.67	0.64	0.01	0.20			
Uniform Delay, d1	6.8	1.4	5.3	2.5	86.0			
Progression Factor	1.00	1.00	1.00	1.00	1.00			
Incremental Delay, d2	1.0	0.3	0.8	0.0	2.3			
Delay (s)	7.8	1.8	6.1	2.5	88.3			
Level of Service	A	Α	A	A	F			
Approach Delay (s)		1.8	6.1		88.3			
Approach LOS		Α	Α		F			
Intersection Summary								
HCM 2000 Control Delay			4.0	Н	CM 2000	Level of Service	Α	
HCM 2000 Volume to Cap	acity ratio		0.77					
Actuated Cycle Length (s)			180.0	Sı	um of lost	time (s)	23.0	
Intersection Capacity Utiliz			79.6%		U Level c		D	
Analysis Period (min)			15					
0.30 - 11 0								

	•	→	+	•	\	4				
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	Ø7			
Lane Configurations	*	ተተተ	ተተተ	7	14					
Traffic Volume (vph)	22	3301	2654	8	8	11				
Future Volume (vph)	22	3301	2654	8	8	11				
Confl. Peds. (#/hr)										
Confl. Bikes (#/hr)										
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96				
Growth Factor	100%	100%	100%	100%	100%	100%				
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%				
Bus Blockages (#/hr)	0	0	0	0	0	0				
Parking (#/hr)										
Mid-Block Traffic (%)		0%	0%		0%					
Shared Lane Traffic (%)										
Turn Type	pm+pt	NA	NA	Prot	Prot					
Protected Phases	1	6	2	2	8		7			
Permitted Phases	6	8								
Detector Phase	1	6	2	2	8					
Switch Phase										
Minimum Initial (s)	7.0	18.0	18.0	18.0	5.0		1.0			
Minimum Split (s)	24.0	25.0	25.0	25.0	21.0		14.0			
Total Split (s)	24.0	145.0	121.0	121.0	21.0		14.0			
Total Split (%)	13.3%	80.6%	67.2%	67.2%	11.7%		8%			
Yellow Time (s)	5.0	5.0	5.0	5.0	5.0		2.0			
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0		0.0			
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0					
Total Lost Time (s)	7.0	7.0	7.0	7.0	7.0					
Lead/Lag	Lead		Lag	Lag	Lag		Lead			
Lead-Lag Optimize?	Yes		Yes	Yes	Yes		Yes			
Recall Mode	None	C-Max	C-Max	C-Max	None		None			
Intersection Summary										
Cycle Length: 180										
Actuated Cycle Length: 180										
Offset: 58 (32%), Reference	ed to phase	e 2:WBT a	and 6:EB	TL, Start o	of Yellow					
Natural Cycle: 135										
Control Type: Actuated-Coo	ordinated									
	cArthur Ca	useway 8	& Bridge F	Road						
<i>▶</i> ◆	(0)									
	(R)							Ţ.,		
24 s 121 s										
₹Ø6 (R)									∮ \$@7	78


1: MacArthur Causeway & Bridge Road

	•	→	←	•	\
Lane Group	EBL	EBT	WBT	WBR	SBL
Lane Group Flow (vph)	23	3439	2765	8	19
v/c Ratio	0.19	0.67	0.61	0.01	0.26
Control Delay	4.8	0.7	5.8	3.1	57.1
Queue Delay	0.0	0.0	0.3	0.0	0.0
Total Delay	4.8	0.7	6.1	3.1	57.1
Queue Length 50th (ft)	2	0	431	1	9
Queue Length 95th (ft)	6	0	498	5	41
Internal Link Dist (ft)		1033	477		902
Turn Bay Length (ft)	140			100	
Base Capacity (vph)	216	5136	4528	1410	142
Starvation Cap Reductn	0	0	979	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.11	0.67	0.78	0.01	0.13
Intersection Summary					

	•	-	←	•	-	1	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	ሻ	^ ^	^ ^	7	¥	-	
Traffic Volume (vph)	12	2818	3410	18	7	51	
Future Volume (vph)	12	2818	3410	18	7	51	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	7.0	7.0	7.0	7.0	7.0		
Lane Util. Factor	1.00	0.91	0.91	1.00	1.00		
Frt	1.00	1.00	1.00	0.85	0.88		
Flt Protected	0.95	1.00	1.00	1.00	0.99		
Satd. Flow (prot)	1787	5136	5136	1599	1649		
Flt Permitted	0.03	1.00	1.00	1.00	0.99		
Satd. Flow (perm)	52	5136	5136	1599	1649		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	13	3063	3707	20	8	55	
RTOR Reduction (vph)	0	0	0	1	53	0	
Lane Group Flow (vph)	13	3063	3707	19	10	0	
Turn Type	pm+pt	NA	NA	Prot	Prot		
Protected Phases	1	6	2	2	8		
Permitted Phases	6	8					
Actuated Green, G (s)	148.6	156.0	138.8	138.8	7.4		
Effective Green, g (s)	148.6	156.0	138.8	138.8	7.4		
Actuated g/C Ratio	0.87	0.92	0.82	0.82	0.04		
Clearance Time (s)	7.0	7.0	7.0	7.0	7.0		
Vehicle Extension (s)	2.5	1.0	1.0	1.0	3.0		
Lane Grp Cap (vph)	74	5136	4193	1305	71		
v/s Ratio Prot	0.00	c0.52	c0.72	0.01	0.01		
v/s Ratio Perm	0.15	0.08					
v/c Ratio	0.18	0.60	0.88	0.01	0.15		
Uniform Delay, d1	30.9	1.3	10.3	2.9	78.3		
Progression Factor	1.00	1.00	0.76	0.20	1.00		
Incremental Delay, d2	8.0	0.2	0.3	0.0	1.0		
Delay (s)	31.7	1.5	8.1	0.6	79.2		
Level of Service	С	Α	Α	Α	Е		
Approach Delay (s)		1.6	8.0		79.2		
Approach LOS		Α	Α		Е		
Intersection Summary							
HCM 2000 Control Delay			5.8	Н	CM 2000	Level of Service	Α
HCM 2000 Volume to Capa	acity ratio		0.93				
Actuated Cycle Length (s)			170.0		um of lost		23.0
Intersection Capacity Utiliz	ation		81.7%	IC	U Level c	of Service	D
Analysis Period (min)			15				

	•	→	+	•	/	1			
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	Ø7		
Lane Configurations	ሻ	^	ተተተ	7	¥				
Traffic Volume (vph)	12	2818	3410	18	7	51			
Future Volume (vph)	12	2818	3410	18	7	51			
Confl. Peds. (#/hr)									
Confl. Bikes (#/hr)									
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92			
Growth Factor	100%	100%	100%	100%	100%	100%			
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%			
Bus Blockages (#/hr)	0	0	0	0	0	0			
Parking (#/hr)									
Mid-Block Traffic (%)		0%	0%		0%				
Shared Lane Traffic (%)									
Turn Type	pm+pt	NA	NA	Prot	Prot				
Protected Phases	1	6	2	2	8		7		
Permitted Phases	6	8							
Detector Phase	1	6	2	2	8				
Switch Phase									
Minimum Initial (s)	7.0	18.0	18.0	18.0	5.0		1.0		
Minimum Split (s)	24.0	25.0	25.0	25.0	21.0		14.0		
Total Split (s)	24.0	135.0	111.0	111.0	21.0		14.0		
Total Split (%)	14.1%	79.4%	65.3%	65.3%	12.4%		8%		
Yellow Time (s)	5.0	5.0	5.0	5.0	5.0		2.0		
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0		0.0		
_ost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0				
Total Lost Time (s)	7.0	7.0	7.0	7.0	7.0				
Lead/Lag	Lead		Lag	Lag	Lag		Lead		
_ead-Lag Optimize?	Yes		Yes	Yes	Yes		Yes		
Recall Mode	None	C-Max	C-Max	C-Max	None		None		
Intersection Summary									
Cycle Length: 170	,								
Actuated Cycle Length: 170		MOT	1.0 EDT	01 1 6					
Offset: 9 (5%), Referenced	to phase 2	:WBI and	d 6:EBTL,	Start of \	Yellow				

Natural Cycle: 145

	•	→	←	•	>
Lane Group	EBL	EBT	WBT	WBR	SBL
Lane Group Flow (vph)	13	3063	3707	20	63
v/c Ratio	0.11	0.60	0.86	0.01	0.51
Control Delay	3.6	0.5	7.8	0.6	36.3
Queue Delay	0.0	0.0	6.4	0.0	0.0
Total Delay	3.6	0.5	14.2	0.6	36.3
Queue Length 50th (ft)	1	0	100	0	9
Queue Length 95th (ft)	5	0	m89	m1	62
Internal Link Dist (ft)		1033	477		902
Turn Bay Length (ft)	140			100	
Base Capacity (vph)	218	5136	4321	1346	186
Starvation Cap Reductn	0	0	597	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.06	0.60	1.00	0.01	0.34
Intersection Summary					

m Volume for 95th percentile queue is metered by upstream signal.

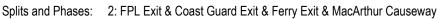
	>	-	\rightarrow	•	←	*_	ኘ	\	\mathbf{x}	4	•	×
Movement	EBL	EBT	EBR2	WBL2	WBT	WBR	NBL	SEL	SET	SER2	NWL	NWT
Lane Configurations		4				777	W	ሻሻሻ	£			र्स
Traffic Volume (vph)	30	32	8	102	6	2594	0	3041	212	56	7	36
Future Volume (vph)	30	32	8	102	6	2594	0	3041	212	56	7	36
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0			7.0	7.0		7.0	7.0			6.0
Lane Util. Factor		1.00			1.00	0.76		0.94	1.00			1.00
Frt		0.98			1.00	0.85		1.00	0.97			1.00
Flt Protected		0.98			0.96	1.00		0.95	1.00			0.99
Satd. Flow (prot)		1813			1797	3646		5040	1822			1865
Flt Permitted		0.98			0.96	1.00		0.94	1.00			0.99
Satd. Flow (perm)		1813			1797	3646		4987	1822			1865
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	33	35	9	111	7	2820	0	3305	230	61	8	39
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	0	0
Lane Group Flow (vph)	0	77	0	0	118	2820	0	3305	291	0	0	47
Turn Type	Split	NA		Split	NA	custom	Prot	Perm	NA		Split	NA
Protected Phases	8	8		5	5	2	7		6		3 4	3 4
Permitted Phases						478		6				
Actuated Green, G (s)		13.4			19.1	155.8		107.9	107.9			18.6
Effective Green, g (s)		13.4			19.1	153.8		107.9	107.9			18.6
Actuated g/C Ratio		0.07			0.11	0.85		0.60	0.60			0.10
Clearance Time (s)		6.0			7.0	7.0		7.0	7.0			
Vehicle Extension (s)		3.0			2.0	1.0		1.0	1.0			
Lane Grp Cap (vph)		134			189	3098		2972	1086			191
v/s Ratio Prot		0.04			0.07	c0.67			0.16			c0.03
v/s Ratio Perm						0.10		c0.66				
v/c Ratio		0.57			0.62	0.91		1.11	0.27			0.25
Uniform Delay, d1		81.0			77.5	9.0		36.5	17.6			74.7
Progression Factor		1.00			1.00	1.00		1.00	1.00			1.00
Incremental Delay, d2		5.8			4.6	4.4		55.8	0.6			0.2
Delay (s)		86.9			82.1	13.5		92.4	18.2			75.0
Level of Service		F			F	В		F	В			E
Approach Delay (s)		86.9			16.2		0.0		86.4			75.0
Approach LOS		F			В		Α		F			Е
Intersection Summary												
HCM 2000 Control Delay			55.4	Н	CM 2000	Level of S	Service		Е			
HCM 2000 Volume to Capacity	/ ratio		1.10									
Actuated Cycle Length (s)			181.0			st time (s)			34.0			
Intersection Capacity Utilization	n		88.0%	IC	U Level	of Service			Е			
Analysis Period (min)			15									

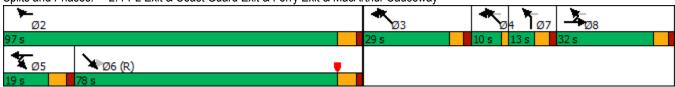
	-	←	*_	\	×	×
Lane Group	EBT	WBT	WBR	SEL	SET	NWT
Lane Group Flow (vph)	77	118	2820	3305	291	47
v/c Ratio	0.57	0.62	0.85	1.10	0.26	0.30
Control Delay	97.1	92.2	8.4	83.0	19.8	81.0
Queue Delay	0.0	0.0	0.0	2.0	0.0	0.0
Total Delay	97.1	92.2	8.4	85.0	19.8	81.0
Queue Length 50th (ft)	90	137	529	~1607	166	53
Queue Length 95th (ft)	149	210	741	#1791	264	98
Internal Link Dist (ft)	459	1327			265	705
Turn Bay Length (ft)						
Base Capacity (vph)	260	189	3310	3016	1102	237
Starvation Cap Reductn	0	0	0	290	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.30	0.62	0.85	1.21	0.26	0.20

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.


Queue shown is maximum after two cycles.


	>	→	\rightarrow	~	•	*_	ሽ	\	\mathbf{x}	4	•	×
Lane Group	EBL	EBT	EBR2	WBL2	WBT	WBR	NBL	SEL	SET	SER2	NWL	NWT
Lane Configurations		4			↑	777	, A	ት የ	f)			र्स
Traffic Volume (vph)	30	32	8	102	6	2594	0	3041	212	56	7	36
Future Volume (vph)	30	32	8	102	6	2594	0	3041	212	56	7	36
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%		0%		0%			0%
Shared Lane Traffic (%)												
Turn Type	Split	NA		Split	NA	custom	Prot	Perm	NA		Split	NA
Protected Phases	8	8		5	5	2	7		6		3 4	3 4
Permitted Phases						478		6				
Detector Phase	8	8		5	5	2	7	6	6		3 4	3 4
Switch Phase												
Minimum Initial (s)	10.0	10.0		5.0	5.0	20.0	7.0	20.0	20.0			
Minimum Split (s)	24.0	24.0		19.0	19.0	27.0	13.0	27.0	27.0			
Total Split (s)	32.0	32.0		19.0	19.0	97.0	13.0	78.0	78.0			
Total Split (%)	17.7%	17.7%		10.5%	10.5%	53.6%	7.2%	43.1%	43.1%			
Yellow Time (s)	4.0	4.0		5.0	5.0	5.0	4.0	5.0	5.0			
All-Red Time (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0			
Lost Time Adjust (s)		0.0			0.0	0.0	0.0	0.0	0.0			
Total Lost Time (s)		6.0			7.0	7.0	6.0	7.0	7.0			
Lead/Lag	Lag	Lag		Lead	Lead		Lead	Lag	Lag			
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes	Yes			
Recall Mode	None	None		None	None	None	None	C-Max	C-Max			

Cycle Length: 181
Actuated Cycle Length: 181

Offset: 37 (20%), Referenced to phase 6:SETL, Start of Yellow

Natural Cycle: 145

Lane Group	Ø3	Ø4			
Lane Configurations					
Traffic Volume (vph)					
Future Volume (vph)					
Confl. Peds. (#/hr)					
Confl. Bikes (#/hr)					
Peak Hour Factor					
Growth Factor					
Heavy Vehicles (%)					
Bus Blockages (#/hr)					
Parking (#/hr)					
Mid-Block Traffic (%)					
Shared Lane Traffic (%)					
Turn Type Protected Phases	3	4			
Permitted Phases	ა	4			
Detector Phase					
Switch Phase					
Minimum Initial (s)	1.0	8.0			
Minimum Split (s)	29.0	10.0			
Total Split (s)	29.0	10.0			
Total Split (%)	16%	6%			
Yellow Time (s)	4.0	2.0			
All-Red Time (s)	2.0	0.0			
Lost Time Adjust (s)					
Total Lost Time (s)					
Lead/Lag	Lead	Lag			
Lead-Lag Optimize?	Yes	Yes			
Recall Mode	None	None			
Intersection Summary					

	>	→	\rightarrow	~	•	*_	ኘ	\	\mathbf{x}	4	*	×
Movement	EBL	EBT	EBR2	WBL2	WBT	WBR	NBL	SEL	SET	SER2	NWL	NWT
Lane Configurations		4			†	777	W	444	f)			4
Traffic Volume (vph)	32	71	8	29	27	3123	0	2712	59	54	8	121
Future Volume (vph)	32	71	8	29	27	3123	0	2712	59	54	8	121
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0			7.0	7.0		7.0	7.0			6.0
Lane Util. Factor		1.00			1.00	0.76		0.94	1.00			1.00
Frt		0.99			1.00	0.85		1.00	0.93			1.00
Flt Protected		0.99			0.97	1.00		0.95	1.00			1.00
Satd. Flow (prot)		1836			1833	3646		5040	1746			1873
Flt Permitted		0.99			0.97	1.00		0.91	1.00			1.00
Satd. Flow (perm)		1836			1833	3646		4853	1746			1873
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	35	77	9	32	29	3395	0	2948	64	59	9	132
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	0	0
Lane Group Flow (vph)	0	121	0	0	61	3395	0	2948	123	0	0	142
Turn Type	Split	NA		Split	NA	custom	Prot	Perm	NA		Split	NA
Protected Phases	8	8		5	5	2	7		6		3 4	3 4
Permitted Phases						478		6				
Actuated Green, G (s)		16.5			10.2	136.4		92.7	92.7			28.6
Effective Green, g (s)		16.5			10.2	134.4		92.7	92.7			28.6
Actuated g/C Ratio		0.10			0.06	0.79		0.55	0.55			0.17
Clearance Time (s)		6.0			7.0	7.0		7.0	7.0			
Vehicle Extension (s)		3.0			2.0	1.0		1.0	1.0			
Lane Grp Cap (vph)		178			109	2882		2646	952			315
v/s Ratio Prot		0.07			0.03	c0.76			0.07			c0.08
v/s Ratio Perm						0.17		0.61				
v/c Ratio		0.68			0.56	1.18		1.11	0.13			0.45
Uniform Delay, d1		74.2			77.7	17.8		38.6	18.9			63.6
Progression Factor		1.00			1.00	1.00		1.00	1.00			1.00
Incremental Delay, d2		9.9			3.5	84.0		56.3	0.2			0.4
Delay (s)		84.1			81.2	101.8		94.9	19.1			64.0
Level of Service		F			F	F		F	В			Е
Approach Delay (s)		84.1			101.5		0.0		91.9			64.0
Approach LOS		F			F		Α		F			Е
Intersection Summary												
HCM 2000 Control Delay			96.0	Н	CM 2000	Level of S	Service		F			
HCM 2000 Volume to Capaci	ity ratio		1.22									
Actuated Cycle Length (s)			170.0	S	um of los	st time (s)			34.0			
Intersection Capacity Utilizati	on		103.9%			of Service			G			
Analysis Period (min)			15									
o Critical Lana Craun												

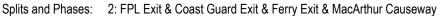
Movement	NWR
Lane Configurations	
Traffic Volume (vph)	1
Future Volume (vph)	1
Ideal Flow (vphpl)	1900
Total Lost time (s)	
Lane Util. Factor	
Frt	
Flt Protected	
Satd. Flow (prot)	
Flt Permitted	
Satd. Flow (perm)	
Peak-hour factor, PHF	0.92
Adj. Flow (vph)	1
RTOR Reduction (vph)	0
Lane Group Flow (vph)	0
Turn Type	
Protected Phases	
Permitted Phases	
Actuated Green, G (s)	
Effective Green, g (s)	
Actuated g/C Ratio	
Clearance Time (s)	
Vehicle Extension (s)	
Lane Grp Cap (vph)	
v/s Ratio Prot	
v/s Ratio Perm	
v/c Ratio	
Uniform Delay, d1	
Progression Factor	
Incremental Delay, d2	
Delay (s)	
Level of Service	
Approach Delay (s)	
Approach LOS	
Intersection Summary	
intoroccion cuminary	

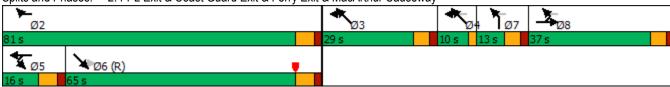
	-	←	*_	\	×	×
Lane Group	EBT	WBT	WBR	SEL	SET	NWT
Lane Group Flow (vph)	121	61	3395	2948	123	142
v/c Ratio	0.68	0.55	1.11	1.12	0.13	0.52
Control Delay	92.2	95.7	72.2	92.6	21.8	73.7
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	92.2	95.7	72.2	92.6	21.8	73.7
Queue Length 50th (ft)	133	67	~1889	~1329	66	149
Queue Length 95th (ft)	201	119	#2010	#1575	126	218
Internal Link Dist (ft)	459	1327			265	705
Turn Bay Length (ft)						
Base Capacity (vph)	334	117	3053	2643	951	274
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	60	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.36	0.52	1.13	1.12	0.13	0.52

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.


Queue shown is maximum after two cycles.


	*	→	\rightarrow	~	•	*_	ሽ	\	\mathbf{x}	4	•	×
Lane Group	EBL	EBT	EBR2	WBL2	WBT	WBR	NBL	SEL	SET	SER2	NWL	NWT
Lane Configurations		4			↑	777	, A	ት የ	₽			र्स
Traffic Volume (vph)	32	71	8	29	27	3123	0	2712	59	54	8	121
Future Volume (vph)	32	71	8	29	27	3123	0	2712	59	54	8	121
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%		0%		0%			0%
Shared Lane Traffic (%)												
Turn Type	Split	NA		Split	NA	custom	Prot	Perm	NA		Split	NA
Protected Phases	8	8		5	5	2	7		6		3 4	3 4
Permitted Phases						478		6				
Detector Phase	8	8		5	5	2	7	6	6		3 4	3 4
Switch Phase												
Minimum Initial (s)	10.0	10.0		5.0	5.0	20.0	7.0	20.0	20.0			
Minimum Split (s)	24.0	24.0		16.0	16.0	27.0	13.0	27.0	27.0			
Total Split (s)	37.0	37.0		16.0	16.0	81.0	13.0	65.0	65.0			
Total Split (%)	21.8%	21.8%		9.4%	9.4%	47.6%	7.6%	38.2%	38.2%			
Yellow Time (s)	4.0	4.0		5.0	5.0	5.0	4.0	5.0	5.0			
All-Red Time (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0			
Lost Time Adjust (s)		0.0			0.0	0.0	0.0	0.0	0.0			
Total Lost Time (s)		6.0			7.0	7.0	6.0	7.0	7.0			
Lead/Lag	Lag	Lag		Lead	Lead		Lead	Lag	Lag			
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes	Yes			
Recall Mode	None	None		None	None	None	None	C-Max	C-Max			

Cycle Length: 170
Actuated Cycle Length: 170

Offset: 158 (93%), Referenced to phase 6:SETL, Start of Yellow

Natural Cycle: 150

Lane Group	NWR	Ø3	Ø4
Lane Configurations			
Traffic Volume (vph)	1		
Future Volume (vph)	1		
Confl. Peds. (#/hr)			
Confl. Bikes (#/hr)			
Peak Hour Factor	0.92		
Growth Factor	100%		
Heavy Vehicles (%)	1%		
Bus Blockages (#/hr)	0		
Parking (#/hr)			
Mid-Block Traffic (%)			
Shared Lane Traffic (%)			
Turn Type			
Protected Phases		3	4
Permitted Phases			
Detector Phase			
Switch Phase			
Minimum Initial (s)		1.0	8.0
Minimum Split (s)		29.0	10.0
Total Split (s)		29.0	10.0
Total Split (%)		17%	6%
Yellow Time (s)		4.0	2.0
All-Red Time (s)		2.0	0.0
Lost Time Adjust (s)			
Total Lost Time (s)			
Lead/Lag		Lead	Lag
Lead-Lag Optimize?		Yes	Yes
Recall Mode		None	None
Intersection Summary			
intersection outlinary			

	۶	→	•	•	—	4	1	†	/	/	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		^	7	, N	†	7	1,1	f)			ર્ન	7
Traffic Volume (vph)	0	1265	533	17	1054	70	312	152	24	76	160	846
Future Volume (vph)	0	1265	533	17	1054	70	312	152	24	76	160	846
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0	6.0	6.0	6.0	6.0	6.0	6.0			6.0	4.0
Lane Util. Factor		0.95	1.00	1.00	0.95	1.00	0.97	1.00			1.00	1.00
Frpb, ped/bikes		1.00	1.00	1.00	1.00	1.00	1.00	0.98			1.00	1.00
Flpb, ped/bikes		1.00	1.00	1.00	1.00	1.00	1.00	1.00			1.00	1.00
Frt		1.00	0.85	1.00	1.00	0.85	1.00	0.98			1.00	0.85
Flt Protected		1.00	1.00	0.95	1.00	1.00	0.95	1.00			0.98	1.00
Satd. Flow (prot)		3217	1439	1608	3217	1439	3120	1620			1666	1439
Flt Permitted		1.00	1.00	0.95	1.00	1.00	0.95	1.00			0.98	1.00
Satd. Flow (perm)	0.00	3217	1439	1608	3217	1439	3120	1620	0.00	0.00	1666	1439
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	0	1318	555	18	1098	73	325	158	25	79	167	881
RTOR Reduction (vph)	0	0	141	0	0	25	0	3	0	0	0	0
Lane Group Flow (vph)	0	1318	414	18	1098	49	325	180	0	0	246	881
Confl. Peds. (#/hr)			30	30		4			48	48		
Confl. Bikes (#/hr)		NIA	12	·	N14	1	0 111	NI A	5	0 111	NIA	_
Turn Type		NA	Prot	Prot	NA	Prot	Split	NA		Split	NA	Free
Protected Phases		2	2	1	6	6	3	3		4	4	Г
Permitted Phases		06.0	00.0	2.7	100 E	10C E	04.4	24.1			24.4	Free
Actuated Green, G (s)		96.8	96.8	3.7 3.7	106.5	106.5 106.5	24.1 24.1	24.1			31.4 31.4	180.0
Effective Green, g (s)		96.8 0.54	96.8 0.54	0.02	106.5 0.59	0.59	0.13	0.13			0.17	180.0 1.00
Actuated g/C Ratio Clearance Time (s)		6.0	6.0	6.0	6.0	6.0	6.0	6.0			6.0	1.00
Vehicle Extension (s)		1.0	1.0	2.0	1.0	1.0	3.0	3.0			3.5	
		1730	773	33	1903	851	417	216			290	1439
Lane Grp Cap (vph) v/s Ratio Prot		c0.41	0.29	0.01	0.34	0.03	0.10	c0.11			c0.15	1439
v/s Ratio Prot v/s Ratio Perm		CU.4 I	0.29	0.01	0.34	0.03	0.10	CO. 1 1			CO. 15	c0.61
v/c Ratio		0.76	0.54	0.55	0.58	0.06	0.78	0.83			0.85	0.61
Uniform Delay, d1		32.6	27.0	87.3	22.8	15.5	75.4	76.0			72.0	0.0
Progression Factor		1.00	1.00	1.00	1.00	1.00	1.00	1.00			1.00	1.00
Incremental Delay, d2		3.2	2.6	9.5	1.3	0.1	8.9	22.9			20.4	2.0
Delay (s)		35.8	29.6	96.8	24.1	15.7	84.3	98.9			92.4	2.0
Level of Service		D	23.0 C	50.6 F	C	В	F	50.5 F			F	Δ.0
Approach Delay (s)		34.0	U	•	24.7		•	89.6			21.7	, ,
Approach LOS		C			C			F			C	
Intersection Summary												
HCM 2000 Control Delay	.,		34.7	Н	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capac	city ratio		0.81						040			
Actuated Cycle Length (s)			180.0		um of los				24.0			
Intersection Capacity Utilizat	tion		81.4%	IC	U Level	of Service			D			
Analysis Period (min)			15									

	۶	→	•	•	←	•	•	†	<i>></i>	>	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			7	• •		7	ሻሻ	1>			र्स	7
Traffic Volume (vph)	0	1265	533	17	1054	70	312	152	24	76	160	846
Future Volume (vph)	0	1265	533	17	1054	70	312	152	24	76	160	846
Confl. Peds. (#/hr)			30	30					48	48		
Confl. Bikes (#/hr)			12			1			5			
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Shared Lane Traffic (%)												
Turn Type		NA	Prot	Prot	NA	Prot	Split	NA		Split	NA	Free
Protected Phases		2	2	1	6	6	3	3		4	4	
Permitted Phases												Free
Detector Phase		2	2	1	6	6	3	3		4	4	
Switch Phase												
Minimum Initial (s)		5.0	5.0	5.0	5.0	5.0	7.0	7.0		7.0	7.0	
Minimum Split (s)		35.0	35.0	11.0	35.0	35.0	24.0	24.0		31.0	31.0	
Total Split (s)		92.0	92.0	11.0	103.0	103.0	33.0	33.0		44.0	44.0	
Total Split (%)		51.1%	51.1%	6.1%	57.2%	57.2%	18.3%	18.3%		24.4%	24.4%	
Yellow Time (s)		4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	
All-Red Time (s)		2.0	2.0	2.0	2.0	2.0	2.0	2.0		2.0	2.0	
Lost Time Adjust (s)		0.0	0.0	0.0	0.0	0.0	0.0	0.0			0.0	
Total Lost Time (s)		6.0	6.0	6.0	6.0	6.0	6.0	6.0			6.0	
Lead/Lag		Lag	Lag	Lead			Lead	Lead		Lag	Lag	
Lead-Lag Optimize?		Yes	Yes	Yes			Yes	Yes		Yes	Yes	
Recall Mode		C-Max	C-Max	None	C-Max	C-Max	None	None		None	None	

Cycle Length: 180
Actuated Cycle Length: 180

Offset: 114 (63%), Referenced to phase 2:EBT and 6:WBT, Start of Yellow

Natural Cycle: 115

3: Alton Road & 5th Street

	→	•	1	←	•	4	†	ļ	4	
Lane Group	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBT	SBR	
Lane Group Flow (vph)	1318	555	18	1098	73	325	183	246	881	
v/c Ratio	0.74	0.60	0.35	0.58	0.08	0.78	0.83	0.85	0.61	
Control Delay	36.8	15.7	104.1	25.6	5.9	88.5	102.9	96.5	2.0	
Queue Delay	0.0	0.0	0.0	0.7	0.0	0.0	0.0	0.0	0.0	
Total Delay	36.8	15.7	104.1	26.3	5.9	88.5	102.9	96.5	2.0	
Queue Length 50th (ft)	677	213	21	430	6	191	207	284	0	
Queue Length 95th (ft)	825	368	53	544	35	250	#318	382	0	
Internal Link Dist (ft)	549			717			263	439		
Turn Bay Length (ft)		225	150							
Base Capacity (vph)	1773	930	51	1902	875	468	246	351	1439	
Starvation Cap Reductn	0	0	0	442	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.74	0.60	0.35	0.75	0.08	0.69	0.74	0.70	0.61	
Intersection Summary										

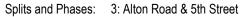
^{# 95}th percentile volume exceeds capacity, queue may be longer.

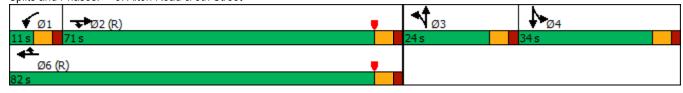
Queue shown is maximum after two cycles.

	•	→	•	•	←	•	1	†	<i>></i>	/	↓	-√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		^	7	Ť	^	7	ሻሻ	f)			4	7
Traffic Volume (vph)	0	1152	429	14	1495	116	562	177	15	77	173	835
Future Volume (vph)	0	1152	429	14	1495	116	562	177	15	77	173	835
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0	6.0	6.0	6.0	6.0	6.0	6.0			6.0	4.0
Lane Util. Factor		0.95	1.00	1.00	0.95	1.00	0.97	1.00			1.00	1.00
Frpb, ped/bikes		1.00	1.00	1.00	1.00	1.00	1.00	0.99			1.00	1.00
Flpb, ped/bikes		1.00	1.00	1.00	1.00	1.00	1.00	1.00			1.00	1.00
Frt		1.00	0.85	1.00	1.00	0.85	1.00	0.99			1.00	0.85
Flt Protected		1.00	1.00	0.95	1.00	1.00	0.95	1.00			0.98	1.00
Satd. Flow (prot)		3217	1439	1608	3217	1439	3120	1658			1667	1439
FIt Permitted		1.00	1.00	0.95	1.00	1.00	0.95	1.00			0.98	1.00
Satd. Flow (perm)		3217	1439	1608	3217	1439	3120	1658			1667	1439
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	0	1226	456	15	1590	123	598	188	16	82	184	888
RTOR Reduction (vph)	0	0	169	0	0	40	0	3	0	0	0	0
Lane Group Flow (vph)	0	1226	287	15	1590	83	598	201	0	0	266	888
Confl. Peds. (#/hr)			34	34					33	33		
Confl. Bikes (#/hr)			11			2			14			
Turn Type		NA	Prot	Prot	NA	Prot	Split	NA		Split	NA	Free
Protected Phases		2	2	1	6	6	3	3		4	4	
Permitted Phases												Free
Actuated Green, G (s)		70.2	70.2	2.0	78.2	78.2	18.0	18.0			25.8	140.0
Effective Green, g (s)		70.2	70.2	2.0	78.2	78.2	18.0	18.0			25.8	140.0
Actuated g/C Ratio		0.50	0.50	0.01	0.56	0.56	0.13	0.13			0.18	1.00
Clearance Time (s)		6.0	6.0	6.0	6.0	6.0	6.0	6.0			6.0	
Vehicle Extension (s)		1.0	1.0	2.0	1.0	1.0	3.0	3.0			3.5	
Lane Grp Cap (vph)		1613	721	22	1796	803	401	213			307	1439
v/s Ratio Prot		0.38	0.20	0.01	c0.49	0.06	c0.19	0.12			c0.16	
v/s Ratio Perm												c0.62
v/c Ratio		0.76	0.40	0.68	0.89	0.10	1.49	0.95			0.87	0.62
Uniform Delay, d1		28.1	21.7	68.7	27.0	14.5	61.0	60.5			55.4	0.0
Progression Factor		1.00	1.00	1.00	1.00	1.00	1.00	1.00			1.00	1.00
Incremental Delay, d2		3.4	1.6	52.0	6.8	0.3	233.9	46.0			22.1	2.0
Delay (s)		31.5	23.4	120.7	33.8	14.7	294.9	106.6			77.6	2.0
Level of Service		С	С	F	С	В	F	F			Е	Α
Approach Delay (s)		29.3			33.2			247.0			19.4	
Approach LOS		С			С			F			В	
Intersection Summary												
HCM 2000 Control Delay			61.0	Н	CM 2000	Level of	Service		Е			
HCM 2000 Volume to Capa	city ratio		1.02									
Actuated Cycle Length (s)			140.0	S	um of lost	time (s)			24.0			
Intersection Capacity Utiliza	tion		93.6%	IC	CU Level o	of Service			F			
Analysis Period (min)			15									

3: Alton Road & 5th Street

	•	→	•	•	←	•	4	†	/	>	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		† †	7	7	^	7	1,4	ĵ»			4	7
Traffic Volume (vph)	0	1152	429	14	1495	116	562	177	15	77	173	835
Future Volume (vph)	0	1152	429	14	1495	116	562	177	15	77	173	835
Confl. Peds. (#/hr)			34	34					33	33		
Confl. Bikes (#/hr)			11			2			14			
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	
Shared Lane Traffic (%)												
Turn Type		NA	Prot	Prot	NA	Prot	Split	NA		Split	NA	Free
Protected Phases		2	2	1	6	6	3	3		4	4	
Permitted Phases												Free
Detector Phase		2	2	1	6	6	3	3		4	4	
Switch Phase				_		_						
Minimum Initial (s)		5.0	5.0	5.0	5.0	5.0	7.0	7.0		7.0	7.0	
Minimum Split (s)		35.0	35.0	11.0	35.0	35.0	24.0	24.0		31.0	31.0	
Total Split (s)		71.0	71.0	11.0	82.0	82.0	24.0	24.0		34.0	34.0	
Total Split (%)		50.7%	50.7%	7.9%	58.6%	58.6%	17.1%	17.1%		24.3%	24.3%	
Yellow Time (s)		4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	
All-Red Time (s)		2.0	2.0	2.0	2.0	2.0	2.0	2.0		2.0	2.0	
Lost Time Adjust (s)		0.0	0.0	0.0	0.0	0.0	0.0	0.0			0.0	
Total Lost Time (s)		6.0	6.0	6.0	6.0	6.0	6.0	6.0			6.0	
Lead/Lag		Lag	Lag	Lead			Lead	Lead		Lag	Lag	
Lead-Lag Optimize?		Yes	Yes	Yes			Yes	Yes		Yes	Yes	
Recall Mode		C-Max	C-Max	None	C-Max	C-Max	None	None		None	None	


Intersection Summary


Cycle Length: 140 Actuated Cycle Length: 140

Offset: 57 (41%), Referenced to phase 2:EBT and 6:WBT, Start of Yellow

Natural Cycle: 135

Control Type: Actuated-Coordinated

	-	•	•	←	•	4	†	ļ	4	
Lane Group	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBT	SBR	
Lane Group Flow (vph)	1226	456	15	1590	123	598	204	266	888	
v/c Ratio	0.72	0.50	0.26	0.89	0.15	1.49	0.95	0.87	0.62	
Control Delay	29.9	7.9	77.2	34.8	5.4	274.6	108.5	81.5	2.0	
Queue Delay	0.0	0.0	0.0	4.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	29.9	7.9	77.2	38.9	5.4	274.6	108.5	81.5	2.0	
Queue Length 50th (ft)	420	51	14	666	13	~387	185	233	0	
Queue Length 95th (ft)	598	161	39	794	45	#507	#346	#369	0	
Internal Link Dist (ft)	549			717			263	439		
Turn Bay Length (ft)		225	150							
Base Capacity (vph)	1695	918	57	1796	843	401	215	333	1439	
Starvation Cap Reductn	0	0	0	146	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.72	0.50	0.26	0.96	0.15	1.49	0.95	0.80	0.62	

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Intersection						
Int Delay, s/veh	0.7					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\$	LDIX	VVDL	₩ <u>₩</u>	₩.	NOI
Traffic Vol, veh/h	26	150	0	173	26	0
Future Vol, veh/h	26	150	0	173	26	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None		None	Stop -	None
Storage Length	_	-	_	-	0	-
Veh in Median Storage,				0	0	
	0			0	0	
Grade, %		-	-			-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	1	1	1	1	1	1
Mvmt Flow	28	163	0	188	28	0
Major/Minor M	lajor1	N	Major2	N	Minor1	
Conflicting Flow All	0	0	191	0	298	110
Stage 1	_	_	-	-	110	-
Stage 2	_	_	_	_	188	_
Critical Hdwy	_	_	4.11	_	6.41	6.21
Critical Hdwy Stg 1	_	_	-	_	5.41	0.21
Critical Hdwy Stg 2	_	_	_	_	5.41	_
Follow-up Hdwy	_	_	2.209	_	3.509	
Pot Cap-1 Maneuver	_		1389		695	946
Stage 1	_	_	1303	_	917	34 0
Stage 2	-	-	_		846	
	-	-	-		040	-
Platoon blocked, %	-	-	4200	-	COF	0.40
Mov Cap-1 Maneuver	-	-	1389	-	695	946
Mov Cap-2 Maneuver	-	-	-	-	695	-
Stage 1	-	-	-	-	917	-
Stage 2	-	-	-	-	846	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0		10.4	
	U		U		_	
HCM LOS					В	
Minor Lane/Major Mvmt	<u> </u>	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		695	-		1389	-
HCM Lane V/C Ratio		0.041	-	-	-	-
HCM Control Delay (s)		10.4	-	-	0	-
HCM Lane LOS		В	-	-	A	_
HCM 95th %tile Q(veh)		0.1	_	-	0	-

Intersection						
Int Delay, s/veh	4.7					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	<u>EBI</u>	LDK	WDL		INDL	אסוז
Traffic Vol, veh/h	130	79	0	વ 18	168	0
Future Vol, veh/h	130	79	0	18	168	0
Conflicting Peds, #/hr	0	0	0	0	0	0
	Free		Free			
Sign Control RT Channelized	-ree	Free None		Free None	Stop	Stop None
	-	None -	-		-	None -
Storage Length	# 0		-	0	0	
Veh in Median Storage,		-	-			-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	1	1	1	1	1	1
Mvmt Flow	141	86	0	20	183	0
Major/Minor M	lajor1	ı	Major2		Minor1	
Conflicting Flow All	0	0	227	0	204	184
Stage 1	-	_		-	184	-
Stage 2	_	_	_	_	20	_
Critical Hdwy	_	_	4.11	_	6.41	6.21
Critical Hdwy Stg 1	_	_	-	_	5.41	0.21
Critical Hdwy Stg 2	_	_	_	_	5.41	_
Follow-up Hdwy	<u>-</u>	_	2.209	_	3.509	
Pot Cap-1 Maneuver	_		1347		787	861
Stage 1	_	-	1041	-	850	- 001
		-	-	-	1005	
Stage 2	-	-	-	-	1003	-
Platoon blocked, %	-	-	1217	-	707	064
Mov Cap-1 Maneuver	-	-	1347	-	787	861
Mov Cap-2 Maneuver	-	-	-	-	787	-
Stage 1	-	-	-	-	850	-
Stage 2	-	-	-	-	1005	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0		11	
HCM LOS	U		U		В	
I ICIVI LOS					D	
Minor Lane/Major Mvmt	: <u> </u>	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		787	-		1347	-
HCM Lane V/C Ratio		0.232	-	-	-	-
HCM Control Delay (s)		11	-	-	0	-
HCM Lane LOS		В	_	_	A	_
HCM 95th %tile Q(veh)		0.9	-	-	0	-

Appendix E Committed Development Documentation

2020 Transportation Improvement Program

Project Type: Expressway
MPO Project No.: DT2511563

Type of Work: NEW ROAD CONSTRUCTION

TIP Year: 2020 Construction Year: 2020

From: FROM PORT OF MIAMI

To: TO SR 836/I-395

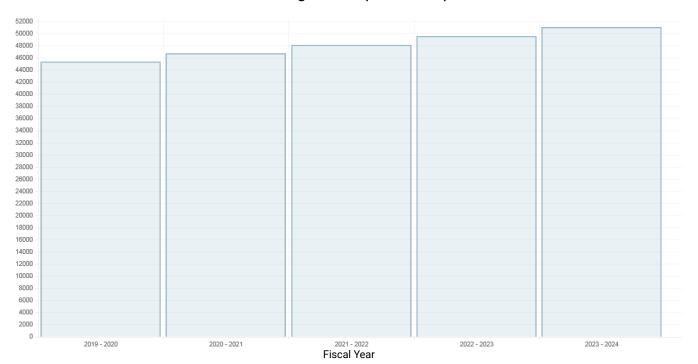
Agency: FL Dept. of Transportation

Management Agency: FDOT

Agency Project No: 2511563

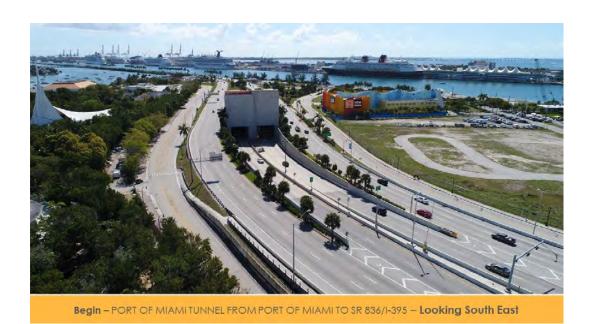
Status:

Contact Person: Contact Email: Contact Phone: Description:


Project Phase	Funding	2019 - 2020	2020 - 2021	2021 - 2022	2022 - 2023	2023 - 2024
PRELIMINARY ENGINEERING	DIH	\$0	\$0	\$0	\$0	\$0
PRELIMINARY ENGINEERING	DS	\$0	\$0	\$0	\$0	\$0
PRELIMINARY ENGINEERING	GMR	\$0	\$0	\$0	\$0	\$0
RIGHT OF WAY	LF	\$0	\$0	\$0	\$0	\$0
RIGHT OF WAY	DIH	\$0	\$0	\$0	\$0	\$0
RIGHT OF WAY	DS	\$0	\$0	\$0	\$0	\$0
OPERATIONS	DI	\$19,507	\$0	\$19,729	\$21,726	\$23,323
OPERATIONS	STED	\$0	\$19,435	\$0	\$0	\$0
DESIGN/ BUILD	LF	\$2,849	\$2,935	\$3,023	\$3,113	\$3,207

2020 Transportation Improvement Program

Project Phase	Funding	2019 - 2020	2020 - 2021	2021 - 2022	2022 - 2023	2023 - 2024
DESIGN/ BUILD	DC	\$0	\$0	\$0	\$0	\$0
DESIGN/ BUILD	DIH	\$0	\$0	\$0	\$0	\$0
DESIGN/ BUILD	DIS	\$0	\$0	\$0	\$0	\$0
DESIGN/ BUILD	DS	\$0	\$0	\$0	\$0	\$0
DESIGN/ BUILD	GMR	\$22,990	\$24,338	\$25,357	\$24,712	\$24,508
PRELIMINARY ENGINEERING	NHAC	\$0	\$0	\$0	\$0	\$0
PRELIMINARY ENGINEERING	NHPP	\$0	\$0	\$0	\$0	\$0
PRELIMINARY ENGINEERING	FD21	\$0	\$0	\$0	\$0	\$0
PRELIMINARY ENGINEERING	LF	\$0	\$0	\$0	\$0	\$0
PRELIMINARY ENGINEERING	DI	\$0	\$0	\$0	\$0	\$0
PRELIMINARY ENGINEERING	DIS	\$0	\$0	\$0	\$0	\$0
PRELIMINARY ENGINEERING	GMR	\$0	\$0	\$0	\$0	\$0
DESIGN/ BUILD	NHAC	\$0	\$0	\$0	\$0	\$0
DESIGN/ BUILD	NHPP	\$0	\$0	\$0	\$0	\$0
DESIGN/ BUILD	HPP	\$0	\$0	\$0	\$0	\$0
DESIGN/ BUILD	LF	\$0	\$0	\$0	\$0	\$0
DESIGN/ BUILD	GMR	\$0	\$0	\$0	\$0	\$0


2020 Transportation Improvement Program

Project Photos

2020 Transportation Improvement Program

Project Type: Expressway MPO Project No.: DT2516881

Type of Work: BRIDGE-REPLACE AND ADD LANES

TIP Year: 2020 Construction Year: 2020

From: FROM WEST OF I-95

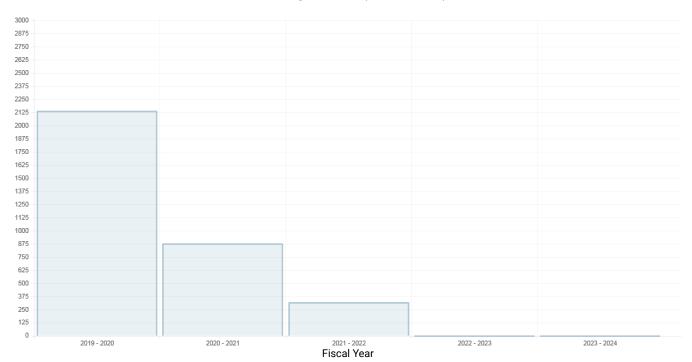
To: TO MACARTHUR CAUSEWAY BRIDGE

Agency: FL Dept. of Transportation

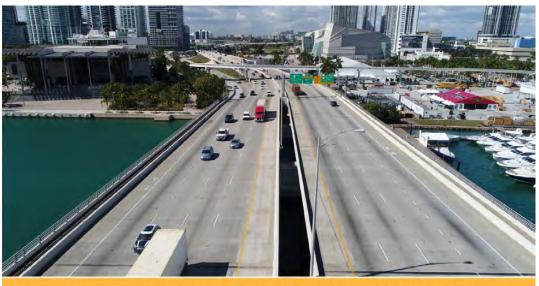
Management Agency: FDOT

Agency Project No: 2516881

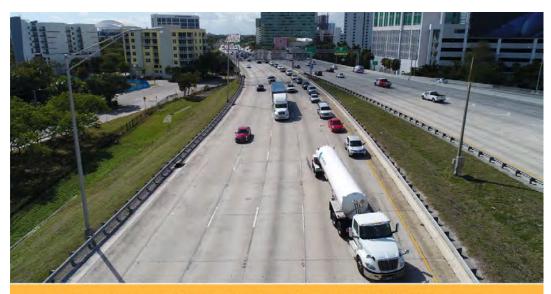
Status:


Contact Person: Contact Email: Contact Phone: Description:

Project Phase	Funding	2019 - 2020	2020 - 2021	2021 - 2022	2022 - 2023	2023 - 2024
PRELIMINARY ENGINEERING	DDR	\$0	\$0	\$0	\$0	\$0
PRELIMINARY ENGINEERING	DI	\$0	\$0	\$0	\$0	\$0
PRELIMINARY ENGINEERING	DIH	\$0	\$0	\$0	\$0	\$0
PRELIMINARY ENGINEERING	DIS	\$0	\$0	\$0	\$0	\$0
PRELIMINARY ENGINEERING	DS	\$0	\$0	\$0	\$0	\$0
RIGHT OF WAY	BNCA	\$0	\$0	\$0	\$0	\$0
RIGHT OF WAY	BNDS	\$0	\$0	\$0	\$0	\$0
RIGHT OF WAY	BNIR	\$0	\$0	\$0	\$0	\$0



2020 Transportation Improvement Program

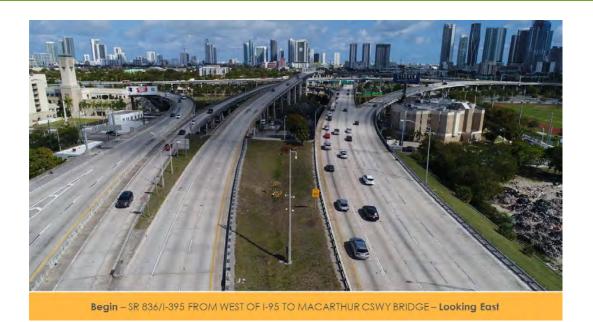

Project Phase	Funding	2019 - 2020	2020 - 2021	2021 - 2022	2022 - 2023	2023 - 2024
RIGHT OF WAY	DDR	\$0	\$0	\$0	\$0	\$0
RIGHT OF WAY	DI	\$0	\$0	\$0	\$0	\$0
RIGHT OF WAY	DIH	\$0	\$0	\$0	\$0	\$0
RIGHT OF WAY	DIS	\$0	\$0	\$0	\$0	\$0
RIGHT OF WAY	DS	\$0	\$0	\$0	\$0	\$0
RIGHT OF WAY	GMR	\$0	\$0	\$0	\$0	\$0
RAILROAD & UTILITIES	LF	\$0	\$0	\$0	\$0	\$0
RAILROAD & UTILITIES	DI	\$0	\$0	\$0	\$0	\$0
RAILROAD & UTILITIES	DS	\$0	\$0	\$0	\$0	\$0
DESIGN/ BUILD	BRRP	\$0	\$0	\$0	\$0	\$0
DESIGN/ BUILD	DI	\$0	\$0	\$0	\$0	\$0
PRELIMINARY ENGINEERING	NHPP	\$0	\$0	\$0	\$0	\$0
PRELIMINARY ENGINEERING	DI	\$0	\$0	\$0	\$0	\$0
PRELIMINARY ENGINEERING	GMR	\$0	\$0	\$0	\$0	\$0
DESIGN/ BUILD	ACNP	\$2,137	\$0	\$0	\$0	\$0
DESIGN/ BUILD	NHPP	\$0	\$0	\$0	\$0	\$0
DESIGN/ BUILD	SA	\$0	\$307	\$316	\$0	\$0
DESIGN/ BUILD	LF	\$0	\$0	\$0	\$0	\$0
DESIGN/ BUILD	DI	\$0	\$569	\$0	\$0	\$0
DESIGN/ BUILD	STED	\$0	\$0	\$0	\$0	\$0

Project Photos

End - SR 836/I-395 FROM WEST OF I-95 TO MACARTHUR CSWY BRIDGE - Looking West

Begin - SR 836/I-395 FROM WEST OF I-95 TO MACARTHUR CSWY BRIDGE - Looking West

2020 Transportation Improvement Program


End – SR 836/I-395 FROM WEST OF I-95 TO MACARTHUR CSWY BRIDGE – Looking East

SR 836/I-395 FROM WEST OF I-95 TO MACARTHUR CSWY BRIDGE (FM No. 2516881) BRIDGE —REPLACE AND ADD LANES

2020 Transportation Improvement Program

6 of 6

SR A1A/COLLINS AVE SIGNALIZED INTERSECTION LIGHTING

2020 Transportation Improvement Program

Project Type: Arterial/Collector Road

MPO Project No.: DT4401691

Type of Work: LIGHTING

TIP Year: 2020 Construction Year: 2020

From: FROM FOUNTAIN ST

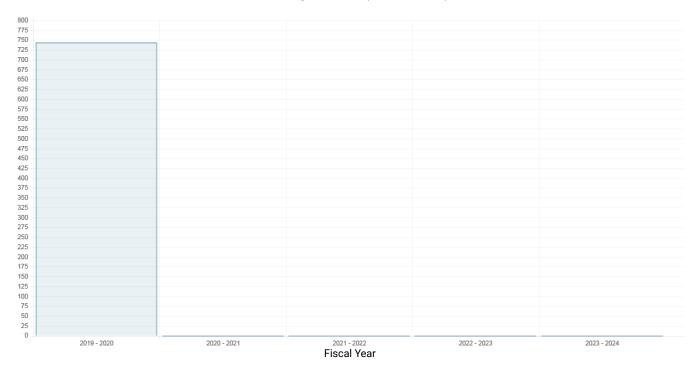
To: TO 17TH ST

Agency: FL Dept. of Transportation

Management Agency: FDOT

Agency Project No: 4401691

Status:


Contact Person: Contact Email: Contact Phone: Description:

Project Phase	Funding	2019 - 2020	2020 - 2021	2021 - 2022	2022 - 2023	2023 - 2024
PRELIMINARY ENGINEERING	DIH	\$10	\$0	\$0	\$0	\$0
PRELIMINARY ENGINEERING	DS	\$0	\$0	\$0	\$0	\$0
CONSTRUCTION	ACSS	\$10	\$0	\$0	\$0	\$0
CONSTRUCTION	SA	\$7	\$0	\$0	\$0	\$0
CONSTRUCTION	DIH	\$36	\$0	\$0	\$0	\$0
PRELIMINARY ENGINEERING	HSP	\$0	\$0	\$0	\$0	\$0
CONSTRUCTION	ACSS	\$681	\$0	\$0	\$0	\$0

SR A1A/COLLINS AVE SIGNALIZED INTERSECTION LIGHTING

2020 Transportation Improvement Program

SR 907/ALTON RD SIGNALIZED INTERS LIGHTING

2020 Transportation Improvement Program

Project Type: Arterial/Collector Road

MPO Project No.: DT4401781

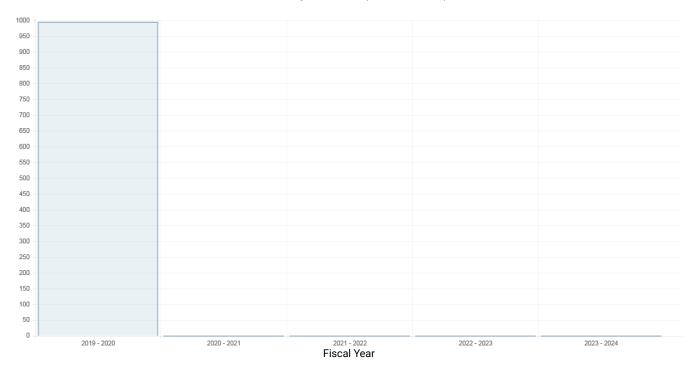
Type of Work: LIGHTING

TIP Year: 2020 Construction Year: 2020

From: FROM 6 ST
To: TO 20TH ST

Agency: FL Dept. of Transportation

Management Agency: FDOT Agency Project No: 4401781


Status:

Contact Person: Contact Email: Contact Phone: Description:

Project Phase	Funding	2019 - 2020	2020 - 2021	2021 - 2022	2022 - 2023	2023 - 2024
PRELIMINARY ENGINEERING	DIH	\$10	\$0	\$0	\$0	\$0
PRELIMINARY ENGINEERING	DS	\$0	\$0	\$0	\$0	\$0
CONSTRUCTION	ACSS	\$915	\$0	\$0	\$0	\$0
CONSTRUCTION	SA	\$21	\$0	\$0	\$0	\$0
CONSTRUCTION	DIH	\$49	\$0	\$0	\$0	\$0

SR 907/ALTON RD SIGNALIZED INTERS LIGHTING

2020 Transportation Improvement Program

SR A1A/MACARTHUR CAUSEWAY

2020 Transportation Improvement Program

Project Type: Pedestrian/Bicycle

MPO Project No.: DT4434321

Type of Work: BIKE PATH/TRAIL

TIP Year: 2020 Construction Year: 2020

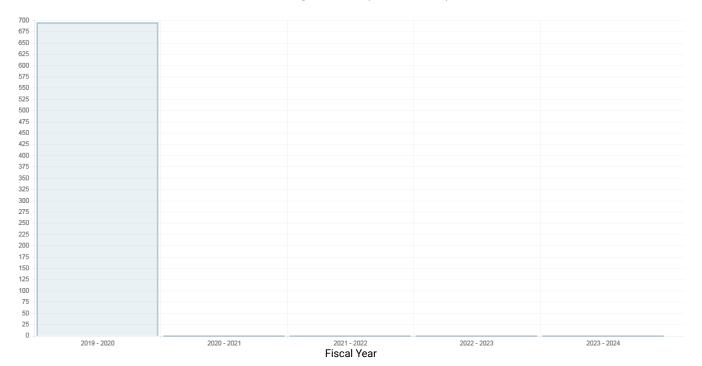
From: FROM SR-5/BISCAYNE BLV

To: TO SR-997/ALTON RD

Agency: FL Dept. of Transportation

Management Agency: FDOT

Agency Project No: 4434321


Status:

Contact Person: Contact Email: Contact Phone: Description:

Project Phase	Funding	2019 - 2020	2020 - 2021	2021 - 2022	2022 - 2023	2023 - 2024
PRELIMINARY ENGINEERING	DIH	\$0	\$0	\$0	\$0	\$0
PRELIMINARY ENGINEERING	DS	\$0	\$0	\$0	\$0	\$0
CONSTRUCTION	DDR	\$641	\$0	\$0	\$0	\$0
CONSTRUCTION	DIH	\$54	\$0	\$0	\$0	\$0

SR A1A/MACARTHUR CAUSEWAY

2020 Transportation Improvement Program

Alton Road and 4 Street

2020 Transportation Improvement Program

Project Type: Arterial/Collector Road

MPO Project No.: PW0001010

Type of Work: Traffic signal

TIP Year: 2020

Construction Year:

From:

To:

Agency: Miami-Dade Dept. of Transportation and Public Works

Management Agency: Miami-Dade Dept. of Transportation and Public Works

Agency Project No: 0001010

Status:

Contact Person: Contact Email: Contact Phone: Description:

Traffic signal. Prior Years' Funding as follows: \$175,000 for CST.

No Funding Information

DTPW / MDT - TRANSIT CONNECTOR

2020 Transportation Improvement Program

Project Type: Transit

MPO Project No.: TA4387491

Type of Work: PTO STUDIES

TIP Year: 2020

Construction Year:

From: FROM MIAMI

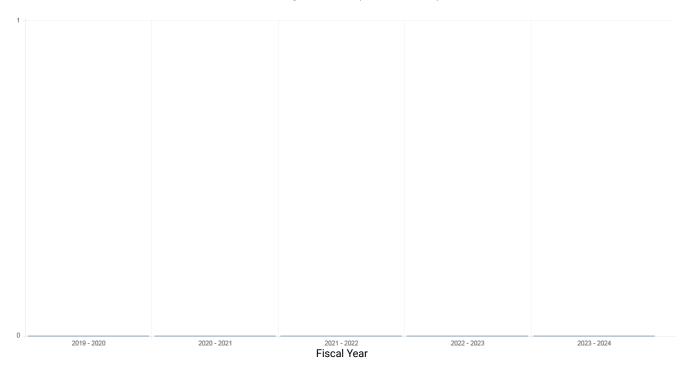
To: TO MIAMI BEACH

Agency: FL Dept. of Transportation

Management Agency: Miami-Dade Dept. of Transportation and Public Works

Agency Project No: 4387491 Status: Planning

Contact Person: Contact Email: Contact Phone: Description:


Express bus service that will link Downtown Miami to Miami Beach

Project Phase	Funding	2019 - 2020	2020 - 2021	2021 - 2022	2022 - 2023	2023 - 2024
CAPITAL	DDR	\$0	\$0	\$0	\$0	\$0
CAPITAL	DPTO	\$0	\$0	\$0	\$0	<u> </u>

DTPW / MDT - TRANSIT CONNECTOR

2020 Transportation Improvement Program

Page 1 - 05/15/2020 10:29 AM

Field Name	Field Value
LRTP Project Code	MDT135
Facility	Beach Corridor
Limit From	Midtown Miami and Downtown
Limit To	Miami Beach Convention Center
Description	Rapid Transit connecting Midtown / Miami CBD to Miami Beach Convention Center area.
LRTP Year	2045
Project Type	Transit
Agency Name	Miami-Dade Dept. of Transportation and Public Works
Purpose	
Last Approved Date	
Last Approved User Name	
Last Amended Date	
Last Amended User Name	
Project Costs Funded	\$111.186M
Total Capital Cost	\$897M

	P1 2020-2025(Y-O-E\$)	P2 2026-2030(Y-O-E\$)	P3 2031-2035(Y-O-E\$)	P4 2036-2045(Y-O-E\$)
Preliminary Engineering	\$2.973M	\$M	\$M	\$111.186M
Right of Way	\$M	\$M	\$M	\$M
Construction	\$M	\$M	\$M	\$M
Operations and Maintenance	\$M	\$M	\$M	\$M
Capital	\$M	\$M	\$M	\$M

Page 1 - 05/15/2020 10:32 AM

Field Name	Field Value
LRTP Project Code	MDT231
Facility	Beach Express South
Limit From	Miami Beach Convention Center
Limit To	Downtown Intermodal Terminal
Description	Implement Bus Express Rapid Transit service
LRTP Year	2045
Project Type	Transit
Agency Name	Miami-Dade Dept. of Transportation and Public Works
Purpose	
Last Approved Date	
Last Approved User Name	
Last Amended Date	
Last Amended User Name	
Project Costs Funded	\$201.292M
Total Capital Cost	\$9.6M

	P1 2020-2025(Y-O-E\$)	P2 2026-2030(Y-O-E\$)	P3 2031-2035(Y-O-E\$)	P4 2036-2045(Y-O-E\$)
Preliminary Engineering	\$1.595M	\$M	\$M	\$M
Right of Way	\$M	\$M	\$M	\$M
Construction	\$9.762M	\$M	\$M	\$M
Operations and Maintenance	\$6.283M	\$34.848M	\$40.92M	\$M
Capital	\$M	\$M	\$M	\$M

Appendix F Trip Generation

Scenario - 1	
Scenario Name: F	roposed User Group:
Dev. phase: 1	No. of Years 0 to Project
Analyst Note:	
Warning: 1	he time periods among the land uses do not appear to match.

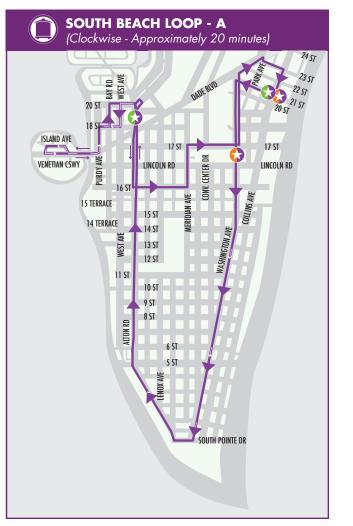
VEHICLE TRIPS BEFORE REDUCTION

Land Use & Data Source	Location	IV	Size	Time Period	Method	Entry	Exit	Total
Land Use & Data Source	Location	IV	Size	Time Period	Rate/Equation	Split%	Split%	TOLAT
710 - General Office Building	General	1000 Ca Ft CFA	160.93	Weekday	Best Fit (LOG)	842	842	1684
Data Source: Trip Gen Manual, 10th Ed	Urban/Suburban	1000 Sq. Ft. GFA	160.93	weekday	Ln(T) =0.97Ln(X) + 2.50	50%	50%	1084
710(1) - General Office Building	General	1000 Sq. Ft. GFA	160.93	Weekday, Peak Hour of Adjacent Street Traffic,	Best Fit (LIN)	153	25	178
Data Source: Trip Gen Manual, 10th Ed	Urban/Suburban	1000 3q. Ft. GFA	100.93	One Hour Between 7 and 9 a.m.	T = 0.94(X) + 26.49	86%	14%	1/0
710(2) - General Office Building	General	1000 Sg. Ft. GFA	160.93	Weekday, Peak Hour of Adjacent Street Traffic,	Best Fit (LOG)	29	150	179
Data Source: Trip Gen Manual, 10th Ed	Urban/Suburban	1000 Sq. Ft. GFA	160.93	One Hour Between 4 and 6 p.m.	Ln(T) =0.95Ln(X) + 0.36	16%	84%	1/9
420(3) - Marina	General	Berths	Berths 6 Weekday		Average	7	7	14
Data Source: Trip Gen Manual, 10th Ed	Urban/Suburban	Bertiis	В	Weekday	2.41	50%	50%	14
420(4) - Marina	General	Berths	6	Weekday, Peak Hour of Adjacent Street	Average	1	1	2
Data Source: Trip Gen Manual, 10th Ed	Urban/Suburban	Dertiis	8	Traffic, One Hour Between 4 and 6 p.m.	0.21	60%	40%	۷
420(5) - Marina	General	Berths	6	Weekday, Peak Hour of Adjacent Street Traffic,	Average	1	1	2
Data Source: Trip Gen Manual, 10th Ed	Urban/Suburban	Bertiis	В	One Hour Between 4 and 6 p.m.	0.21	60%	40%	2
930(2) - Fast Casual Restaurant	General	1000 Sg. Ft. GFA	7.23	Weekday	Average	1139	1139	2278
Data Source: Trip Gen Manual, 10th Ed	Urban/Suburban	1000 3q. Ft. GFA	7.23	Weekday	315.17	50%	50%	2270
930(1) - Fast Casual Restaurant	General	1000 Sq. Ft. GFA	7.23	Weekday, Peak Hour of Adjacent Street Traffic,	Average	10	5	15
Data Source: Trip Gen Manual, 10th Ed	Urban/Suburban	1000 3q. Ft. GFA	7.23	One Hour Between 7 and 9 a.m.	2.07	67%	33%	15
930(3) - Fast Casual Restaurant	General	1000 Sg. Ft. GFA	7.23	Weekday, Peak Hour of Adjacent Street Traffic,	Average	56	46	102
Data Source: Trip Gen Manual, 10th Ed	Urban/Suburban	1000 3q. Ft. GFA	7.23	One Hour Between 4 and 6 p.m.	14.13	55%	45%	102
930(4) - Fast Casual Restaurant	General	1000 Sq. Ft. GFA	7.23	Weekday, PM Peak Hour of Generator	Average	146	171	317
Data Source: Trip Gen Manual, 10th Ed	Urban/Suburban	1000 3q. Ft. GFA	7.23	Weekday, FIVI Feak Hour of deficiator	43.79	46%	54%	31/

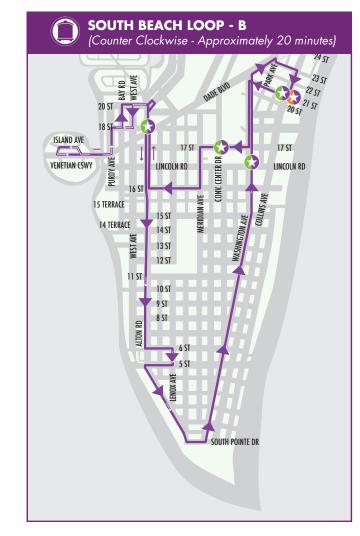
Generated By OTISS Pro v2.1

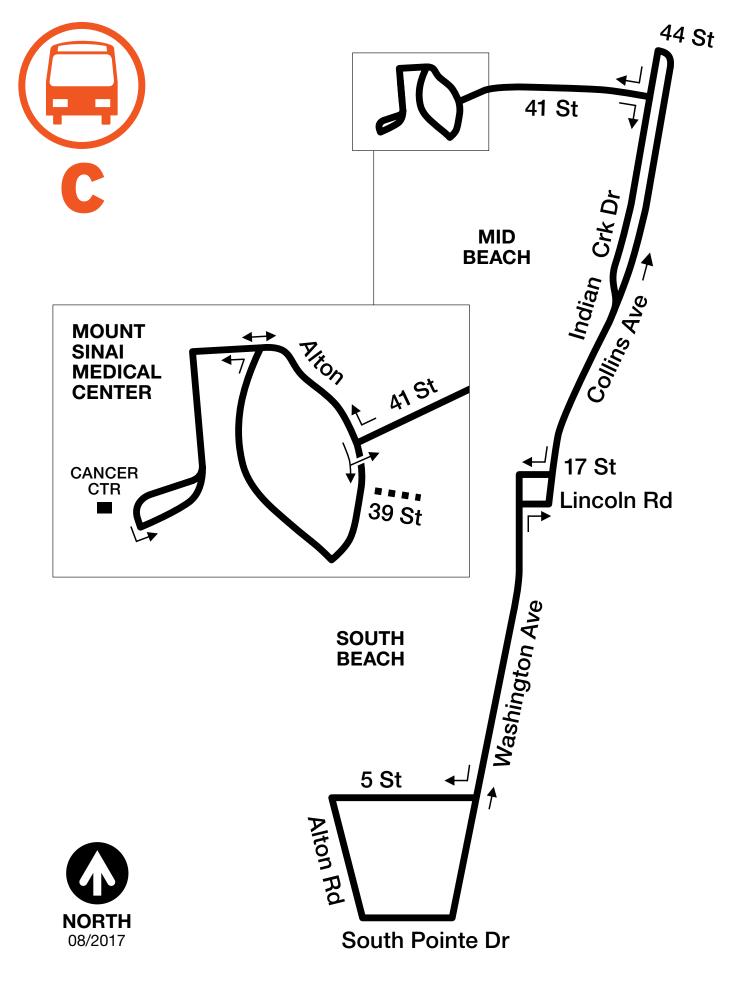
AM Peak Hour Trip Generation and Internalization

Terminal Island Miami Beach


Office Land Use 710				lse 930		
	932 Sq Ft			Sq Ft		
In	Out		In	Out		
153	25		10	5		193 ITE Trips
	UNBALANO	CED INTERI	NALIZATION	V		
	63% 16	2	23% 2			
14% 21		2		31% 2		
	Office		Resta	uront		
In	Out		In	Out		
153	25		10	5		193 Vehicle Trips
	BALANCE	D INTERN	ALIZATION			·
-2	-2		-2	-2		
					ı	
-2	-2		-2	-2		-8 Internal
151	23		8	3		185 External Trips
-	2.2%		0	26.7%		4.1% % Internal
-5 146	-1 22		0 8	0 3		-6 -3.0% Transit/Pedestrian 179
			0	0		0 0% Passby (Restau
4.40	00		0			470 Not Nove Fotom 17.
146	22		8	3		179 Net New External Trips


PM Peak Hour Trip Generation and Internalization


Terminal Island Miami Beach


Office Land Use 710			Resta Land U		
	,932 Sq Ft		7,234		
In	Out		In	Out	
29	150		56	46	281 ITE Trips
	UNBALANC	ED INTERI	NALIZATION	I	
	4% 6	1	2% 1		
30% 9		1		3% 1	
	Office		Resta	urant	
In	Out		In	Out	
29			56	46	281 Vehicle Trips
	BALANCE	D INTERN	ALIZATION		
-1	-1		-1	-1	
				<u> </u>	
-1	-1		-1	-1	-4 Internal
28	149 1.1%		55	45 2.0%	277 External Trips 1.4% % Internal
-1	-4		-2	-1	-8 -3.0% Transit/Pedestrian
27	145		53	44	269
			-5	-5	-10 -10% Passby (Restau
27	145		48	39	259 Net New External Trips

Appendix G Transit Information

Employees

Calendar

Translate

Miami-Dade County continues to monitor coronavirus (COVID-19). Get the latest updates.

Merlmportant Message

We are asking customers to use public transit and STS services for essential trips only. Fares have been suspended for riders who depend on public transportation for essential trips. Transit services and trip frequencies have been adjusted. Some Metrobus express routes have been suspended. Customer Service and STS offices are closed until further notice. Please use our online services and mobile applications to stay connected.

Metrobus Routes Schedule

103 (Northbound) WEEKDAY

ALTON RD & 2 ST	LINCOLN RD & JAMES AV	INDIAN CREEK DR & 43 ST	MT SINAI HOSPITAL	ALTON RD & 39 ST
06:11AM	06:28AM	06:38AM	06:48AM	06:51AM
06:41AM	06:58AM	07:09AM	07:20AM	07:23AM
07:41AM	07:59AM	08:11AM	08:22AM	08:25AM
08:11AM	08:29AM	08:41AM	08:52AM	08:55AM
08:41AM	08:59AM	09:13AM	09:25AM	09:28AM
09:41AM	10:01AM	10:15AM	10:27AM	10:30AM
10:11AM	10:31AM	10:45AM	10:57AM	11:00AM
10:41AM	11:01AM	11:15AM	11:27AM	11:30AM
11:41AM	12:01PM	12:15PM	12:27PM	12:30PM
12:41PM	01:01PM	01:15PM	01:27PM	01:30PM
01:41PM	02:01PM	02:15PM	02:27PM	02:30PM
02:41PM	03:01PM	03:15PM	03:27PM	03:30PM
03:41PM	04:01PM	04:15PM	04:28PM	04:31PM

04:41PM	05:01PM	05:15PM	05:28PM	05:31PM			
05:41PM	06:01PM	06:15PM	06:28PM	06:31PM			
06:41PM	07:01PM	07:11PM	07:22PM	07:25PM			
07:11PM	07:29PM	07:39PM	07:50PM	-			
07:41PM	07:59PM	08:09PM	08:20PM	08:23PM			
08:26PM	08:44PM	08:54PM	09:05PM	09:08PM			
09:11PM	09:29PM	09:39PM	09:50PM	09:53PM			
09:56PM	10:14PM	10:25PM	10:34PM	-			
<							

Back to previous page

TRANSPORTATION & PUBLIC WORKS

Alice N. Bravo, P.E., Director

Overtown Transit Village North

701 NW 1st Court, Suite 1700, Miami, FL 33136 786-469-5675 |
Contact Us | About Us

Help and Support

Miami-Dade Home

Privacy Statement

ADA Notice

Disclaimer

About Miami-Dade

Self-Service

311 Contact Center

Mobile Applications

Open Data

Public Records

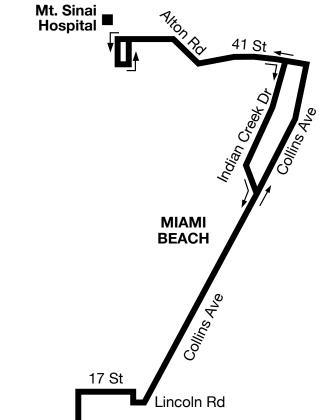
Service Directory

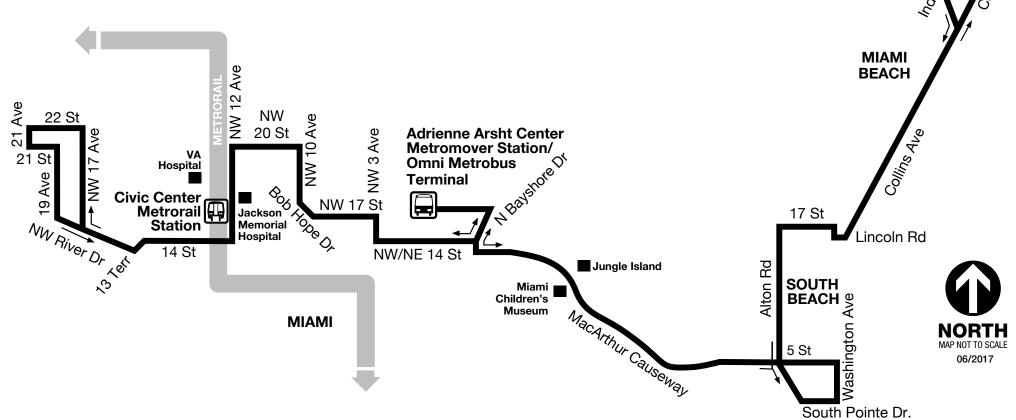
Stay Connected

News RSS Feed

Legal Ads & Public Notices

Social Media Directory


© 2020 Miami-Dade County. All rights reserved.


CENTER FOR DIGITAL GOVERNMENT

AWARDS OVERALL WINNER 2019

www.miamidade.gov/transit DEPARTMENT OF TRANSPORTATION AND PUBLIC WORKS

Employees

Calendar

Translate

Miami-Dade County continues to monitor coronavirus (COVID-19). Get the latest updates.

Merlmportant Message

We are asking customers to use public transit and STS services for essential trips only. Fares have been suspended for riders who depend on public transportation for essential trips. Transit services and trip frequencies have been adjusted. Some Metrobus express routes have been suspended. Customer Service and STS offices are closed until further notice. Please use our online services and mobile applications to stay connected.

Metrobus Routes Schedule

113 (Eastbound) WEEKDAY

NW 21 AV & 22 ST	NW 12 AV & 15 ST	OMNI TERMINAL / ARSHT METROMOVER	ALTON RD & 2 ST	5 ST & LENOX AV	17 ST & LENOX AV	LINCOLN RD & JAMES AV	INDIAN CREEK DR & 43 ST	41 ST & MERIDIAN AV	41 ST & ALTON RD	MT SINAI HOSPITAL	ALTON RD & 39 ST	^
05:42AM	05:48AM	05:58AM	06:08AM	06:13AM	06:21AM	06:26AM	06:35AM	06:42AM	06:43AM	06:45AM	06:47AM	
06:55AM	07:03AM	07:16AM	07:27AM	07:33AM	07:43AM	07:49AM	07:59AM	08:06AM	08:08AM	08:10AM	08:12AM	
07:45AM	07:53AM	08:06AM	08:17AM	08:23AM	08:33AM	08:39AM	08:51AM	08:58AM	09:00AM	09:02AM	09:04AM	
08:30AM	08:38AM	08:51AM	09:02AM	09:08AM	09:18AM	09:25AM	09:37AM	09:44AM	09:46AM	09:48AM	09:50AM	
09:55AM	10:03AM	10:17AM	10:28AM	10:34AM	10:44AM	10:51AM	11:03AM	11:10AM	11:12AM	11:14AM	-	
10:55AM	11:03AM	11:17AM	11:28AM	11:34AM	11:44AM	11:51AM	12:03PM	12:10PM	12:12PM	12:14PM	-	
11:55AM	12:03PM	12:17PM	12:28PM	12:34PM	12:44PM	12:51PM	01:03PM	01:10PM	01:12PM	01:14PM	-	
12:55PM	01:03PM	01:17PM	01:28PM	01:34PM	01:44PM	01:51PM	02:03PM	02:10PM	02:12PM	02:14PM	-	
01:55PM	02:03PM	02:17PM	02:28PM	02:34PM	02:44PM	02:51PM	03:03PM	03:10PM	03:12PM	03:14PM	-	
02:55PM	03:03PM	03:17PM	03:28PM	03:34PM	03:44PM	03:51PM	04:03PM	04:11PM	04:13PM	04:15PM	04:17PM	
03:40PM	03:48PM	04:02PM	04:14PM	04:20PM	04:30PM	04:37PM	04:49PM	04:57PM	04:59PM	05:01PM	05:03PM	-
04:30PM	04:38PM	04:52PM	05:04PM	05:10PM	05:20PM	05:27PM	05:39PM	05:47PM	05:49PM	05:51PM	05:53PM	~

05:15PM	05:23PM	05:37PM	05:49PM	05:55PM	06:05PM	06:12PM	06:24PM	06:32PM	06:34PM	06:36PM	06:38PM
06:00PM	06:08PM	06:22PM	06:34PM	06:40PM	06:50PM	06:57PM	07:09PM	07:16PM	07:17PM	07:19PM	-
06:45PM	06:53PM	07:07PM	07:18PM	07:24PM	07:32PM	07:38PM	07:49PM	07:56PM	07:57PM	07:59PM	08:01PM
07:35PM	07:42PM	07:55PM	08:06PM	08:12PM	08:20PM	08:26PM	08:37PM	08:44PM	08:45PM	08:47PM	08:49PM
08:35PM	08:42PM	08:55PM	09:06PM	09:12PM	09:20PM	09:26PM	09:37PM	09:44PM	09:45PM	09:47PM	-
09:35PM	09:42PM	09:55PM	10:06PM	10:11PM	10:19PM	10:24PM	10:33PM	10:39PM	10:40PM	10:42PM	-

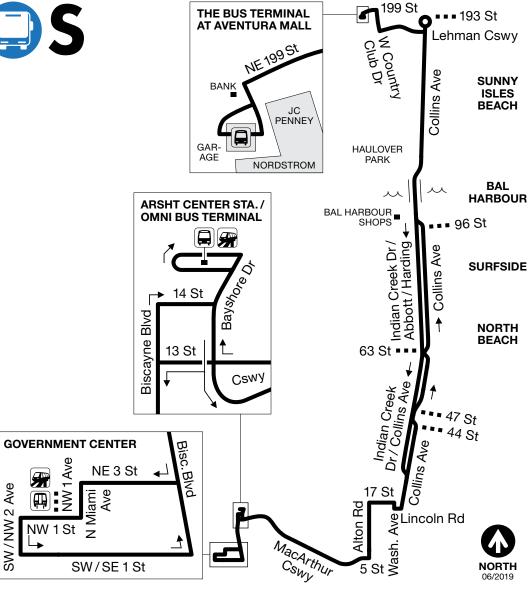
Back to previous page

TRANSPORTATION & PUBLIC WORKS

Alice N. Bravo, P.E., Director

Overtown Transit Village North

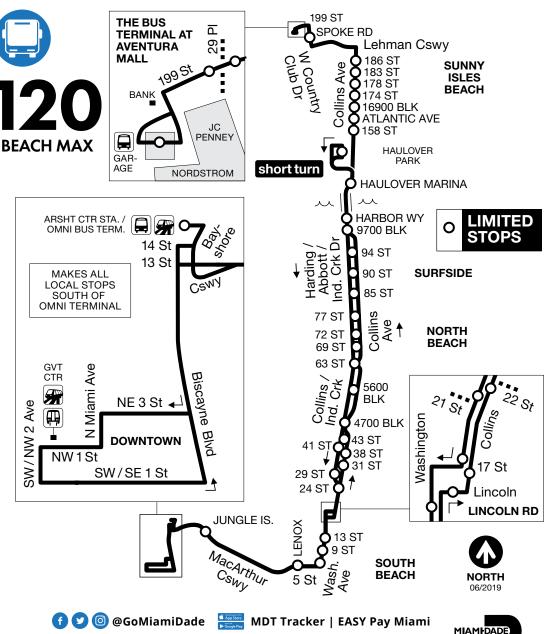
701 NW 1st Court, Suite 1700, Miami, FL 33136 786-469-5675 |
Contact Us | About Us



Help and Support

Miami-Dade Home

Privacy Statement



COUNTY

UTHBOUND																									WE	EKI	PAC	S / [DIAS	LA	BO	RAB	LES	/ L/	ASE	ΜÈΝ	1																						
MBO SUR EKSYON SID										MC	ORNI	NG/	ΊΑΜ	ŇAN	4 /N	/IATI	N										AM	PM								ļ	AFTE	RNO	ON 8	& EVI	ENIN	IG / T	ARD	EYN	OCH	IE/A	PREM	IIDI, (CHAK	(ASV	VÈ								
Bus Terminal at Aventura Mall	- 6:0	0 -	6:30	- 6:	54 -	- 7:2	1 7:3	33 7	45 8:0	00 -	- 8:2	7 -	8:59	-	9:31	-	10:0	5 -	-	10:	31 -	10:	56 -	11:2	20 –	11:44	-	12:08	- 1	2:32	- 12	:56 -	1:20	0 -	1:44	-	2:08	- 2	2:31	- 2:	:51 -	- 3:1	5 -	3:38	-	3:58	- 4	1:24	- 4:5	59 -	5:33	-	6:12	6:37	7:07 7	:47 8:	:27 9:	:07 9:4	49 1
Collins Ave & Atlantic Ave	- 6:1	3 -	6:43	- 7:0)9 -	- 7:	6 7:4	18 8	02 8:	17 -	- 8:4	4 -	9:16	-	9:48	-	10:2	2 -	-	10:	48 -	11:	13 -	11:3	37 -	12:01	-	12:25	- 1	2:49	- 1:	13 -	1:37	7 -	2:01	-	2:25	- :	2:48	- 3:	:08 -	- 3:3	2 -	3:55	-	4:17	- 4	1:43	- 5:1	18 -	5:52	-	6:28	6:53	7:23 8	:03 8:	:43 9:	:23 10:0	:05
Haulover Club Parking Lot	6:00 -	6:30	- 6	:55 -	7:	23 -	-		- -	- 8:	29 –	9:02	2 -	9:32	-	10:00) –	10:1	1 10:3	35 –	11:	01 -	11:2	25 -	11:4	9 –	12:13	-	12:37	- 1	:01	- 1:2	5 -	1:49	-	2:13	-	2:37	- 2:	:56	- 3:2	20 –	3:44	1 -	4:07	-	4:31	- 4	:59 -	- 5:3	34 –	6:06	-	-	-	- -	-	- -	_
l Harbour Shops	6:05 6:1	9 6:35	6:49 7	:02 7:	16 7:	30 7:4	3 7:5	55 8	09 8:	24 8:	36 8:5	1 9:09	9:23	9:39	9:55	10:07	10:2	9 10:1	8 10:4	12 10:	55 11:	08 11:	20 11:3	32 11:4	14 11:5	6 12:08	12:20	12:32	12:44 1	2:56 1:	:08 1:	20 1:3	2 1:44	4 1:56	2:08	2:20	2:32	2:44	2:55 3:	:03 3:	:15 3:2	27 3:3	3:51	4:03	4:14	4:25	4:38 4	1:51 5:	:06 5:2	26 5:4	1 6:00	6:15	6:35	7:00	7:30 8	:10 8:5	:50 9:	:30 10:1	:11
ott Ave & 69 St	6:14 6:2	8 6:44	6:58 7	:14 7:2	28 7:	42 7:	5 8:1	10 8	24 8:3	39 8:	51 9:0	6 9:20	9:34	9:50	10:00	10:18	10:4	0 10:2	9 10:5	3 11:	06 11:	19 11:	31 11:4	13 11:5	55 12:0	7 12:19	12:31	12:43	12:55 1	:07 1	:19 1:	31 1:4	3 1:5!	5 2:07	2:19	2:31	2:43	2:55	3:06 3:	:14 3:	26 3:3	38 3:5	0 4:02	4:14	4:25	4:36	4:49 5	5:02 5	:17 5:3	37 5:5	6:10	6:25	6:45	7:10	7:40 8	:20 9:	:00 9:	:40 10:2	:20
ndian Creek Dr & 40 St	6:23 6:3	7 6:53	7:08 7	:24 7:3	38 7:	52 8:0	6 8:2	21 8	35 8:	50 9:	04 9:1	9 9:33	9:47	10:03	10:19	10:3	10:5	3 10:4	2 11:0	06 11:	19 11:	32 11:	44 11:5	56 12:0	08 12:2	0 12:32	12:44	12:56	1:08 1	:20 1:	:32 1:	44 1:5	6 2:08	8 2:20	2:32	2:44	2:56	3:08	3:19 3:	:27 3:	39 3:	51 4:0	3 4:15	4:27	4:38	4:49	5:02 5	5:15 5	:30 5:5	50 6:0	6:20	6:35	6:55	7:20	7:50 8	:30 9:	:10 9:	:50 10:2	:2
shington Ave & Lincoln Rd	6:31 6:4	5 7:02	7:17 7	:33 7:4	47 8:	01 8:	5 8:3	30 8	44 8:	59 9:	14 9:2	9 9:43	9:57	10:13	10:29	10:4	11:0	3 10:5	2 11:1	16 11:	29 11:	42 11:	54 12:0	06 12:1	18 12:3	0 12:42	12:54	1:06	1:18 1	:30 1:	:42 1:	54 2:0	6 2:18	8 2:30	2:42	2:54	3:06	3:18	3:29 3:	:37 3:	:49 4:0	01 4:1	3 4:25	4:37	4:48	4:59	5:12 5	5:25 5	:40 6:0	00 6:1	5 6:30	6:45	7:05	7:30	8:00 8	.40 9:	:20 10	0:00 10:	:
Omni Term. Metromover	6:46 7:0	2 7:19	7:34 7	:50 8:0	06 8:	20 8:3	4 8:4	19 9	04 9:	19 9:	34 9:4	9 10:0	3 10:1	7 10:33	10:49	11:0	11:2	3 11:1	2 11:3	36 11:	49 12:	02 12:	14 12:2	26 12:3	38 12:5	0 1:02	1:14	1:26	1:38 1	:50 2	:02 2:	14 2:2	6 2:38	8 2:50	3:02	3:14	3:26	3:38	3:49 4:	:01 4:	:13 4:2	25 4:3	7 4:49	5:01	5:12	5:23	5:36 5	6:49 6:	:04 6:1	19 6:3	4 6:49	7:04	7:24	7:49	8:19 8	.59 9:	:39 10	0:17 10:	:!
Stephen P. Clark Center	6:56 7:1	3 7:30	7:45 8	:01 8:	17 8:	31 8:4	5 9:0	01 9:	16 9:	31 9:	46 10:0	0110:1	5 10:2	9 10:45	11:0	111:1	311:3	5 11:2	411:4	18 12:	0112:	1412:	26 12:3	38 12:	50 1:02	2 1:14	1:26	1:38	1:50 2	:02 2:	:14 2:	26 2:3	8 2:50	0 3:02	2 3:14	3:26	3:38	3:50	:02 4:	:14 4:	26 4:	38 4:5	0 5:02	2 5:14	5:25	5:36	5:49 6	:02 6:	:15 6:3	30 6:4	5 7:00	7:15	7:35	8:00	8:30 9	:10 9:	:50 10):27 11:	:
RTHBOUND									1			'	'	1						'		1	1		WE	FKI	ΑΥ	S / [DIAS	IA	BOI	RARI	IFS	/ /	ASFI	ΜÈΝ	J		'				1					1	ı		'						ı		
BO NORTE (SYON NO									М	ORN	IING	/ MA	ΙÑΑΝ	1 / AL	MAT	IN										AM	744									AFT		OON	& EV	/ENI	NG/	TARI	DE Y	NOC	HE/,	APRE	MIDI	, CHA	AK AS'	WÈ									
Stephen P. Clark Center	5:00 5:4	5 6:15	6:45 7	7:00 7 :	13 7:	24 7:	35 7:	45 8	:00 8	:15 8	:30 8:	45 9:0	00 9:1	5 9:3	0 9:4	5 10:	00 10:	:12 10	:25 10):37 1	0:48 1	1:00 1	1:12 1 ⁻	1:24 1	1:35 11	1:48 12	:00 12:	12 12:2	12:36	12:48	1:00	1:12	1:24	1:36	1:48 2	:00 2:	12 2:2	24 2:3	6 2:48	3:00	3:12	3:24	3:36	3:48	4:00	4:12 4	:24 4:3	36 4:4	8 5:00	5:15	5:30	5:46	6:02 6	6:20	5:40 7 :	05 7:3	35 8:	:15 8:5	5
Omni Term. Metromover	5:10 5:5	5 6:26	6:56 7	7:15 7:	28 7:	39 7:	50 8:	03 8	:18 8:	:33 8	:48 9:	03 9:1	18 9:3	3 9:4	8 10:	03 10:	18 10:	:30 10	:43 10):55 1	1:06 1	1:18 1	1:30 1	1:42 1	1:53 12	2:06 12	:18 12:	30 12:4	2 12:54	1:06	1:18	1:30	1:42	1:54	2:06 2	:18 2:	30 2:4	42 2:5	4 3:07	7 3:19	3:31	3:43	3:55	4:07	4:19	4:31 4	:43 4:5	55 5:0	7 5:19	9 5:34	5:49	6:05	6:21 6	6:39	j:59 7:	18 7:4	48 8:2	:28 9:0	0
Lincoln Rd & James Ave	5:26 6:1	2 6:43	7:14 7	7:33 7:	46 7:	57 8:	10 8:	23 8	:38 8:	:53 9	:10 9:	25 9:4	10 9:5	5 10:1	0 10:	25 10:	40 10:	:52 11	:05 11	1:17 1	1:28 1	1:40 1	1:52 1	2:04 1	2:15 12	2:28 12	:40 12:	52 1:04	4 1:16	1:28	1:40	1:52	2:04	2:16	2:28 2	:40 2:	52 3:0	04 3:1	6 3:29	9 3:41	3:53	4:05	4:17	4:29	4:41 4	4:53 5	:05 5:	17 5:2	9 5:41	1 5:56	6:11	6:27	6:43 7	7:01 7	7:21 7:3	38 8:0	:08 8:4	:48 9:2	2
ns Av & 43 St	5:33 6:2	0 6:51	7:22 7	7:41 7:	54 8:	06 8:	19 8:	32 8	:47 9:	:03 9	:20 9:	35 9:5	50 10:	05 10:2	20 10:	35 10:	50 11:	:02 11	:15 11	1:27 1	1:38 1	1:50 1	2:02 1	2:14 1	2:25 12	2:38 12	:50 1:0	2 1:14	4 1:26	1:38	1:50	2:02	2:14	2:26 2	2:38 2	:50 3:	02 3:1	14 3:2	6 3:39	9 3:51	4:03	4:15	4:27	4:39	4:51 5	5:03 5	:15 5:2	27 5:3	9 5:51	1 6:06	6:21	6:37	6:53 7	7:11 7	<i>1</i> :31 7:	48 8:1	18 8:	:58 9:3	3
s Ave & 69 St	5:40 6:2	8 6:59	7:31 7	7:50 8:	04 8:	16 8:	29 8:	42 8	:57 9:	:13 9	:30 9:	45 10:	00 10:	15 10:3	30 10:	45 11:	00 11:	:12 11	:25 11	1:37 1	1:48 1	2:00 1	2:12 1	2:24 1	2:35 12	2:48 1:	00 1:1	2 1:24	4 1:36	1:48	2:00	2:12	2:24	2:36	2:48 3	:01 3:	13 3:2	25 3:3	7 3:50	0 4:02	4:14	4:26	4:38	4:50	5:02	5:14 5	:26 5:3	38 5:5	6:02	2 6:17	6:32	6:48	7:04 7	7:20 7	7:40 7:	57 8:2	27 9:0	:07 9:4	4
Collins Ave 9700 Block	5:47 6:3	6 7:08	7:40 7	7:59 8:	13 8:	25 8:	38 8:	52 9	:07 9:	:23 9	:40 9:	55 10:	10 10:	25 10:4	10:	55 11:	10 11:	:22 11	:35 11	1:47 1	1:58 1	2:10 1	2:22 1	2:34 1	2:45 12	2:58 1:	10 1:2	2 1:34	4 1:46	1:58	2:10	2:22	2:34	2:46	2:58 3	:11 3:	23 3:3	35 3:4	7 4:00	0 4:12	4:24	4:36	4:48	5:00	5:12	5:24 5	:36 5:4	48 6:0	0 6:12	2 6:27	6:42	6:58	7:12 7	7:28 7	7:48 8:	05 8:3	35 9:	:15 9:5	5
laulover Club Parking Lot		7:13	- 8	3:04 -	-	_ .	8:	57	- 9:	:28	- 10:	:00 -	10:	30 -	11:	00 -	11:	:27	- 11	1:52	- 1	2:15	- 12	2:39	- 1	:03	- 1:2	7 -	1:51	-	2:15	-	2:39	- 3	3:03	- 3:	28 -	- 3:5	2 -	4:17	, _	4:41	-	5:05	- !	5:29	- 5:5	53 -	6:17	7 -	6:47	-	7:17	-		- -	_ -	- -	-
Collins Ave	5:53 6:4	2 -	7:47	- 8:	21 8:	33 8:	46 -	_ 9	:15	_ 9	:48 -	- 10:	18 –	10:4	18 -	11:	18 -	- 11	:43	- 1	2:06	- 1	2:30	- 1	2:53	- 1:	18 -	1:42	2 -	2:06	-	2:30	- :	2:54	- 3	:19 -	- 3:4	43 –	4:08	B -	4:32	-	4:56	-	5:20	- 5	:44 -	- 6:0	8 -	6:35	-	7:06	- 7	7:35 7	7:55 8:1	12 8:/	42 9:2	:22 10:0	.(
& Atlantic Ave																					1			1						1																1													

SOUTHBOUND RUMBO SUR																						S	ATL	JRD	AY.	/ S/	ABA	DO	/ SA	NN	1DI_																					
DIREKSYON SID									MC	RNI	NG/	MA	ÑAN	A/N	/IATII	V							į	PM						Al	FTER	RNO	ON 8	k EVE	NIN	IG / T	ARD	EYI	NOC	HE /	'APF	REMI	DI, C	HAK	ASV	/È						
Bus Terminal at Aventura Mall	5:49	6:11	-	6:44	-	7:24	-	8:00	-	8:38	8 -	9:1	7 -	9:5	۱ -	10:2	1 -	10:5	51 -	11:2	21 -	11:5	i1 -	12:2	1 -	12:51	1 -	1:21	-	1:51	-	2:21	-	2:51	-	3:21	-	3:50	-	4:20	-	4:50	-	5:20	-	6:25	6:57	7:29	7:59	8:43	9:35	10:30
Collins Ave & Atlantic Ave	6:02	6:24	-	7:00	-	7:40	-	8:16	i -	8:54	4 -	9:3	4 -	10:0	8 -	10:3	8 -	11:0)8 -	11:3	38 -	12:0	- 8	12:3	8 -	1:08	-	1:38	-	2:08	-	2:38	-	3:08	-	3:38	-	4:08	-	4:38	-	5:08	-	5:38	-	6:43	7:15	7:45	8:15	8:59	9:51	10:42
Haulover Club Parking Lot	-	-	6:41	-	7:20	-	7:59	-	8:3	5 -	9:14	4 -	9:53	3 -	10:23	3 -	10:5	3 -	11:	23 -	11:	53 -	12:2	3 -	12:53	-	1:23	-	1:53	-	2:23	-	2:53	-	3:23	-	3:53	-	4:23	-	4:53	-	5:23	-	6:10	-	-	-	-	-	-	-
Bal Harbour Shops	6:10	6:32	6:49	7:08	7:28	7:48	8:07	8:24	8:4	3 9:03	3 9:23	3 9:4	3 10:0	2 10:1	7 10:32	2 10:4	7 11:0	2 11:1	17 11:	32 11:4	17 12:0)2 12:1	7 12:3	2 12:4	7 1:02	1:17	1:32	1:47	2:02	2:17	2:32	2:47	3:02	3:17	3:32	3:47	4:02	4:17	4:32	4:47	5:02	5:17	5:32	5:47	6:19	6:52	7:23	7:53	8:23	9:07	9:59	10:49
Abbott Ave & 69 St	6:18	6:40	6:57	7:17	7:37	7:57	8:16	8:33	8:5	2 9:12	2 9:32	9:5	2 10:1	1 10:2	6 10:4	1 10:5	6 11:1	1 11:2	26 11:	41 11:5	56 12: ⁻	11 12:2	12:4	1 12:5	6 1:11	1:26	1:41	1:56	2:11	2:26	2:41	2:56	3:11	3:26	3:41	3:56	4:11	4:26	4:41	4:56	5:11	5:26	5:41	5:56	6:28	7:01	7:31	8:01	8:31	9:15	10:07	7 10:57
Indian Creek Dr & 40 St	6:26	6:48	7:06	7:26	7:46	8:06	8:25	8:42	9:0	1 9:21	1 9:41	1 10:0)1 10:2	0 10:3	5 10:50	11:0	5 11:2	0 11:3	35 11:	50 12:0)5 12:2	20 12:3	12:5	0 1:05	5 1:20	1:35	1:50	2:05	2:20	2:35	2:50	3:05	3:20	3:35	3:50	4:05	4:20	4:35	4:50	5:05	5:20	5:35	5:50	6:05	6:37	7:09	7:39	8:09	8:39	9:23	10:15	5 11:05
Washington Ave & Lincoln Rd	6:33	6:55	7:15	7:35	7:55	8:15	8:34	8:51	9:1	1 9:31	1 9:51	1 10:1	11 10:3	0 10:4	5 11:00) 11:1	5 11:3	0 11:4	15 12:	00 12:1	15 12:3	30 12:4	5 1:00	1:15	5 1:30	1:45	2:00	2:15	2:30	2:45	3:00	3:15	3:30	3:45	4:00	4:15	4:30	4:45	5:00	5:15	5:30	5:45	6:00	6:15	6:47	7:18	7:48	8:18	8:48	9:32	10:27	2 11:12
m I Omni Term. Arsht Metromover	6:48	7:11	7:31	7:51	8:11	8:31	8:50	9:10	9:3	0 9:50	0 10:1	0 10:3	30 10:4	9 11:0	4 11:19	9 11:3	4 11:4	9 12:0)4 12:	19 12:3	34 12:4	19 1:0	4 1:19	1:34	1:49	2:04	2:19	2:34	2:49	3:04	3:19	3:34	3:49	4:04	4:19	4:34	4:49	5:04	5:19	5:34	5:49	6:04	6:19	6:34	7:06	7:36	8:06	8:36	9:06	9:50	10:36	6 11:26
Stephen P Clark Center	6:58	7:22	7:42	8:02	8:22	8:42	9:02	9:22	9:4	2 10:0	10:2	2 10:4	12 11:0	1 11:1	6 11:3	1 11:4	6 12:0	1 12:1	16 12:	31 12:4	16 1:0	1 1:1	6 1:31	1:46	5 2:01	2:16	2:31	2:46	3:01	3:16	3:31	3:46	4:01	4:16	4:31	4:46	5:01	5:16	5:31	5:46	6:01	6:16	6:31	6:46	7:16	7:46	8:16	8:46	9:16	10:00	10:45	5 11:35
NORTHBOUND																						S	ATL	JRD	AY	/ SÁ	ÁΒΑ	DO	/ SA	NN	1DI																					
RUMBO NORTE DIREKSYON NO						MC	DRN	ING	/ M	AÑA	NA/	MA	TIN					AM	PM									AFTI	ERNO	ON	& E\	VEN	ING /	TAR	RDE \	/ NO	CHE	/ AP	REM	IIDI,	CHA	K AS	WÈ									
Stephen P. Clark Center	6:00	6:36	7:00 7	:20 7:	40 8	:00 8:	:20 8	:40 9:	:00 9	:20 9:	40 10:	00 10:	15 10:3	0 10:4	11:00	11:15	11:30	11:45	12:00	12:15	12:30 1	2:45 1	:00 1:	15 1:3	30 1:45	2:00	2:15	2:30	2:45	3:00	3:15	:30 3:	:45 4:0	0 4:15	4:30	4:45	5:00	5:15	5:30	5:45	6:00	6:15	6:30	:00 7	:30 8:	00 8:	30 9:0	00 9:3	0 8:0	0 8:30	0 9:0	0 9:30
Omni Term. Arsht Metromover	6:09	6:45	7:09 7	:29 7:	49 8	:10 8:	:30 8	:50 9:	:10 9	:30 9:	50 10:	10 10:	25 10:4	0 10:5	11:10	11:25	11:40	11:55	12:10	12:25	12:40 1	2:55 1	:10 1:	25 1:4	40 1:55	2:10	2:25	2:40	2:55	3:10	3:25 3:	:40 3:	:55 4:1	0 4:25	5 4:40	4:55	5:10	5:25	5:40	5:55	6:10	6:25	6:40	:08 7	:38 8:	08 8:	38 9:0	08 9:3	8 8:0	8 8:38	8 9:0	8 9:38
Lincoln Rd & James Ave	6:25	7:01	7:25 7	:45 8:	07 8	:28 8:	:48 9	:08 9:	:28 9	:48 10:	:08 10:	28 10:	43 10:5	8 11:1	11:28	11:43	11:58	12:13	12:28	12:43	12:58	1:13 1	:28 1:	43 1:5	58 2:13	2:28	2:43	2:58	3:13	3:28 3	3:43 3:	:58 4:	:14 4:2	9 4:44	4:59	5:14	5:29	5:44	5:59	6:14	6:29	6:44	6:59 7	:24 7	:54 8:	24 8:	54 9:2	24 9:5	4 8:2	4 8:54	4 9:2	4 9:54
Collins Av & 43 St	6:34	7:10	7:34 7	:54 8:	18 8	:39 8:	:59 9	:19 9:	:39 9	:59 10:	:19 10:	39 10:	54 11:0	9 11:2	11:39	11:54	12:09	12:24	12:39	12:54	1:09	1:24 1	:39 1:	54 2:0	09 2:24	2:39	2:54	3:09	3:24	3:39	3:54 4:	:09 4:	:25 4:4	0 4:55	5 5:10	5:25	5:40	5:55	6:10	6:25	6:40	6:55	7:10 7	:35 8	:05 8:	35 9:	05 9:3	35 10:0	05 8:3	5 9:05	5 9:3	5 10:05
Collins Ave & 69 St	6:44	7:20	7:44 8	:04 8:	28 8	:49 9:	:09 9	:29 9:	:49 10	0:09 10:	:29 10:	49 11:	04 11:1	9 11:3	11:49	12:04	12:19	12:34	12:49	1:04	1:19	1:34 1	:49 2:	04 2:1	19 2:34	2:49	3:04	3:19	3:34	3:49 4	:04 4:	:19 4:	:35 4:5	0 5:05	5 5:20	5:35	5:50	6:05	6:20	6:35	6:50	7:05	7:19	:44 8	:14 8:	44 9:	14 9:4	44 10:	13 8:4	4 9:14	4 9:4	4 10:13
Collins Ave 9700 Block	6:50	7:26	7:50 8	:11 8:	35 8	:56 9:	:16 9	:36 9:	:56 10):16 10:	:36 10:	56 11:	11 11:2	6 11:4	11:56	12:11	12:26	12:41	12:56	1:11	1:26	1:41 1	:56 2:	11 2:2	26 2:41	2:56	3:11	3:26	3:41	3:56 4	:11 4:	:26 4:	:42 4:5	7 5:12	2 5:27	5:42	5:57	6:12	6:27	6:42	6:57	7:11	7:25	:50 8	:20 8:	50 9:	20 9:5	50 10:	17 8:5	0 9:20	0 9:5	0 10:17
Haulover Club Parking Lot	-	-	- 8	:16	- 9	:01	- 9	:41	- 10):21 -	- 11:	01 -	11:3	1 -	12:01	-	12:31	-	1:01	-	1:31	- 2	:01 -	- 2:3	31 -	3:01	-	3:31	- 4	:01	- 4:	:31 -	- 5:0	2 -	5:32		6:02	-	6:32	-	-	-	7:30	- 8	:25	- 9:	25 -	- 10:2	21 -	9:25	5 -	10:21
Collins Ave & Atlantic Ave	6:57	7:33	7:57	- 8:	42	- 9:	:23	- 10):03	- 10:	:43 -	11:	18 -	11:4	3 -	12:18	-	12:48	-	1:18	-	1:48	- 2:	18 -	- 2:48	-	3:18	-	3:48	- 4	:18	- 4:	:49 -	5:19	9 -	5:49	-	6:19	-	6:49	7:04	7:17	- 7	:56	- 8:	56 -	- 9:5	56	8:56	6 -	9:56	6 -
Bus Terminal	7:11	7:47	0.43	- 8:			:39	40):19	- 10:		11:		12:04		12:34		1:04		1:34		2:04	- 2:		- 3:04		3:34		4:04		:34	T-	:05 -	5:35		6:05		6:35		7:05	7:19	7:32		:11	_ 9:	11 .	- 10:	44	9:11	1 -	10:1	14

SOUTHBOUND											S	UN	IDA	Υ/	DC	MI	NG	iO /	DI D	MΑ	NC	H										
RUMBO SUR DIREKSYON SID			N	/IOR	NIN	IG/I	MAÑ	ĬAN.	A /N	ΛAT	IN		АМ	PM	AFTI	RN	100	V & V	EVE	NIN	G/T	ARE	DE Y	NO	CHE	/ AF	PREI	MIDI,	, CH.	AK A	ASW	/È
Bus Terminal at Aventura Mall	6:01	6:41	7:07	7:34	8:01	8:31	9:00	9:24	9:50	10:20	10:50	11:20	11:50	12:20	12:50	1:20	1:50	2:20	2:50	3:20	3:50	4:20	4:51	5:23	5:55	6:26	6:57	7:30	8:00	8:29	8:59	9
Collins Ave & Atlantic Ave	6:12	6:52	7:18	7:45	8:14	8:44	9:13	9:37	10:06	10:36	11:06	11:36	12:06	12:36	1:06	1:36	2:06	2:36	3:06	3:36	4:06	4:36	5:07	5:39	6:11	6:41	7:12	7:45	8:12	8:41	9:11	1 9
Bal Harbour Shops	6:18	6:58	7:24	7:51	8:21	8:51	9:20	9:44	10:14	10:44	11:14	11:44	12:14	12:44	1:14	1:44	2:14	2:44	3:14	3:44	4:14	4:44	5:15	5:47	6:18	6:48	7:19	7:52	8:18	8:47	9:17	1 9
Abbott Ave & 69 St	6:26	7:06	7:32	8:00	8:30	9:00	9:29	9:53	10:23	10:53	11:23	11:53	12:23	12:53	1:23	1:53	2:23	2:53	3:23	3:53	4:23	4:53	5:24	5:56	6:26	6:56	7:27	8:00	8:26	8:55	9:25	; 9
Indian Creek Dr & 40 St	6:34	7:14	7:40	8:09	8:39	9:09	9:38	10:02	10:32	11:02	11:32	12:02	12:32	1:02	1:32	2:02	2:32	3:02	3:32	4:02	4:32	5:02	5:33	6:05	6:35	7:05	7:36	8:08	8:34	9:03	9:33	3 1
Washington Ave & Lincoln Rd	6:40	7:20	7:46	8:16	8:46	9:16	9:45	10:11	10:41	11:11	11:41	12:11	12:41	1:11	1:41	2:11	2:41	3:11	3:41	4:11	4:41	5:11	5:42	6:13	6:43	7:13	7:44	8:15	8:41	9:10	9:40) 1
Omni Term. Arsht Metromover	6:51	7:31	8:00	8:30	9:00	9:30	9:59	10:29	10:59	11:29	11:59	12:29	12:59	1:29	1:59	2:29	2:59	3:29	3:59	4:29	4:59	5:29	6:00	6:30	7:00	7:30	8:01	8:28	8:54	9:23	9:53	3 1
Stephen P. Clark Center	7:00	7:40	8:10	8:40	9:10	9:40	10:10	10:40	11:10	11:40	12:10	12:40	1:10	1:40	2:10	2:40	3:10	3:40	4:10	4:40	5:10	5:40	6:10	6:40	7:10	7:40	8:10	8:37	9:03	9:32	10:0	2 1
NORTHBOUND RUMBO NORTE											S	UN	IDA	Υ/	DC	MI	NG	O /	DI	MΑ	NC	Н										
DIREKSYON NO			M	ORI	VIN	G/N	ΛΑÑ	ANA	4 / N	IATII	N		W	A	FTE	RNO	OON	& E	VEN	IING	/ T/	ARD	ΕΥI	VOC	HE	/ AP	REN	11DI,	CHA	\K A	SW	È
Stephen P. Clark Center	6:00	6:30	7:00	7:3	0 8:0	0 8:3	30 9:0	00 9:	30 10	:00 10):30 1	1:00 1	1:30 1	2:00	12:30	1:00	1:30	2:00	2:30	3:00	3:30	4:00	0 4:3	0 5:0	00 5:3	30 6:	00 6	5:30 7	:00	7:30	8:00	9
Omni Term. Arsht Metromover	6:06	6:36	7:06	7:3	6 8:0	8:3	38 9:0	08 9:	38 10	:10 10	0:40 1	1:10 1	1:40 1	2:10	12:40	1:10	1:40	2:10	2:40	3:10	3:40	4:10	0 4:4	0 5:1	10 5:4	10 6:	08 6	5:38 7	:08	7:38	8:06	9
Lincoln Rd & James Ave	6:20	6:50	7:20	7:5	0 8:2	8:5	64 9:2	24 9:	54 10	:27 10):57 1	1:27 1	1:57 1	2:27	12:57	1:27	1:57	2:27	2:57	3:27	3:57	4:2	7 4:5	7 5:2	27 5:	67 6:	23 6	5:53 7	:23	7:53	8:20	9
Collins Av & 43 St	6:29	6:59	7:29	7:5	8:3	3 9:0	9:3	33 10:	:05 10	:38 11	1:08 1	1:38 1	2:08 1	2:38	1:08	1:38	2:08	2:38	3:08	3:38	4:08	4:38	5:0	8 5:3	88 6:0	08 6:	33 7	7:03	:33	8:03	8:29	9
Collins Ave & 69 St	6:37	7:07	7:37	8:0	8 8:4	9:1	12 9:4	42 10:	:15 10	:48 11	1:18 1	1:48 1	2:18 1	2:48	1:18	1:48	2:18	2:48	3:18	3:48	4:18	4:48	5:1	8 5:4	18 6:	17 6:	42 7	7:12 7	:42	8:11	8:37	9
Collins Av 9700 Block	6:41	7:11	7:4	8:14	4 8:4	18 9:1	18 9:4	48 10:	:21 10	:54 11	1:24 1	1:54 1	2:24 1	2:54	1:24	1:54	2:24	2:54	3:24	3:54	4:25	4:5	5 5:2	5 5:5	55 6:2	23 6:	48 7	7:18 7	:48	8:15	8:41	9
Callina Arra	6:47	7:17	7:47	8:2	1 8:5	55 9:2	25 9:	55 10:	:28 11	:01 11	1:31 1	2:01 1	2:31	1:01	1:31	2:01	2:31	3:01	3:31	4:01	4:32	5:02	2 5:3	2 6:0)2 6:2	29 6:	54 7	:24 7	:54	8:21	8:47	9
Collins Ave & Atlantic Ave																																

DAVID PLUMMER & ASSOCIATES

TRAFFIC ENGINEERING • CIVIL ENGINEERING • TRANSPORTATION PLANNING

1750 PONCE DE LEON BOULEVARD | CORAL GABLES, FLORIDA 33134 305•447•0900 | DPA@DPLUMMER.COM

November 30, 2020

Mr. Firat Akcay
Transportation Analyst
City of Miami Beach
Transportation and Mobility Department
1688 Meridian Avenue, Suite 801, Miami Beach, FL 33139
305.673.7000, Ext 26839
FiratAkcay@miamibeachfl.gov

RE: Terminal Island Miami Beach Queuing Analysis - #20129

Dear Firat,

The project is located at 120 MacArthur Causeway (Terminal Island) in Miami Beach, Florida. The project proposes a new 160,932 SF office building and a 7,234 SF restaurant. The existing six boat berth marina will remain. Access to the site will be provided via the internal roadway on Terminal Island which provides access to MacArthur Causeway.

The purpose of this letter is to conduct a queuing analysis for the proposed gated entrance to the development. As per the developer, the gate will remain open through the day with a security guard and will close at night. At night the building can only be accessed with an FOB system.

Queuing Analysis

The queuing analysis was performed based on the methodology outlined in the Institute of Transportation Engineers (ITE) Transportation and Land Development. The analysis was performed to determine if there is sufficient storage to accommodate the anticipated queue at the proposed site entrances during the peak hour (worst case scenario) so that the queue does not extend past the property line (95% confidence level analysis).

Trip generation for the proposed project was estimated using the Institute of Transportation Engineers (ITE) <u>Trip Generation Manual</u>, 10th Edition, which provides gross trip generation rates and/or equations by land use type. These rates and equations estimate vehicle trip ends at a free-standing site's driveways. ITE trip generation worksheets are provided in Attachment A.

The proposed development plan incorporates office and restaurant land uses, which can satisfy the lunch/dinner trip for some employees, and visitors without making a trip off-site. An internalization matrix was developed to establish the appropriate number of internal project trips. Internal capture rates used are also included in Attachment A.

ITE research shows that a certain percent of restaurant trips are "pass-by" trips. These are described as trips "attracted from the traffic passing the site on an adjacent street." These are not new trips, but trips already using the existing roadway network that stop at the proposed use and go back to their original path. Pass-by trips for this use were established based on guidelines provided in ITE's <u>Trip Generation Handbook</u> 3rd Edition. The average pass-by rate published by ITE for restaurant use is 44% during the PM peak hour however, as discussed with the City reviewer, a 10% reduction was used for pass-by applied to restaurant trips.

The study area is pedestrian and bicycle friendly and transit is readily available. US Census data shows an existing 12.9% overall use of other modes of transportation in the US Census Tract 9810 where the project is located (see Attachment A). However, for a conservative analysis and as discussed with the City reviewer, a 3% reduction will be used for other modes of transportations. The project trip generation summary is provided in Exhibit 1.

Exhibit 1: Project Trip Generation Summary

Proposed ITE Land Use Designation ¹	Size/Units	Daily (Two-way)		I Peak H hicle Tr			l Peak H hicle Tr	
Designation		(1 Wo-Way)	In	Out	Total	In	Out	Total
Office (Land Use 710)	160,932 SF	1,684	153	25	178	29	150	179
Fast Casual Restaurant (Land Use 930)	7,234 SF	2,278	10	5	15	56	46	102
Gross External Trips		3,962	163	30	193	85	196	281
Internalization AM,	PM	4.1%, 1.4%	-4	-4	-8	-2	-2	-4
Other Modes of Transp	ortation ²	3%	-5	-1	-6	-3	-5	-8
Pass-By Restaurant ($(PM)^3$	10%	0	0	0	-5	-5	-10
Proposed Net External T	`rips		154	25	179	75	184	259

¹Based on ITE Trip Generation Manual, Tenth Edition

²Based on US Census (Tract 9810) is 12.9%, however a 3% was used.

³Based on ITE Trip Generation Handbook, 3rd Edition (PM pass-by) is 44%, however 10% was used.

The queuing analysis used the single-channel waiting line model with Poisson arrivals and exponential service times. The analysis is based on the coefficient of utilization (ρ) which is the ratio of the average arrival rate of vehicles to the average service rate.

$$\rho = \frac{\text{Average Demand Rate}}{\text{Average Sevice Rate}}$$

The average service rate corresponds to the time it will take a vehicle to gain access through the gate. If the coefficient of utilization is greater than 1, then the calculation will yield an infinite queue length.

The required queue storage (M) is determined using the following equation:

$$M = \left[\frac{\ln P(x > M) - \ln Q_M}{\ln \rho}\right] - 1$$

In this equation, P(x > M) is set at 5% to yield a 95% confidence that the queue will not back-up onto the adjacent street. Although the project trip generation shows the AM peak hour of the adjacent street as the critical inbound hour, the PM peak hour was used in the analysis.

Since the gate will be open and office employees and regular visitors will be able to enter without stopping, the queuing analysis assumed that only 20% of the office trips and all of the restaurant trips will stop at a brief security check. Based on this assumption, the highest volume of vehicles stopping at the gate occur during the PM peak hour (29*0.2 + 56 = 62 vph). A processing rate of 20 seconds per vehicle (0.33 minutes per vehicle) was used. This is the time it will take some visitors to go through and pass the gate. Exhibit 2 provides the queuing calculations based on the Poisson Equation.

Exhibit 2: Entrance Queuing Calculations

Q = Processing rate =
$$\frac{60 \text{ min/hr}}{0.33 \text{ min/process}} = 180 \text{ process/hr}$$

q = Demand Rate = 62
$$\frac{veh}{hr}$$

N = Service Positions = 1 Lane

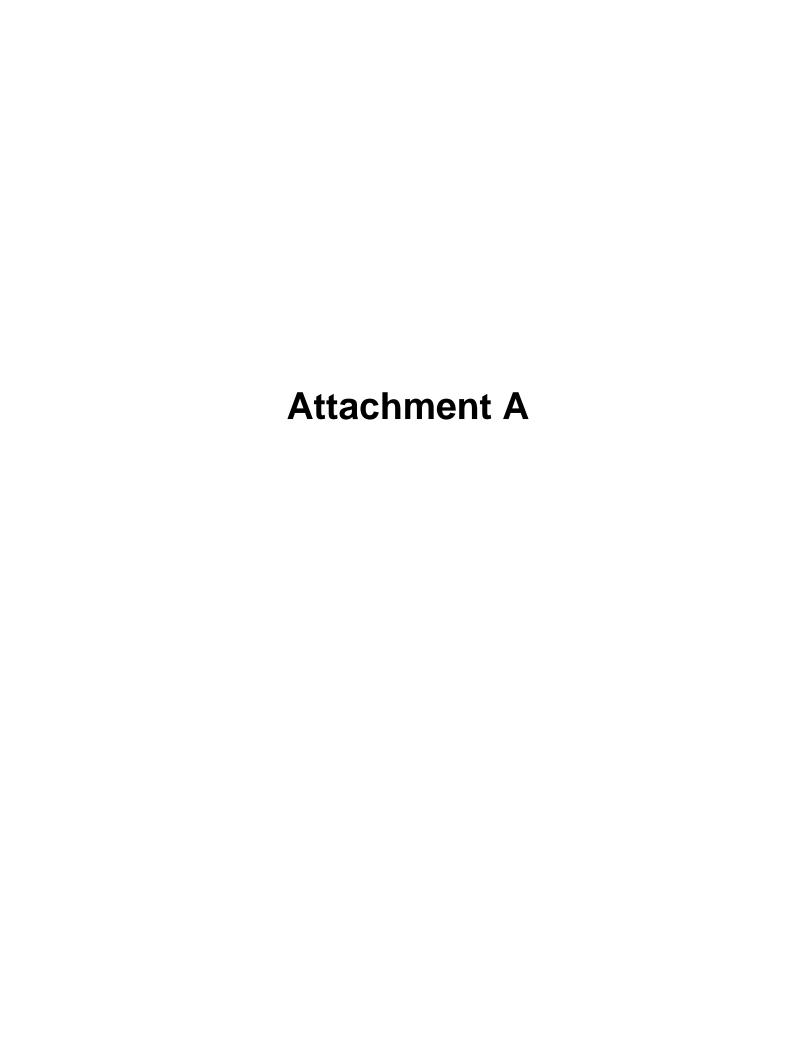
$$\rho = \text{Utilization factor} = \frac{q}{(NQ)} = \frac{62 \text{ veh/hr}}{1 \times 180 \text{ process/hr}} = 0.3444$$

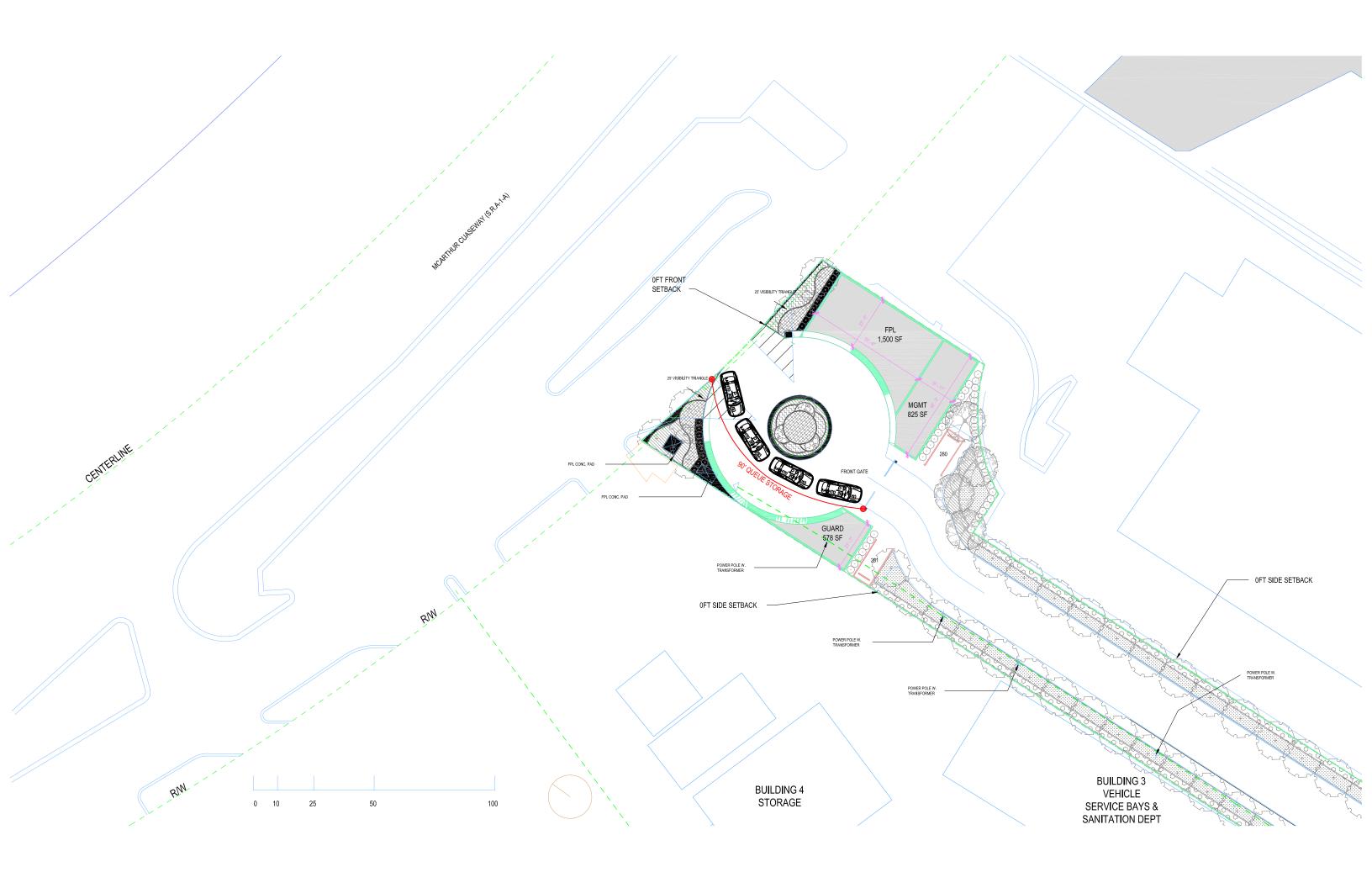
$$Q_m = Table Value = 0.3444$$

M = queue length which is exceeded 5% of the time [P(x>M)]

$$M = \frac{\ln P(x>M) - \ln(Q_m)}{\ln(\rho)} - 1 = \frac{\ln(0.05) - \ln(0.3444)}{\ln 0.3444} - 1 = 0.81$$
 say one vehicle in queue.

The analysis shows that only one vehicle queue is expected at the gate during the PM peak hour. Based on the site plan, there is approximately 83 feet of storage between the gate and the property line; this distance is enough to accommodate 4 vehicles in the queue. Therefore, no spillback onto the adjacent street is expected.


We stand ready to provide any support needed for this proposed project. Should you have any questions or comments, please call me at (305) 447-0900.


Sincercity,

Juan Espinosa, PE

Vice President – Transportation

w:\20\20129\response to comments nov 2020\gate queuing nov 2020\gate queuing analysis_ november 24 2020.docx

Scenario - 1	
Scenario Name: P	roposed User Group:
Dev. phase: 1	No. of Years 0 to Project
Analyst Note:	,
Warning: T	he time periods among the land uses do not appear to match.

VEHICLE TRIPS BEFORE REDUCTION

Land Use & Data Source	Location	IV	Size	Time Period	Method	Entry	Exit	Total
Land Use & Data Source	Location	IV	Size	Time Period	Rate/Equation	Split%	Split%	IOLAI
710 - General Office Building	General	1000 Ca Ft CFA	160.03	Wooldon	Best Fit (LOG)	842	842	1684
Data Source: Trip Gen Manual, 10th Ed	Urban/Suburban	1000 Sq. Ft. GFA	160.93	Weekday	Ln(T) =0.97Ln(X) + 2.50	50%	50%	1084
710(1) - General Office Building	General	1000 Sg. Ft. GFA	160.93	Weekday, Peak Hour of Adjacent Street Traffic,	Best Fit (LIN)	153	25	178
Data Source: Trip Gen Manual, 10th Ed	Urban/Suburban	1000 3q. Ft. GFA	100.93	One Hour Between 7 and 9 a.m.	T = 0.94(X) + 26.49	86%	14%	176
710(2) - General Office Building	General	1000 Sg. Ft. GFA	160.93	Weekday, Peak Hour of Adjacent Street Traffic,	Best Fit (LOG)	29	150	179
Data Source: Trip Gen Manual, 10th Ed	Urban/Suburban	1000 Sq. Ft. GFA	160.93	One Hour Between 4 and 6 p.m.	Ln(T) =0.95Ln(X) + 0.36	16%	84%	1/9
420(3) - Marina	General	Berths	6	Modeldov	Average	7	7	14
Data Source: Trip Gen Manual, 10th Ed	Urban/Suburban	Bertiis	О	Weekday	2.41	50%	50%	14
420(4) - Marina	General	Berths	6	Weekday, Peak Hour of Adjacent Street	Average	1	1	2
Data Source: Trip Gen Manual, 10th Ed	Urban/Suburban	Dertiis	0	Traffic, One Hour Between 4 and 6 p.m.	0.21	60%	40%	2
420(5) - Marina	General	Douths	6	Weekday, Peak Hour of Adjacent Street Traffic,	Average	1	1	2
Data Source: Trip Gen Manual, 10th Ed	Urban/Suburban	Berths	О	One Hour Between 4 and 6 p.m.	0.21	60%	40%	2
930(2) - Fast Casual Restaurant	General	1000 Sg. Ft. GFA	7.23	Weekday	Average	1139	1139	2278
Data Source: Trip Gen Manual, 10th Ed	Urban/Suburban	1000 3q. Ft. GFA	7.23	weekuay	315.17	50%	50%	22/0
930(1) - Fast Casual Restaurant	General	1000 Sg. Ft. GFA	7.23	Weekday, Peak Hour of Adjacent Street Traffic,	Average	10	5	15
Data Source: Trip Gen Manual, 10th Ed	Urban/Suburban	1000 Sq. Ft. GFA	7.23	One Hour Between 7 and 9 a.m.	2.07	67%	33%	15
930(3) - Fast Casual Restaurant	General	1000 Ca Ft CFA	7.22	Weekday, Peak Hour of Adjacent Street Traffic,	Average	56	46	102
Data Source: Trip Gen Manual, 10th Ed	Urban/Suburban	1000 Sq. Ft. GFA	7.23	One Hour Between 4 and 6 p.m.	14.13	55%	45%	102

Generated By OTISS Pro v2.1

AM Peak Hour Trip Generation and Internalization

Terminal Island Miami Beach

Lanc	Office I Use 710			lse 930		
	932 Sq Ft			Sq Ft		
In	Out		In	Out		
153	25		10	5		193 ITE Trips
	UNBALANO	CED INTERI	NALIZATION	V		
	63% 16	2	23% 2			
14% 21		2		31% 2		
	Office		Resta	urant		
In	Out		In	Out		
153	25		10	5		193 Vehicle Trips
	BALANCE	D INTERN	ALIZATION			
-2	-2		-2	-2		
					ı	
-2	-2		-2	-2		-8 Internal
151	23		8	3		185 External Trips
	2.2%			26.7%		4.1% % Internal
-5	-1		0	0		-6 -3.0% Transit/Pedestrian 179
146	22		8	3		
			0	0		0 0% Passby (Restau
146	22		8	3		179 Net New External Trips

PM Peak Hour Trip Generation and Internalization

Terminal Island Miami Beach

	Office		Resta			
	d Use 710		Land U			
	,932 Sq Ft			Sq Ft		
In	Out		In	Out		
29	150		56	46		281 ITE Trips
	UNBALAN	CED INTERI	NALIZATION	I		
	4% 6	1	2% 1			
30% 9		1		3% 1		
	Office		Resta	urant		
In	Onice		In	Out		
29	150		 56	46		281 Vehicle Trips
	BALANCI	ED INTERNA	ALIZATION			20
-1	-1	_	-1	-1		
-1	-1		-1	-1		-4 Internal
28	149		55	45		277 External Trips
	1.1%			2.0%	_	1.4% % Internal
-1	-4		-2	-1		-8 -3.0% Transit/Pedestrian
27	145		53	44		269
			-5	-5		-10 -10% Passby (Restau
27	145		48	39		259 Net New External Trips

location, a 5% probability of back-up onto the adjacent street is judged to be acceptable. Demand on the system for design is expected to be 110 vehicles in a 45-minute period. Average service time was expected to be 2.2 minutes. Is the queue storage adequate?

Such problems can be quickly solved using Equation (8-9b) given in Table 8-10 and repeated below for convenience.

$$M = \left[\frac{\ln P(x > M) - \ln Q_M}{\ln \rho}\right] - 1$$

where:

M = queue length which is exceeded p percent of the time

N = number of service channels (drive-in positions)

Q = service rate per channel (vehicles per hour)

$$\rho = \frac{\text{demand rate}}{\text{service rate}} = \frac{q}{NQ} = \text{utilization factor}$$

q = demand rate on the system (vehicles per hour)

 Q_M = tabled values of the relationship between queue length, number of channels, and utilization factor (see Table 8.11)

TABLE 8-11
Table of Q_M Values

N = 1	2	3	4	6	8	10
0.0000	0.0000	0.0000	0.0000			
.1000	.0182	.0037	.0008	.0000	0.0000	0.0000
.2000	.0666	.0247	.0096	.0015	.0002	.0000
.3000	.1385	.0700	.0370	.0111	.0036	.0011
.4000	.2286	.1411	.0907	.0400	.0185	.0088
.5000	.3333	.2368	.1739	.0991	.0591	.0360
.6000	.4501	.3548	.2870	.1965	.1395	.1013
.7000	.5766	.4923	.4286	.3359	.2706	.2218
.8000	.7111	.6472	.5964	.5178	.4576	.4093
.9000	.8526	.8172	.7878	.7401	.7014	.6687
1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	0.0000 .1000 .2000 .3000 .4000 .5000 .6000 .7000 .8000	0.0000 0.0000 .1000 .0182 .2000 .0666 .3000 .1385 .4000 .2286 .5000 .3333 .6000 .4501 .7000 .5766 .8000 .7111 .9000 .8526	0.0000 0.0000 0.0000 .1000 .0182 .0037 .2000 .0666 .0247 .3000 .1385 .0700 .4000 .2286 .1411 .5000 .3333 .2368 .6000 .4501 .3548 .7000 .5766 .4923 .8000 .7111 .6472 .9000 .8526 .8172	0.0000 0.0000 0.0000 0.0000 .1000 .0182 .0037 .0008 .2000 .0666 .0247 .0096 .3000 .1385 .0700 .0370 .4000 .2286 .1411 .0907 .5000 .3333 .2368 .1739 .6000 .4501 .3548 .2870 .7000 .5766 .4923 .4286 .8000 .7111 .6472 .5964 .9000 .8526 .8172 .7878	0.0000 0.0000 0.0000 0.0000 .1000 .0182 .0037 .0008 .0000 .2000 .0666 .0247 .0096 .0015 .3000 .1385 .0700 .0370 .0111 .4000 .2286 .1411 .0907 .0400 .5000 .3333 .2368 .1739 .0991 .6000 .4501 .3548 .2870 .1965 .7000 .5766 .4923 .4286 .3359 .8000 .7111 .6472 .5964 .5178 .9000 .8526 .8172 .7878 .7401	0.0000 0.0000 0.0000 0.0000 .1000 .0182 .0037 .0008 .0000 0.0000 .2000 .0666 .0247 .0096 .0015 .0002 .3000 .1385 .0700 .0370 .0111 .0036 .4000 .2286 .1411 .0907 .0400 .0185 .5000 .3333 .2368 .1739 .0991 .0591 .6000 .4501 .3548 .2870 .1965 .1395 .7000 .5766 .4923 .4286 .3359 .2706 .8000 .7111 .6472 .5964 .5178 .4576 .9000 .8526 .8172 .7878 .7401 .7014

 $[\]rho = \frac{q}{NQ} = \frac{\text{arrival rate, total}}{(\text{number of channels})(\text{service rate per channel})}$

N - number of channels (service positions)

Solution

Step 1:
$$Q = \frac{60 \text{ min/hr}}{2.2 \text{ min/service}} = 27.3 \text{ services per hour}$$

Step 2:
$$q = (110 \text{ veh/}45 \text{ min}) \times (60 \text{ min/hr}) = 146.7 \text{ vehicles per hour}$$

Step 3:
$$\rho = \frac{q}{NQ} = \frac{146.7}{(6)(27.3)} = 0.8956$$

Step 4:
$$Q_M = 0.7303$$
 by interpolation between 0.8 and 0.9 for $N = 6$ from the table of Q_M values (see Table 8-11).

Step 5: The acceptable probability of the queue,
$$M$$
, being longer than the storage, 18 spaces in this example, was stated to be 5%. $P(x > M) = 0.05$, and:

$$M = \left[\frac{\ln 0.05 - \ln 0.7303}{\ln 0.8956} \right] - 1 = \left[\frac{-2.996 - (-0.314)}{-0.110} \right] - 1$$

= 24.38 - 1 = 23.38, say 23 vehicles.

DAVID PLUMMER & ASSOCIATES

TRAFFIC ENGINEERING • CIVIL ENGINEERING • TRANSPORTATION PLANNING

1750 PONCE DE LEON BOULEVARD | CORAL GABLES, FLORIDA 33134 305*447*0900 | DPA@DPLUMMER.COM

November 30, 2020

Mr. Firat Akcay
Transportation Analyst
City of Miami Beach
Transportation and Mobility Department
1688 Meridian Avenue, Suite 801, Miami Beach, FL 33139
305.673.7000, Ext 26839
FiratAkcay@miamibeachfl.gov

RE: <u>Terminal Island Miami Beach Valet Queuing Analysis</u> - #20129

Dear Firat,

The project is located at 120 MacArthur Causeway (Terminal Island) in Miami Beach, Florida. The project proposes a new 160,932 SF office building and a 7,234 SF restaurant. The existing six boat berth marina will remain. Access to the site will be provided via the internal roadway on Terminal Island which provides access to MacArthur Causeway.

The purpose of this letter is to conduct a queuing analysis for the proposed valet operations to ensure that the drop-off / pick-up demand at the proposed valet station would not extend past the provided storage space at the valet station during the peak hour of the generator.

Queuing Analysis

The queuing analysis was performed based on the methodology outlined in the *Institute of Transportation Engineers (ITE) Transportation and Land Development*, to determine the number of valet parking attendants required during the PM peak hour of the generator so that the queue does not extend past the valet storage area (95% confidence level analysis). The potential queues were calculated based on the PM peak hour of the generator published by the *Institute of Transportation Engineers* (ITE) trip generation rates and/or equations for the proposed

development plan. The pick-up / drop-off area will be located internal to the site on the east side of the circular drive. The project is proposing valet parking to be used by 100% of restaurant guest and by office visitors. It was assumed that a conservative 10% of the office demand will be visitors using the valet parking. Exhibit 1 provides the trip generation for the pick-up / drop-off area during the PM peak hour of the generator. Trip generation documentation is available in Attachment A.

Exhibit 1: PM Peak Hour of the Generator Trip Generation Summary

Proposed ITE Land Use Designation ¹	Size/Units	Daily (Two-way)		ak of Gen ehicle Trij	
Ose Designation		(1 wo-way)	In	Out	Total
Office ² (Land Use 710)	160,932 SF	1,684	9	48	57
Fast Casual Restaurant (Land Use 930)	7,234 SF	2,278	146	171	317
Gross External Trips		3,962	155	219	374
Internalization I	PM	2.70%	-5	-5	-10
Other Modes of Trans	sportation ³	3%	-4	-6	-10
Proposed Net External	Trips		146	208	354
Proposed valet Trips (10%	Office, 100%	Restaurant)	141	168	309

¹ Based on ITE Trip Generation Manual, 10th Edition

The queuing analysis used the single-channel waiting line model with Poisson arrivals and exponential service times. The analysis is based on the coefficient of utilization (ρ) which is the ratio of the average arrival rate of vehicles to the average service rate.

$$ho = rac{ ext{Average Demand Rate}}{ ext{Average Sevice Rate}}$$

The average service rate corresponds to the time it will take a vehicle to gain access through the gate. If the coefficient of utilization is greater than 1, then the calculation will yield an infinite queue length.

The required queue storage (M) is determined using the following equation:

² Based on ITE daily rate for 5:45 pm

³ Based on US Census (Tract 9810) is 12.9%, however a 3% was used.

$$M = \left[\frac{\ln P(x > M) - \ln Q_M}{\ln \rho}\right] - 1$$

In this equation, P(x > M) is set at 5% to yield a 95% confidence that the queue will not back-up past the valet storage area.

The processing rate was calculated by adding the time it will take a valet attendant to process the vehicles (**processing time**), the time it will take the valet to circulate to/from the parking space (**driving time**), the time it will take to park or retrieve a vehicle (**park processing time**), and the time it will take to walk to/from the parking area (**walking time**). A processing time of 51 seconds per vehicle was used in the analysis. This information is based on data collected from a hotel on Miami Beach (see Attachment B). The driving time for the valet attendant was calculated on a speed of 15 mph, and the walking time for the valet attendant was calculated on a jogging speed of 8 ft/sec.

Valet attendants will have assigned parking spaces within the site as follows: 10 tandem and 17 standard parking spaces within the parking garage located east of the entrance drive, and 34 standard parking spaces within a ground surface lot located west of the entrance drive. The pick-up / drop-off area will be located internal to the site on the east side of the circular drive. Since the distance from the valet drop-off / pick-up area differs for inbound / outbound, a weighted average was taken of the inbound / outbound valet processing times for the tandem and standard spaces located in the garage. The weighted average was based on the inbound / outbound trip distribution, which is 46% inbound and 54% outbound during the PM peak hour of the generator. The valet processing times for valet parking locations are shown in Exhibits 2-4.

Exhibit 2: Inbound / Outbound Valet Processing Rate to/from Tandem Spaces in Garage

Inbound Valet Processing Time

Processing time: $51 \sec / 60 \sec / 1 \min = 0.85 \min$

Driving time: 207 ft * 1 mile / 5280 ft * 1hr / 15 miles * 60 min / hr = **0.16 min**

Park Processing time: 0.45 min

Walking time: 210 ft / 8 ft / sec / 60 sec / min = 0.44 min

Total $= 1.89 \, \text{min}$

Outbound Valet Processing Time

Processing time: $51 \sec / 60 \sec / 1 \min = 0.85 \min$

Driving time: 307 ft * 1 mile / 5280 ft * 1hr / 15 miles * 60 min / hr =**0.28 min**

Park Processing time: 0.45 min

Walking time: 210 ft / 8 ft / sec / 60 sec / min = 0.44 min

Total $= 2.02 \min$

Weighted Inbound / Outbound Valet Time

46% Inbound: $0.46 * 1.89 \min = 0.87 \min$

54% Outbound: 0.54 * 2.02 min = **1.09 min**

Total $= 1.96 \, \text{min}$

Exhibit 3: Inbound / Outbound Valet Processing Rate to/from Standard Space in Garage

Inbound Valet Processing Time

Processing time: $51 \sec / 60 \sec / 1 \min = 0.85 \min$

Driving time: 374 ft * 1 mile / 5280 ft * 1hr / 15 miles * 60 min / hr =**0.28 min**

Park Processing time: 0.15 min

Walking time: 202 ft / 8 ft / sec / 60 sec / min = 0.42 min

Total $= 1.70 \min$

Outbound Valet Processing Time

Processing time: $51 \sec / 60 \sec / 1 \min = 0.85 \min$

Driving time: 401 ft * 1 mile / 5280 ft * 1hr / 15 miles * 60 min / hr = 0.30 min

Park Processing time: 0.15 min

Walking time: 202 ft / 8 ft / sec / 60 sec / min = 0.42 min

Total $= 1.72 \min$

Weighted Inbound / Outbound Valet Time

46% Inbound: 0.46 * 1.70 min = **0.78 min**

54% Outbound: $0.54 * 1.72 \min = 0.93 \min$

Total = 1.71 min

Exhibit 4: Inbound / Outbound Valet Processing Rate to/from Standard Spaces on Ground Level

Inbound / Outbound Valet Processing Time

Processing time: $51 \sec / 60 \sec / 1 \min = 0.85 \min$

Driving time: 451 ft * 1 mile / 5280 ft * 1 hr / 15 miles * 60 min / hr = 0.34 min

Park Processing time: 0.15 min

Walking time: 416 ft / 8 ft / sec / 60 sec / min = 0.87 min

Total $= 2.21 \, \text{min}$

Furthermore, since the total valet processing time differs for each valet parking space location (tandem, garage, and ground), a weighted average was taken. The weighted average was based on the number of parking spaces assigned to each location. There are 10 tandem parking spaces (16%) and 17 standard parking spaces within the garage (28%), and an additional 34 standard parking spaces within the ground lot (56%). The weighted average valet processing time is shown in Exhibit 5.

Exhibit 5: Weight Valet Processing Rate

Weighted Valet Time

16% Tandem: 0.16 * 1.96 min = **0.32 min**

28% Standard (Garage): 0.28 * 1.71 min = **0.48 min**

56% Standard (Ground): 0.56 * 1.98 min = **1.10 min**

Total $= 1.90 \, \text{min}$

Exhibit 6 shows the queuing calculations for the valet drop-off / pick-up area during the PM peak hour of generator.

Exhibit 6: PM Peak Hour Valet Drop-off / Pick-up Queuing Calculations

Q = Processing rate =
$$\frac{60 \, min/hr}{1.90 \, min/process}$$
 = 31.54 process/hr

q = Demand Rate = 309
$$\frac{veh}{hr}$$

N = Service Positions = 14 attendants

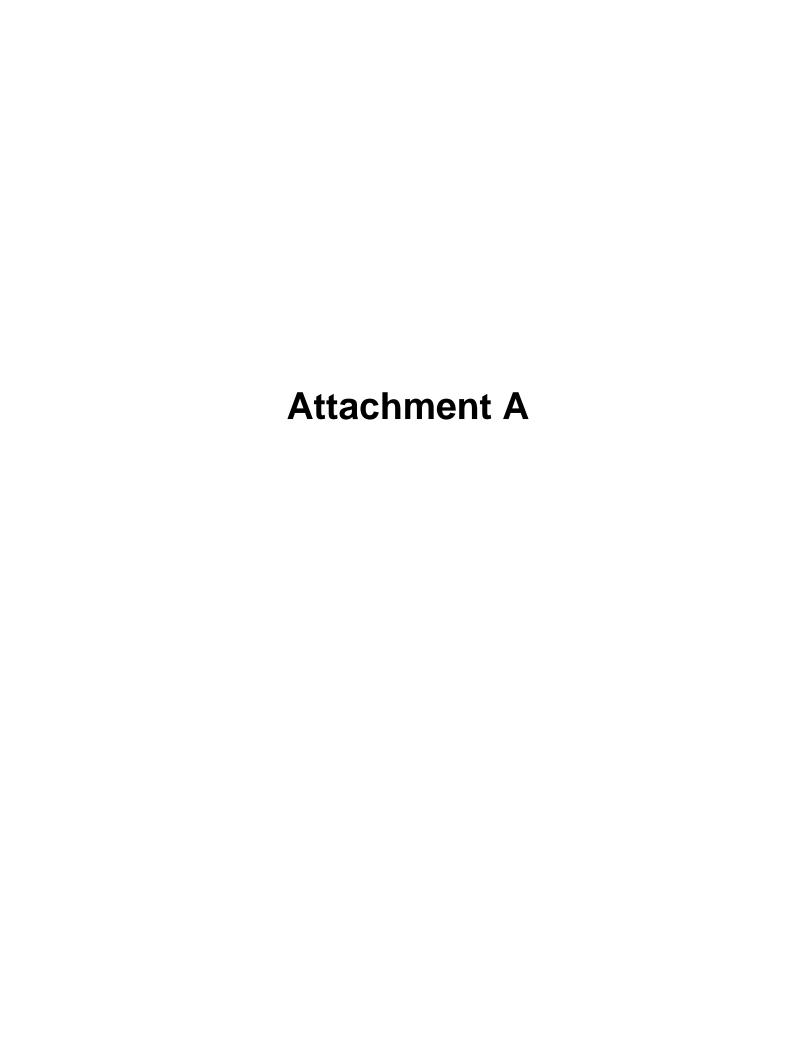
$$\rho = \text{Utilization factor} = \frac{q}{(NQ)} = \frac{309 \text{ veh/hr}}{14 \times 31.54 \text{ process/hr}} = 0.6998$$

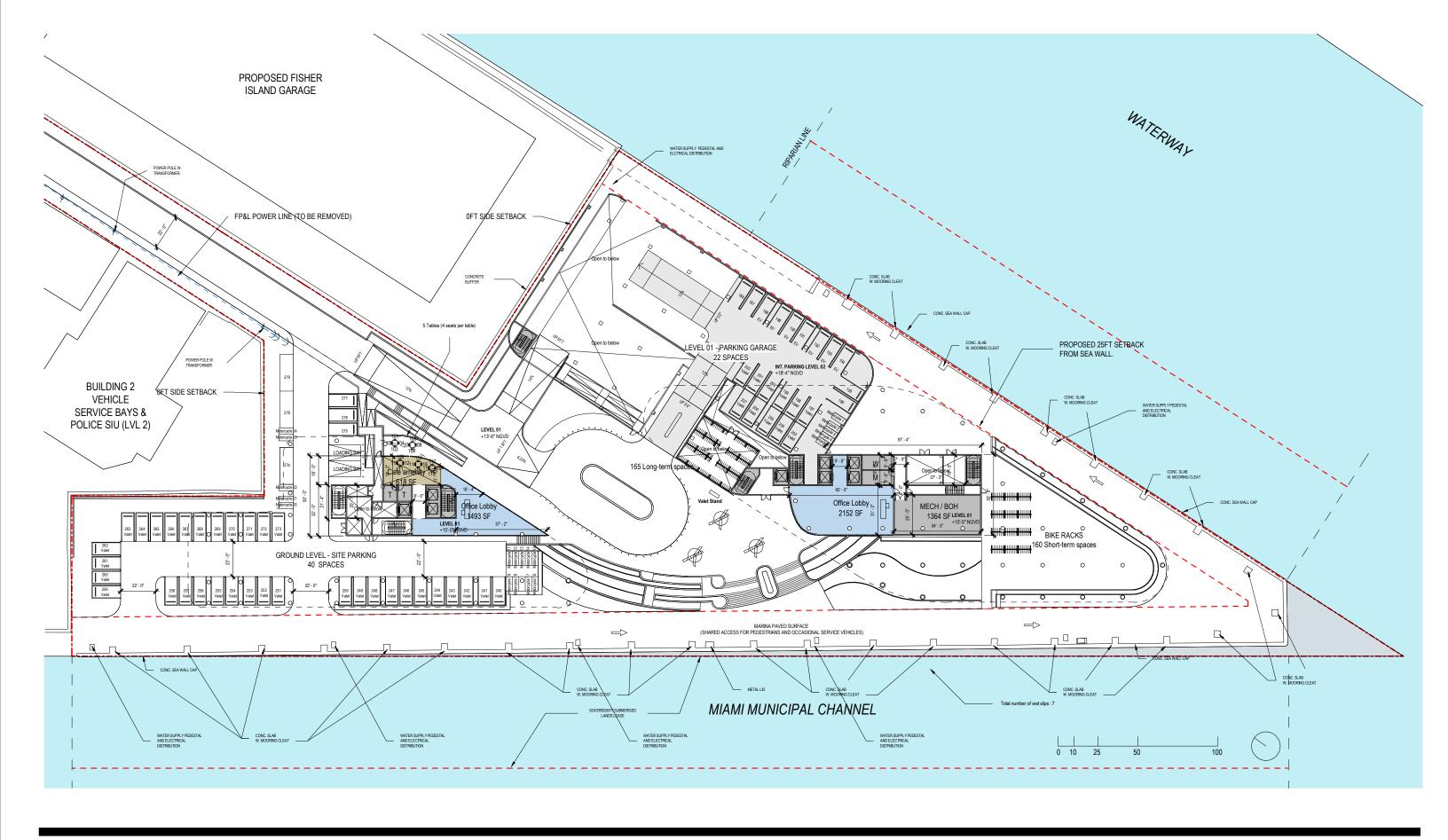
$$Q_m = Table Value = 0.1537$$

M = queue length which is exceeded 5% of the time [P(x>M)]

$$M = \frac{\ln P(x>M) - \ln(Q_m)}{\ln(\rho)} - 1 = \frac{\ln(0.05) - \ln(0.1537)}{\ln(0.6998)} - 1 = 2.15$$
, say 3 Vehicles on queue

The results of the analysis show that a total of ten valet attendants would be able to handle the inbound / outbound demand at the drop-off / pick-up area with approximately three vehicles in the queue during the PM peak hour of the generator. As the project is providing approximately 200 feet of storage (approximately nine vehicles) for the valet station, the queue will not extend past the drop-off / pick-up area. It should be noted that the queuing analysis considers the worst case scenario during the peak hours to ensure that the queue fits within the provided storage. Once operational the development can assess the actual need for valet attendants.


We stand ready to provide any support needed for this proposed project. Should you have any questions or comments, please call me at (305) 447-0900.


Sincerely,

Juan Espinosa, PE

Vice President – Transportation

w:\20\20129\response to comments nov 2020\valet queuing nov 2020\valet queuing analysis november 24 2020.docx

ARQUITECTONICA

2900 Oak Avenue, Miami, FL 33133 T 305.372.1812 F 305.372.1175

ALL DESIGNS INDICATED IN THESE DRAWINGS ARE PROPERTY OF ARQUITECTONICA INTERNATIONAL CORP. NO COPES, TRANSMISSIONS, REPRODUCTIONS OR ELECTRONIC MANIPULATION OF ANY PORTION OF THESE DRAWINGS IN THE WHOLE OR IN PART ARE TO BE MADE WITHOUT THE EXPRESS OF WRITTEN AUTHORIZATION OF ARQUITECTONICA INTERNATIONAL CORP. DESIGN INTENT SHOWN IS SUBJECT TO REVIEW AND APPROVAL OF ALL APPLICABLE LOCAL AND GOVERNMENTAL AUTHORITES HAVING JURISDICTION. ALL COPYRIGHTS RESERVED © 2019. THE DATA INCLUDED IN THIS STUDY IS CONCEPTUAL IN NATURE AND WILL CONTINUE TO BE MODIFIED THROUGHOUT THE COURSE OF THE PROJECTS DEVELOPMENT WITH THE EVENTUAL INTEGRATION OF STRUCTURAL, MEP AND LIFE SAFETY SYSTEMS. AS THESE ARE FURTHER REFINED, THE NUMBERS WILL BE ADJUSTED ACCORDINGLY.

PB FINAL SUBMITTAL 120 MACARTHUR CAUSEWAY MIAMI BEACH, FL, 33139

SCALE: 1: 640

Scenario - 1	
Scenario Name: F	roposed User Group:
Dev. phase: 1	No. of Years 0 to Project
Analyst Note:	
Warning: 1	he time periods among the land uses do not appear to match.

VEHICLE TRIPS BEFORE REDUCTION

Land Use & Data Source	Location	IV	Size	Time Period	Method	Entry	Exit	Total
Land Ose & Data Source	Location	IV	3126	Tillie Feriou	Rate/Equation	Split%	Split%	IUlai
710 - General Office Building	General	1000 Ca Ft CFA	160.93	Wooldon	Best Fit (LOG)	842	842	1684
Data Source: Trip Gen Manual, 10th Ed	Urban/Suburban	1000 Sq. Ft. GFA	160.93	Weekday	Ln(T) =0.97Ln(X) + 2.50	50%	50%	1084
710(1) - General Office Building	General	1000 Sg. Ft. GFA	160.93	Weekday, Peak Hour of Adjacent Street Traffic,	Best Fit (LIN)	153	25	178
Data Source: Trip Gen Manual, 10th Ed	Urban/Suburban	1000 3q. Ft. GFA	100.93	One Hour Between 7 and 9 a.m.	T = 0.94(X) + 26.49	86%	14%	1/0
710(2) - General Office Building	General	1000 Sg. Ft. GFA	160.93	Weekday, Peak Hour of Adjacent Street Traffic,	Best Fit (LOG)	29	150	179
Data Source: Trip Gen Manual, 10th Ed	Urban/Suburban	1000 Sq. Ft. GFA	160.93	One Hour Between 4 and 6 p.m.	Ln(T) =0.95Ln(X) + 0.36	16%	84%	1/9
930(2) - Fast Casual Restaurant	General	1000 Sg. Ft. GFA	7.23	Weekday	Average	1139	1139	2278
Data Source: Trip Gen Manual, 10th Ed	Urban/Suburban	1000 Sq. Ft. GFA	7.23	weekday	315.17	50%	50%	22/8
930(1) - Fast Casual Restaurant	General	1000 Sg. Ft. GFA	7.23	Weekday, Peak Hour of Adjacent Street Traffic,	Average	10	5	15
Data Source: Trip Gen Manual, 10th Ed	Urban/Suburban	1000 3q. Ft. GFA	7.23	One Hour Between 7 and 9 a.m.	2.07	67%	33%	15
930(3) - Fast Casual Restaurant	General	1000 Sg. Ft. GFA	7.23	Weekday, Peak Hour of Adjacent Street Traffic,	Average	56	46	102
Data Source: Trip Gen Manual, 10th Ed	Urban/Suburban	1000 Sq. Ft. GFA	7.23	One Hour Between 4 and 6 p.m.	14.13	55%	45%	102
930(4) - Fast Casual Restaurant	General	1000 Sg. Ft. GFA	7.23	Weekday, PM Peak Hour of Generator	Average	146	171	317
Data Source: Trip Gen Manual, 10th Ed	Urban/Suburban	1000 34. Ft. GFA	7.23	weekday, Fivi Feak Hour of Generator	43.79	46%	54%	31/

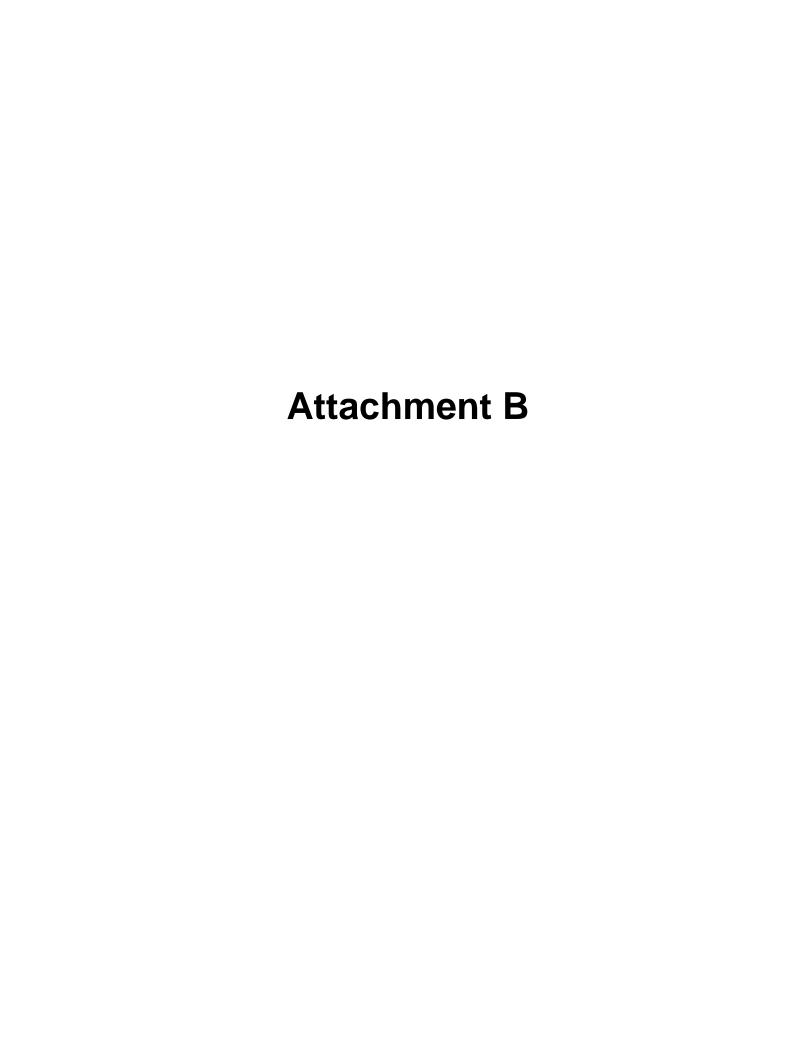
Generated By OTISS Pro v2.1

PM Peak Hour Trip Generation and Internalization

Terminal Island Miami Beach

Use PM adjacent split & ITE Daily rates LU 710 at 5:45 pm

Lan	Office d Use 710 ,932 Sq Ft		Restar Land U 4,830	se 930	
In	Out		In	Out	
9	48		146	171	374 ITE Trips
	UNBALAN	CED INTERI			
	4% 2	2	2% 3		
30% 3		3		3% 5	
	Office		Resta	ırant	
In	Out				
9	48		<u>In</u> 146	Out 171	374 Vehicle Trips
	BALANCI	ED INTERNA	ALIZATION		·
-3	<u>-2</u>		-2	-3	
-3	-2		-2	-3	-10 Internal
6	46 8.8%		144	168 1.6%	364 External Trips 2.7% % Internal
0	-1		-4	-5	-10 -3.0% Transit/Pedestrian
6	45		140	163	354
			0	0	0 0% Passby (Restau
6	45		140	163	354 Net New External Trips
1	5		140	163	309 Net New External Trips with 10% Office Trips


Land Use	1	91 Drive-in			Fast	93 Casual		ant	932 High-Turnover (Sit-Down) Restaurant							
Setting	General Subu		Center		Gen	eral Urba	n/Suburt	oan	General Urban/Suburban							
Time Period	riod Weekday		day Weekday		Weekday Weekday Saturday Weekday Saturda		Weekday Saturday		Sund	day						
Trip Type	Vehi	icle	Vehi	Vehicle		cle	Veh	icle	Vehi	cle	Veh	icle	Vehi	cle		
# Data Sites	18	3	1		1		1		38		2		2			
	AM	PM	AM PM		AM PM		AM PM		AM	PM	AM PM		AM PN			
12:00	0.0	11.0	0.1	11.8	0.2	13.9	0.0	8.3	0.5	12.0	0.3	7.5	1.6	9.7		
12:15	0.0	11.0	0.1	12.0	0.1	12.6	0.0	10.0	0.5	11.2	0.3	9.0	1.6	8.9		
12:30	0.0	11.0	0.1	12.8	0.1	11.6	0.0	10.7	0.4	10.4	0.2	9.1	0.9	7.8		
12:45	0.0	10.9	0.2	12.9	0.1	10.2	0.0	11.4	0.4	9.3	0.0	8.2	0.6	7.		
1:00	0.0	10.3	0.3	11.9	0.1	9.1	0.0	11.4	0.3	8.3	0.0	7.6	0.0	6.4		
1:15	0.0	9.5	0.2	12.0	0.0	7.9	0.0	10.9	0.1	7.2	0.0	6.6	0.1	6.3		
187,555	0.0	9.5	0.2	10.5	0.0	7.5	0.0	11.5	0.1	5.9	0.0	5.7	0.0	5.		
1:30						7.2										
1:45	0.0	9.4	0.1	10.3	0.0		0.0	10.2	0.2	5.2	0.0	5.9	0.0	4.		
2:00	0.0	9.5	0.1	9.7	0.0	6.7	0.0	9.4	0.2	4.4	0.0	4.9	0.0	5.		
2:15	0.0	10.2	0.1	8.0	0.0	6.3	0.3	8.7	0.3	4.0	0.0	3.7	0.0	5.		
2:30	0.0	10.1	0.1	8.7	0.0	5.2	0.3	8.4	0.2	3.7	0.0	4.6	0.0	5.		
2:45	0.0	9.6	0.1	9.5	0.1	5.5	0.3	8.1	0.2	3.4	0.0	4.2	0.0	5.		
3:00	0.0	9.5	0.0	10.0	0.1	5.7	0.5	8.0	0.2	3.6	0.0	4.3	0.0	4.		
3:15	0.0	9.5	0.0	11.4	0.1	5.6	0.2	7.8	0.2	3.6	0.1	4.4	0.0	3.		
3:30	0.0	9.4	0.1	10.9	0.1	6.7	0.2	8.2	0.2	4.1	0.1	3.7	0.0	3.		
3:45	0.0	9.3	0.2	9.6	0.0	6.7	0.2	10.6	0.2	4.6	0.1	4.2	0.1	3.		
4:00	0.0	9.3	0.3	9.2	0.0	7.9	0.0	11.1	0.2	5.2	0.2	4.6	0.1	4.		
4:15	0.0	9.0	0.3	8.4	0.1	9.0	0.0	11.6	0.2	6.1	0.1	5.4	0.1	4.		
4:30	0.1	8.8	0.2	7.1	0.1	9.8	0.2	11.3	0.2	6.9	0.1	6.0	0.1	5.		
4:45	0.0	8.8	0.3	5.8	0.2	10.6	0.2	11.4	0.2	7.9	0.1	6.7	0.1	6.		
5:00	0.1	8.5	0.4	4.1	0.3	11.0	0.2	11.7	0.5	8.9	0.1	8.5	0.2	6.		
5:15	0.1	7.5	0.4	2.5	0.3	11.7	0.2	12.1	8.0	9.5	0.3	9.7	0.4	6.		
5:30	0.1	6.2	0.6	1.9	0.3	11.9	0.0	11.3	1.0	9.8	0.3	10.6	0.4	6.		
5:45	0.3	4.7	0.9	1.7	0.2	12.1	0.0	10.0	1.3	10.0	0.2	11.5	0.3	6.		
6:00	0.4	3.4	1.1	1.6	0.2	11.9	0.0	9.0	1.3	9.9	0.2	11.5	0.4	7.		
6:15	0.7	2.3	1.2	1.4	0.2	11.9	0.0	8.9	1.5	9.8	0.2	11.8	0.3	8.		
6:30	1.0	1.6	2.0	1.3	0.2	11.3	0.1	10.4	1.6	9.5	0.4	11.8	0.5	8.		
6:45	1.3	1.0	3.2	1.3	0.3	10.1	0.1	9.5	1.7	8.9	0.8	11.1	0.7	9.		
7:00	1.8	0.6	3.8	1.0	0.3	9.2	0.2	8.8	2.1	8.3	1.2	9.5	1.2	8.		
7:15	3.2	0.3	5.0	8.0	0.5	7.6	8.0	8.0	2.2	7.5	1.9	7.8	1.5	8.		
7:30	4.8	0.1	5.4	0.7	0.7	6.9	0.6	6.4	2.8	6.9	2.5	6.8	1.9	7.		
7:45	5.7	0.1	5.2	0.4	0.7	6.2	0.6	6.2	3.1	6.6	2.8	6.3	2.4	6		
8:00	6.7	0.0	5.6	0.3	0.6	5.4	0.5	5.7	3.2	6.0	3.3	7.0	2.8	6.		
8:15	6.9	0.0	6.5	0.3	0.3	5.0	0.2	4.5	3.4	5.6	3.4	7.1	3.9	6		
8:30	7.1	0.0	7.1	0.3	0.2	4.0	0.2	5.0	3.2	5.0	3.8	7.1	5.0	5		
8:45	7.9	0.0	7.7	0.4	0.3	3.9	0.2	4.3	3.4	4.4	4.0	6.8	5.6	5		
9:00	8.6	0.0	8.2	0.4	0.7	3.2	0.2	4.5	3.6	4.0	4.3	6.0	6.5	4		
9:15	8.9	0.1	8.5	0.5	0.8	3.0	0.1	4.5	3.8	3.6	4.7	5.2	6.8	3		
9:30	9.5	0.1	8.4	0.3	0.9	2.2	8.0	2.7	4.0	3.2	5.5	4.7	7.7	3		
9:45	9.5	0.1	8.3	0.3	0.9	1.5	1.1	2.1	4.2	2.9	6.1	3.8	9.0	3		
10:00	9.6	0.1	8.4	0.3	1.0	0.9	1.3	0.9	4.7	2.5	6.0	3.0	10.0	2		
10:15	9.8	0.0	8.4	0.3	3.0	0.5	2.4	0.8	5.2	2.1	6.8	2.9	10.3	2		
10:30	9.6	0.0	9.8	0.3	4.9	0.4	3.2	0.8	6.3	1.7	6.3	2.2	9.7	2		
10:45	9.9	0.0	10.3	0.3	8.3	0.2	5.2	0.4	8.0	1.3	7.1	1.9	9.6	2		
11:00	10.2	0.0	11.1	0.3	11.4	0.2	7.5	0.6	9.3	1.0	8.3	1.7	9.3	1		
11:15	10.8	0.0	11.4	0.3	13.3	0.2	7.8	0.2	10.9	0.7	7.5	1.0	9.5	1		
11:30	11.1	0.0	10.8	0.3	14.8	0.2	7.5	0.2	11.9	0.7	7.8	0.8	10.2	1		
11:45	11.2	0.0	10.9	0.1	14.6	0.2	7.7	0.2	12.2	0.6	7.7	0.6	9.9	1		

ayed Time
Displayed
Beginning at
e Period
of Daily Traffic During the 60-Minute Period
During the
y Traffic
of Daily
Percent

294

Land Use		710 General Office Building																		
Setting	General			al Urbi	an/Sub	urban			Dense Multi-Use Urban					Center City Core						
Time Period	Wee	kday	Wee	kday	Satu	rday	Sun	day	Weel	kday	Satu	rday	Sun	day	Wee	kday	Satu	rday	Sun	day
Trip Type	Veh	icle	Per	son	Per	son	Pers	-	Pers	,	Per	_	Per	-	Per	son	Per	son	Per	son
# Data Sites	1		3		-		1		3		3		- 3		4			1	4	
	AM.	PM	AM	PM	AM	PM	AM	PM	AM I	PM	AM	PM	AM	PM	AM	PM	AM	PM	AM	PN
12:00	0.1	10.4	0.0	10.0	0.7	16.6	0.9	6.4	0.7	9.2	2.1	B.6	2.8	9.0	0.2	10.2	3.0	13.6	2.0	8.3
12:15	0.1	10.0	0.0	9.2	0.7	13.9	0.9	8.3	0.6	9.8	2.4	7.4	1.6	7.0	0.2	11.3	2.6	13.9	0.1	11.
12:30		-									-			5.5					0.1	11.
STATE OF STA	0.1	9.5	0.0	9.6	0.0	11.3	0.9	6.4	0.4	10.2	1.4	6.8	1.4	-	0.2	11.7	3.0	12.2	-	-
12:45	0.1	8.9	0.0	11.1	0.0	9.9	0.0	10.1	0.4	10.0	1.1	7.6	1.3	4.6	0.2	11.8	2.5	11.9	0.0	10
1:00	0.0	8.2	0.1	10.9	0.0	4.6	0.0	9.2	0.4	9.3	0.9	8.3	1.3	5.6	0.2	11.3	2.4	9.9	0.0	11.
1:15	0.0	7.7	0.2	11.0	0.0	2.6	0.0	7.3	0.2	8.5	0.5	9.0	0.9	6.4	0.2	10.7	1.8	9.2	0.1	9.
1:30	0.0	7.5	0.2	10.6	0.0	4.0	3.7	6.4	0.2	7.8	0.6	9.8	0.6	6.0	0.1	10.2	1.0	9.1	0.3	8.
1:45	0.0	7.5	0.4	8.5	0.0	4.0	3.7	2.8	0.2	7.7	0.5	10.9	0.5	8.0	0.1	9.3	0.7	8.1	0.4	8.
2:00	0.0	7.5	0.5	8.0	1.3	4.0	3.7	1.8	0.1	7.4	0.5	10.3	0.3	7.8	0.0	8.2	0.3	7.3	0.4	9.
2:15	0.0	7.6	0.5	7.3	1.3	4.0	3.7	0.9	0.1	7.0	0.3	8.9	0.3	8.1	0.1	7.4	0.2	6.2	0.3	9.
2:30	0.0	7.6	0.9	7.0	1.3	4.6	0.0	0.9	0.1	7.0	0.2	8.3	0.4	8.5	0.1	6.9	0.5	6.0	0.1	10
2:45	0.1	7.4	0.6	7.5	1.3	4.0	0.0	0.9	0.1	6.7	0.3	6.8	0.7	6.3	0.1	6.8	0.6	6.6	0.0	10
3:00	0.1	7.4	0.7	7.3	0.0	3.3	0.0	2.8	0.1	6.7	0.6	7.0	1.0	7.0	0.1	6.8	0.8	6.2	0.0	8.
3:15	0.1	8.1	0.6	7.7	0.0	4.0	0.0	2.8	0.2	7.4	0.7	6.7	1.3	7.1	0.1	6.7	0.8	5.9	0.1	6.
3:30	0.1	8.7	0.7	7.7	0.0	2.0	0.0	12.8	0.3	7.2	0.8	5.8	1.3	6.4	0.1	6.3	0.9	5.3	0.1	5.
3:45	0.2	9.7	0.5	7.5	0.0	4.0	0.0	14.7	0.3	7.5	1.1	5.2	1.9	7.1	0.0	5.8	0.7	4.7	0.1	5.
4:00	0.2	10.1	0.5	7.8	0.0	7.3	0.0	13.8	0.4	7.9	1.5	4.5	2.7	5.7	0.0	5.7	0.7	4.6	0.1	6.
4:15	0.2	11.4	0.7	10.0	1.3	11.3	0.0	15.6	0.5	9.7	2.2	5.0	3.8	4.3	0.0	6.5	0.7	5.0	0.0	7.
4:30	0.2	11.7	0.7	9.9	1,3	13.2	0.0	6.4	0.6	10.3	2.4	4.9	4.2	3.5	0.1	6.9	0.5	5.0	0.0	7.
4:45	0.1			9.8		-		-				-		3.4		7.4	0.6	5.0	0.1	-
5:00		11.4	0.9	_	1.3	11.9	0.0	7.3	0.6	10.3	2.4	4.2	4.0		0.1		-	-	****	7.
1000000	0.2	10.4	0.9	9.4	1.3	8.6	0.0	7.3	0.8	10.0	2.0	3.7	3.5	3.6	0.1	8.0	0.5	4.6	0.7	7.
5:15	0.6	7.3	1.1	6.0	1.3	10.6	0.9	7.3	0.9	7.7	2.1	2.3	2.6	3.4	0.2	8.1	0.5	3.6	8.0	5.
5:30	0.9	5.3	8.0	5.2	1.3	10.6	0.9	7.3	1.1	7.1	2.7	1.6	3.4	4.2	0.3	8.5	0.6	3.3	1.3	7.
5:45	1.6	3.4	1.0	4.3	1.3	9.9	0.9	4.6	1.2	6.1	3.0	1.7	3.5	3.8	0.4	8.4	0.9	2.6	1.2	7.
6:00	2.2	2.4	1.0	3.4	2.0	9.9	1.8	3.7	1.7	5.3	4.6	1.6	3.4	4.2	0.5	7.6	3.4	3.1	1.5	6.
6:15	3.0	2.1	1.3	2.8	1.3	2.6	5.5	2.8	2.1	4.0	5.0	2.2	4.8	4.5	0.6	6.7	4.5	3.0	1.5	6
6:30	3.6	1.7	1.8	2.0	1.3	2.6	5.5	1.8	2.6	3.1	5.5	2.5	4.7	4.2	0.9	5.8	4.9	2.9	2.0	3
6:45	5.0	1.6	2.0	1.4	2.6	3.3	6.4	1.8	3.6	2.6	6.2	2.6	5.6	4.1	1.2	5.4	4.7	3.2	2.3	2
7:00	7.0	1.7	2.9	1.8	4.0	4.0	6.4	1.8	4.3	2.0	5.9	2.5	6.0	3.2	1.7	4.9	2.8	3.0	2.3	2
7:15	8.9	1.3	4.0	1.4	7.9	4.6	2.8	1.8	5.5	1.9	6.6	2.1	5.1	3.2	2.5	3.9	2.8	2.9	3.2	2
7:30	10.5	1.4	4.6	1.4	9.3	2.6	3.7	4.6	6.5	1.6	6.3	2.3	5.2	3.3	3.4	3.2	3.6	2.8	3.5	2
7:45	10.2	1.1	6.0	1.1	13.9	2.0	3.7	6.4	7.4	1.4	6.1	2.3	4.5	3.3	4.6	2.2	4.7	2.4	3.7	3
8:00	8.8	1.0	7.9	0.7	12.6	2.0	4.6	5.5	9.4	1.3	7.5	1.9	5.4	2.9	6.6	1.7	5.4	2.0	3.7	3
8:15	7.3	1.0	9.4	1.0	7.9	1.3	4.6	4.6	11.0	1.2	7.0	1.6	6.6	2.5	9.1	1.4	6.0	2.0	4.7	4
8:30	6.0	1.0	10.4	-	7.9	1.3	3.7	1.8	11.6	1.0	7.1	1.2	5.9	2.0	11.1	1.2	6.3	1.8	6.2	4
8:45	5.2	-	10.6	-	5.3	1.3	7.3	0.0	11.3	1.1	7.4	1.2	5.8	1.5	12.5	-	6.4	1.6	6.8	2
9:00	5.4	1.0	9.6	1.2	4.6	0.0	6.4	2.8	9.5	1.1	5.9	1.6	5.4	1.7	12.5	_	6.9	1.6	7.2	2
9:15	5.4	1.7	8.3	0.9	6.0	0.0	8.3	2.8	7.6	0.9	6.7	1.7	-	-	11.1	-	6.4	1.5	6.3	1
9:30	5.9	-	_		-	1		-	-	1.2	-	-	4.1	1.8	-	-	-	2.0	1	0
	-	1.5	7.6	0.9	5.3	0.0	8.3	2.8	6.6		6.8	1.8	4.9	1.9	9.3	1.0	6.2	-	5.5	-
9:45	6.0	1.3	7.0	0.9	4.0	0.7	5.5	2.8	5.9	1.1	6.4	1.9	5.2	2.3	7.4	0.8	7.0	2.1	6.7	0
10:00	5.9	1.2	6.6	0.7	4.6	0.7	6.4	1.8	5.3	1.1	6.8	2.1	4.2	3.0	5.9	0.7	6.9	1.8	6.7	1
10:15	6.2	0.5	6.2	0.6	4.0	0.7	3.7	4.6	5.3	1.0	7.6	2.1	5.7	3.7	4.9	0.6	8.0	-	7.0	1
10:30	6.3	0.5	6.3	0.6	4.6	2.6	6.4	4.6	5.0	0.7	7.9	2.0	5.5	3.6	4.3	0.5	8.6	-	5.9	-
10:45	7.8	0.4	6.6	0.4	4.0	2.0	11.0	4.6	-	0.7	8.5	2.0	5.2	4.1	4.9	0.4	7.4	-	5.1	12
11:00	8.4	0.4	7.7	0.2	6.0	2.0	10.1	2.8	5.4	0.6	8.0	1.5	6.7	3.4	5.5	0.4	7.5	1.9	5.9	12
11:15	9.2	0.1	9.9	0.2	10.6	2.0	11.0	0.0	6.4	0.7	8.5	1.5	7.4	4.0	6.4	0.3	8.1	2.7	6.2	1
11:30	9.9	0.1	10.1	0.2	11.9	0.7	11.0	0.0	7.2	0.8	9.1	2.2	9.3	4.0	7.7	0.4	9.4	2.6	7.0	1
11:45	9.8	0.1	10.5	0.1	12.6	0.7	4.6	0.9	8.1	0.8	8.5	2.1	10.3	3.1	8.6	0.3	10.6	3.1	8.7	

Grand Beach Hotel

Date: July 20,2011 Observer: J. Espinosa (DPA)

Vehicle In		04	Tyma	Aunival Time	Processing	Notes				
v enicie In		Out	Type	Arrival Time	Time	Notes				
1		Х	Car	8:34 AM	0:00:37	Valet Return				
2		Х	Car	8:35 AM	0:01:06	Valet Return				
3		Χ	Car	8:36 AM	0:00:25	Valet Return				
4		Χ	Car	8:36 AM	0:00:38	Pick Up (Personal)				
5	Χ		Car	8:41 AM	0:00:18	Guest In				
6		Χ	Car	8:45 AM	0:00:30	Valet Return				
7	Χ		Car	8:52 AM	0:01:17	Check In				
8		Χ	Car	9:02 AM	0:01:46	Check Out				
9	Χ		Car	9:04 AM	0:01:01	Check In				
10	Χ		Car	9:05 AM	0:00:51	Check In				
11		Χ	Van	9:06 AM	0:00:32	Tour				
12		Χ	Taxi	9:09 AM	0:00:26	Guest Out				
13	X		Car	9:09 AM	0:02:34	Check In				
14		Χ	Car	9:10 AM	0:00:26	Valet Return				
15		X	Car	9:11 AM	0:00:37	Valet Return				
16	Х	^	Car	9:14 AM	0:00:28	Guest In				
17	^	Х	Car	9:14 AM	0:00:28	Valet Return				
18	Χ	^	Car	9:18 AM	0:01:02	Check In				
19	^	X	Car	9:18 AM	0:00:36	Valet Return				
20		X	Taxi	9:21 AM	0:00:30	Guest Out				
20		X	Car	9:21 AM	0:00:22	Check Out				
22		X	Car	9:22 AM	0:00:44	Valet Return				
23	Х	^	Car							
	^	V		9:25 AM	0:01:21	Check In				
24		X	Car	9:25 AM	0:01:06	Valet Return				
25		X	Car	9:26 AM	0:00:23	Valet Return				
26		X	Car	9:28 AM	0:00:25	Valet Return				
27		X	Car	9:29 AM	0:00:22	Valet Return				
28		X	Car	9:29 AM	0:00:21	Valet Return				
29	.,	Х	Car	9:34 AM	0:00:46	Valet Return				
30	X	.,	Car	9:38 AM	0:01:04	Check In				
31		X	Car	9:38 AM	0:00:36	Valet Return				
32		X	Car	9:39 AM	0:00:21	Valet Return				
33		X	Car	9:41 AM	0:00:34	Guest Out				
34		X	Car	9:43 AM	0:00:14	Valet Return				
35		Χ	Car	9:45 AM	0:02:04	Check Out				
36	Х		Car	9:45 AM	0:01:20	Check In				
37		Χ	Taxi	9:48 AM	0:00:48	Check Out				
38		Χ	Car	9:49 AM	0:00:26	Guest Out				
39		X	Car	9:49 AM	0:00:48	Valet Return				
40	Χ		Car	9:51 AM	0:00:37	Check In				
41		X	Car	9:51 AM	0:00:30	Valet Return				
42		X	Car	9:57 AM	0:00:28	Valet Return				
43		X	Car	9:58 AM	0:01:22	Check Out				
44		X	Car	10:02 AM	0:00:32	Valet Return				
45		X	Car	10:03 AM	0:00:35	Valet Return				
46		X	Van	10:04 AM	0:00:46	Valet Return				
47	Χ		Car	10:06 AM	0:00:39	Check In				
48		Χ	Car	10:08 AM	0:01:58	Check Out				
49		X	Taxi	10:08 AM	0:01:48	Check Out				
50		Χ	Car	10:09 AM	0:00:41	Valet Return				
51		Χ	Car	10:10 AM	0:00:44	Valet Return				
52		Χ	Car	10:12 AM	0:00:26	Valet Return				
53	X		Taxi	10:13 AM	0:00:42	Check In				
54		Χ	Taxi	10:14 AM	0:02:21	Check Out				
55			Taxi	10:16 AM	0:01:48	Check Out				
56		Χ	Car	10:18 AM	0:00:37	Valet Return				
57		Χ	Car	10:18 AM	0:00:56	Valet Return				
58	X		Car	10:20 AM	0:00:40	Guest In				
59		Χ	Car	10:24 AM	0:00:57	Valet Return				

Total Processing Time: 0:50:10
Average Processing Time: 0:00:51

location, a 5% probability of back-up onto the adjacent street is judged to be acceptable. Demand on the system for design is expected to be 110 vehicles in a 45-minute period. Average service time was expected to be 2.2 minutes. Is the queue storage adequate?

Such problems can be quickly solved using Equation (8-9b) given in Table 8-10 and repeated below for convenience.

$$M = \left[\frac{\ln P(x > M) - \ln Q_M}{\ln \rho} \right] - 1$$

where:

M = queue length which is exceeded p percent of the time

N = number of service channels (drive-in positions)

Q = service rate per channel (vehicles per hour)

$$\rho = \frac{\text{demand rate}}{\text{service rate}} = \frac{q}{NQ} = \text{utilization factor}$$

q = demand rate on the system (vehicles per hour)

 Q_M = tabled values of the relationship between queue length, number of channels, and utilization factor (see Table 8.11)

TABLE 8-11
Table of Q_M Values

N = 1 0.0000 .1000 .2000	2 0.0000 .0182	0.0000 .0037	<i>4</i> 0.0000	6	8	10
.1000	.0182		0.0000			
		0027				
.2000		.0037	.0008	.0000	0.0000	0.0000
	.0666	.0247	.0096	.0015	.0002	.0000
.3000	.1385	.0700	.0370	.0111	.0036	.0011
.4000	.2286	.1411	.0907	.0400	.0185	.0088
.5000	.3333	.2368	.1739	.0991	.0591	.0360
.6000	.4501	.3548	.2870	.1965	.1395	.1013
.7000	.5766	.4923	.4286	.3359	.2706	.2218
.8000	.7111	.6472	.5964	.5178	.4576	.4093
.9000	.8526	.8172	.7878	.7401		.6687
1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	.4000 .5000 .6000 .7000 .8000	.4000 .2286 .5000 .3333 .6000 .4501 .7000 .5766 .8000 .7111 .9000 .8526	.4000 .2286 .1411 .5000 .3333 .2368 .6000 .4501 .3548 .7000 .5766 .4923 .8000 .7111 .6472 .9000 .8526 .8172	.4000 .2286 .1411 .0907 .5000 .3333 .2368 .1739 .6000 .4501 .3548 .2870 .7000 .5766 .4923 .4286 .8000 .7111 .6472 .5964 .9000 .8526 .8172 .7878	.4000 .2286 .1411 .0907 .0400 .5000 .3333 .2368 .1739 .0991 .6000 .4501 .3548 .2870 .1965 .7000 .5766 .4923 .4286 .3359 .8000 .7111 .6472 .5964 .5178 .9000 .8526 .8172 .7878 .7401	.4000 .2286 .1411 .0907 .0400 .0185 .5000 .3333 .2368 .1739 .0991 .0591 .6000 .4501 .3548 .2870 .1965 .1395 .7000 .5766 .4923 .4286 .3359 .2706 .8000 .7111 .6472 .5964 .5178 .4576 .9000 .8526 .8172 .7878 .7401 .7014

 $[\]rho = \frac{q}{NQ} = \frac{\text{arrival rate, total}}{(\text{number of channels})(\text{service rate per channel})}$

N - number of channels (service positions)

Solution

Step 1:
$$Q = \frac{60 \text{ min/hr}}{2.2 \text{ min/service}} = 27.3 \text{ services per hour}$$

Step 2:
$$q = (110 \text{ veh/}45 \text{ min}) \times (60 \text{ min/hr}) = 146.7 \text{ vehicles per hour}$$

Step 3:
$$\rho = \frac{q}{NQ} = \frac{146.7}{(6)(27.3)} = 0.8956$$

Step 4:
$$Q_M = 0.7303$$
 by interpolation between 0.8 and 0.9 for $N = 6$ from the table of Q_M values (see Table 8-11).

Step 5: The acceptable probability of the queue, M, being longer than the storage, 18 spaces in this example, was stated to be 5%. P(x > M) = 0.05, and:

$$M = \left[\frac{\ln 0.05 - \ln 0.7303}{\ln 0.8956} \right] - 1 = \left[\frac{-2.996 - (-0.314)}{-0.110} \right] - 1$$

= 24.38 - 1 = 23.38, say 23 vehicles.