Date: January 04, 2019
Response Miami Beach Planning Department: DRB 18-0323
Project: I8I9 4354 Alton Road Residence (South Lot)
4354 Alton Road Miami Beach Florida 33139

I. Application Comments

a. Refer to comments posted by Monique Fons. Any application Comments are to be addressed no later than 12/19/2018.
Response: Noted.

2. Design / Appropriateness Comments

a. Pool Deck dimension from setback is inaccurate - pool deck setback minimum 7'-6". Response: Please see Sheet A2.01 Level 1 Floor Plan for accurate pool deck setback. b. A0.11 - Open space at front to be calculated at 20'-0' front yard setback diagram incorrect. However, Front Yard Area and Required SF appears to account for 20' setback. Graphically incorrect.
Response: Please see for revised Sheet A0.1 1 Open Space Diagram at 20' from property, which complies at 51%.
c. Portions of covered balcony structure that exceeds 6'-0" count toward unit size Response: Please see Sheet A2.02 for balcony dimensions not exceeding 6'-0'".

3. Zoning / Variance Comments

a. Lot coverage shall be revised to include covered area enclosed on 3 sides at the front entrance. (Reviewed and discussed with Michael Belush). This would require a waiver for the second floor area ratio. Advise if plans would be modified to comply with lot coverage below 25% at the time of the building permit or a waiver will be requested.
Response: Please see Sheet A0.10 for revised Lot Coverage Diagram.
b. Open space in the front yard applies only to the first $20^{\prime}-0^{\prime}$ of the property. Revise diagram.
Response: See Sheet A0. 11 for revised Open Space Diagram at 20' from property, which complies at 51%.
c. Unit size diagram and calculations shall be revised to include portions of covered balconies exceeding 6'-0" at the second floor. May reduce balcony slab or reduce the roof above.
Response: Please see Sheet A2.02 for balcony dimensions not exceeding 6'-0", therefore no need to revise unit size.
d. Include in unit size of first floor portion of the covered rear terrace (5 " strip)within recessed entry area exceeds $10^{\prime}-0$ " from the building. This area shall be added to unit size or modify the project.
Response: Please see Sheet A0.01 AND A0.09 for revised unit size; covered terrace does not exceed 10'.
e. Pool deck shall be setback 7'-6" from the side property line.

Response: Please see Sheet A2.01 for accurate pool deck setback.

MATERIAL SPECIFICATION

Chain Link - 6^{\prime} High $\times 23 / 8^{\prime \prime}$ diamond $\times 11.5$ gauge KK
Ties $-12 \mathrm{ga} \times 7$ Steel, 4 per post
Line Post Spacing - 10°
Line Post - $15 / 8 \times 8^{\prime}$ Gate post, Wall Thickness .080
Brace Post - $15 / 8 \times 8$ Gate post, Wall Thickness, 095
POST INSTALLATION
All posts are driven into the ground two feet with a pneunatic post driver

PANEL DESCRIPTION
Chain Link: 11 1/2 ga $\times 2$ 3/8" Mesh Gaivanized Chain Link
Frame Work: $13 / 8$ " diameter . 065 "wall gaivanized tube
Panel Clamp: $13 / 8^{\prime \prime} \times 13 / 8^{\prime \prime}$ Heavy duty stee! panei clamp

- PANEL STAND -

PANEL STAND DESCRIPTION
Frame: $13 / 8^{\prime \prime}$ dalmeter :065" wall steel tubing
Cross Member: $5 / 8^{\prime \prime} \times 17^{7}$ steel
Pegs: $3 / 8^{\prime \prime} \times 6^{\prime \prime}$ sch40

- SAND BAGS -

Two 60 ib tubular sand bags placed on each end of the panel stand

- Fiofida Environmental Engineering, inc.

COATRACTOR SHALI CALI FOR LOCAIION

KETCH
OF UNDEREROMDD ULUFES
guctiate ONECAL 1-400-432.4770

alton road
OFFICE COPY VMFY OF RIIAMI BEACH APDROWED FOR PERMIT BY WHE FOLOWING:

(pictures) and/or postmg of sidewalkfroadway bonds . \quad ZCNINO: (Pubilic Works inspection of the right-of-way will be required prior PL LMBING: final sign-off on the C.C. 1 C.O., or the release of bonds.) ELECTRICAL: MECHANICAL: Dateh L 2 ¹ E E PREVENTION: FOOD:
PUBLIC WORKS:
STRUCTURAI
ELEVATOR

PROPERTY ADDRESS: 4354. ALTON RD., MIAMI BEACH, FL. 33140 CERTIFIED TO: GARY PRINCE; ROSEMTHAL ROSENYHAL RASCOKAPLAN, LLC; OLD REPUBLIC.C. NATIONAL TITLE INSURANCE COMPANY.
LEGAL DESCRIPTION:LOTS $20 . \& 21$ \qquad

OF :- NAUTILUS
BLOCK
SUBDIVISION
ACCORDING TO THE PLAT THEREOF AS RECORDED IN PLAT BOOK 8. SATPAGE 95 vक
OF THE PUBLIC RECORDS_MIAMI-DADE
COUNTY, FLORIDA
多

ABGREVIATIONS:

 SURVEYOR'S NOTES: 1) OWNERSHIP SUBJECT TO OPINION OF TTTLE 2) NOT VALID. WTHOUT THE SIGNATURE
AND RAISED SEALOFAFLORIDA LICENSED SURVEYOR AND MAPPER. 3) THE SURVEY DEPICTED HERE IS NOT AND RASED SEAL OF A FLORIDA LICENSED SURVEYOR AND MAPPER. 3) THE SURVEY DEPICTED HEREIS NO
COVERED BY PROFESSIONAL LIABLITY NSURANCE 4) LEGAL DESCRIPTION PROVIDED BY CUENT 5)
 VERTICAL DATUM OF 1929 . Th OUNERSHP OF FENCES ARE UNKNOWN. B) THERE MAY BE ADDITIONAL RESTRICTIONS NOT SHOWNONTHISTHRITY PRIOR. TO ANY DESIGN WORK FOR BULLING AND ZONING IIFORMATION. AOP EXAMINATION OF THE ABSTRACTOFTTLE WLLL HAVE TO EE MADE TO DETERMINERECORDED INSTRUMENTS, IF ANY, AFFECTING THIS PROPERTY

Additions or deletions to survey maps or reports by other thanar the signing party or parties is probibited | Without written consent of the sigung party or parties. |
| :--- |
| BEARINGS WHEN SHOWN AREREFERREDTO AN ASSUMED VALUE OF SAID PB: 8 |

 adopted by the STATE OF FLORIDA Board of Land
Surveyors pursuand to Section 472.027 Florida
Slater Surveyors
Slatus.
There are

appearligg on the plal
as showf hereon.

$$
\begin{aligned}
& \text { I HEREBY CERTHYY That the survey represenied }
\end{aligned}
$$

BLANCO Sin

> VEYORS INC:

MIAMI BEACH: FL 33141

 mall: blancosurveyorinice eyahoo.com Fax: (305) 865-7810
$B 1403916$
UTU- \quad 4354 Alton Rd. Office Copy

COUNTY
ORDINANC: 89-95
miamidade.gov
ATLAS PAGE: B-T1 INV\#: . FORM \#: 201547780 OATE: 2/9/2015

This form acknowledges compliance on the part of the following with the requirements in accordance with Miami-Dade County's Ordinance number 89-95.
 THIS FORM IS VALID ONLY WHEN ACCOMPANED BY A STAMPED 'PAID' COPY OF INVOICE NO.

Approved By:

New Business Office
Miami~Dade Water \& Sewer Dept
P.O. Ex 330316

Miami, Fl 33233-03136

EDWARD HARDYMAN GOMEZ RHIANON M PEDRO
4354 ALTON RD
MIAMI 8EACHFL 33139

Total Estimated Fees

$\$ 60,00$

For your convenience, payment is accepted at any of the offices listed below:

miamidade.gov
ATLAS PAGE: B - 11 INV\#. \quad FORM\# \quad 201547780 DATE: \quad 2/9/2015

This form acknowledges compliance on the part of the following with the requirements in accordance with Miami-Dade County's Ordinance number 89-95.

Name of Owner: RHIANON PEDRO

Mailing:				
Address:	4354 ALTON RD			
City, State, Zip:	MIMI BEACH		FL	

Property Address: 4354 ALTON RD
Property Legal $\quad 22-275342$ NAUTILUS SUB PB 8-95 LOTS 20 \& 21 BLK 6 Description:

02-3222-011-1430
Proposed usage /
SER PER PLANS
No. of Units:
REPLACES:
Previous Usage /
Gallons per Day:

SER PER PTXA

0

PREVIOUS FLOW:	320	PREVIOUS SQUARE FOOTAGE:	4,563	N NEW CONSTRUCTION
PROPOSED FLOW:	320	PROPOSED SQUARE FOOTAGE:	4,091	\square INTEROR RENOVATION

Municipality:
Water Service Area: Miami Beach
Sewer Service Area: Miami Beach

THIS FORM IS VALID ONLY WHEN ACCOMPANIED BY A STAMPED 'PAID' COPY OF INVOICE NO.

Approved By:

CONTACT NAME: KATEOPPENHEIMER
CONTACT PHONE: (786) 253-5704
Approved By

MIAMIDADE

Fee Sheet
COUNTY

New Business Office

Mami-Dade Water \& Sewer Dept
P.O. BoX 330316

MiamI, FE 33233-0316

EDWARD HARDYMAN GOMEZ RHIANON M PEDRO
4354 ALTON RD
MIAMI BEACH FL 33139

Note:
ORD FEES FOR A 4091 SF SFR @ 4354 ALTON RD FOLIO $\# 02-3222-011$ 1-1430

ER Water
ER Sewer
Agreement lo

Total Estimated Fees

$\mathbf{\$ 6 0 . 0 0}$
 $\$ 60.00$

Building Department
1700 Convention Center Drive, and Fir
Miami Beach, Fl 33139

NOTICE TO THE CITY OF MIAMI BEACH BUILDING DEPARTMENT OF EMPLOYMENT AS SPECIAL INSPECTOR UNDER THE FLORIDA BUILDING CODE

I have been retained by: \qquad to perform special inspector services undo the Florida Building Code at the \qquad 4354 Alton Road project on the below listed st
 11/23/2015 (date). I am a professional engineer licensed in the State of Florida.

Process Number: Master Permit (IF APPLICABLE): PROCESS No. B1501641


```
O Special Inspector for Pilings, FBC 1822.1.20 (BY SOIL ENGINEER)
O Special Inspector for Lightweight Insulating Concrete, FBC 1917.2
O Special Inspector for Soil Compaction, FBC 1820.3.1 (BY SOIL ENGINEER)
O Special Inspector for Precast Units and Attachments, FBC 1927.12.2 (By P.E. or R.A..)
X Special Inspector for Reinforced Masonry, FBC 2122.4 (By P.E or R.A)
X Special inspection for Steel Bolted & Welded Connections, FBC 2218.2 (By P.E. or R.A..)
O Special Inspector for Trusses over }35\mathrm{ feet long or }6\mathrm{ feet high, FBC 2319.17.2.4.2 (By P.E. or R. A..)
X Special Inspector for Grouting
```

NOTE: Only the marked boxes apply.
The following individual's employed by this firm or me are authorized representatives to perform inspections

1. Juan Femandez-Barquin, P.E,
2. Ricardo Solano
3. Ricardo Valdes
4. Carlos Alvarez

* Special inspectors utilizing authorized representatives shall insure the authorized representative is qualified by education or licensure to perform the duties assigned by the Special inspector. The qualifications shat include: licensure as a professional engineer or architect; graduation from an engineering education program in civil or structural engineering; graduation from an architectural education program; Successful completion of the NCEES Fundamentals Examination; or registration as a building inspector or general contractor.
I will notify the City of Miami Beach Building Department of any changes regarding authorized personnel performing inspection services.
I, understand that all mandatory Inspections, as required by the Florida Building Code, shall ba raquested by the permit holder and approved by tba Building Department inspectors. Inspections performed by the Special inspector hired by the Owner are in addition of the mandatory inspections performed by the Bulling Department. A Special Inspection Log for each building must be displayed In a convenient location on the site for inspection by the Building Department Inspectors. Further, upon completion of the work under each building perrin, I will submit to the Building Department at the time of final inspection the compteled Inspection Log form and sated statement that, to the best of my knowledge, belief and professionaljutigment those portions outlined above meet the intent of the Florida Building Code and are in subsequent accordance with the approved plans.

Architect/Engineer Signalure:
Archilect/Engineer Name Printed:

Address:
Phone Number: \qquad Owner l Agent Signature:

Owner/ Agent Name Printed: EdwArd H. GOMez RHIANON M PENR-

Building Department Accepted by:

NOTICE TO THE CITY OF MIAMI BEACH BUILDING DEPARTMENT OF EMPLOYMENT AS SPECIAL INSPECTOR UNDER THE FLORIDA BUILDING CODE

I have been retained by： 3 Design Inc． \qquad to perform special inspector services under the Florida Building Code at the 4354 Alton Road \qquad project on the below listed sticichites as of 10／26／2015（date）．I am a professional engineer licensed in the State of Florida．

Process Number： Master Permit（IF APPLICABLE）：

Q	Special Inspector for Pilings，FBC 1822．1．20
O	Special Inspector for Lightweight Insulating Concrete，FBC 1917．2
（3）	Special Inspector for Soil Compaction，FBC 1820．3．1
O	Special Inspector for Precast Units and Attachments，FBC 1927．12．2（By P．E．or R．A．．）
O	Special Inspector for Reinforced Masonry，FBC 2122．4（By P．E or R．A）
O	Special inspection for Steel Bolted \＆Welded Connections，FBC 2218．2（By P．E．or R．A．．）
O	Special inspector for Trusses over 35 feet long or 6 feet high，FBC 2319．17．2．4．2（By P．E．of R．A．．）
O	Special Inspector for

NOTE：Only the marked boxes apply．

The following individual＇s employed by this firm or me are authorized representatives to perform inspections
1．Wissam Naamani，P．E．
2.
3.
4.
＊Special inspectors utilizing authorized representatives shall insure the authorized representative is qualified by education os licensure to perform the duties assigned by the Special inspector．The qualifications shall include：化ensure as a professional engineer or architect：graduation from an engineering education program in civil or structural engineering：graduation from an architectural education program；successful completion of the NCEES Fundamentals Examination；or registration as a bulking inspector or general contractor．

I will notify the City of Miami Beach Building Department of any changes regarding authorized personnel performing inspection services．
 Departiwnt inspectors．Inspections performed by the Special inspector hired by the Owner ave in addition to the mandatory inspections performed by the Bulthlng Dopatiment A Special inspection Log for each building must be displayed in o convenient location on the stile for inspection by the Butiking Deparknant Inspectors．Further，upon completion of the work under bath building permit，I witt subsitit to the Eliding Depatitrent at the lime of final inspection the completed

DRAINAGE CALCULATIONS
 FOR PROPOSED SINGLE FAMILY RESIDENCE AT 4354 ALTON ROAD, MIAMI BEACH

PREPARED BY: SAMABI GROUP INC. PREPARED FOR: 3DESIGN ARCHITECTURE

Project Name:
Project Type:
Locatlon:
D:signed By:
Revlewed By:
Date:

Now Residence for 4354 Alton Road
Single Farmily
4354 Alton Road, Mlaml Beach, FL 33139
Stanley Fardin, PE
S. Fardln

8/3/2015

IRENCH DATA			
Trench Width	(feet)	w	74.00
Hydraulle Conductlvity		K	11.75E-04
Lowest Grate Elev.	(feet)	GE	- 4.35
Trench Top Elevation	(feet)	TE	3.35
Trench Bottorn Elevatlon	(feet)	日E	-10.65
Plpe Dlameter	(inches)	D	12
Depth to Water Table	(feet)	H_{2}	2.28
Non-Saturated Trench Depth	(feet)	D_{u}	1.28
Saturated Trench Depth	(feet)	D_{5}	12.72
Total Trench Depth	(feet)	H	15.00
Storage in Trench	$\left(\mathrm{ft}^{3} / \mathrm{ft}\right)$	s	
Trench Exflltration Rate	(efs/ft)	E_{1}	9.09E-02
Cover on Pipe	(feet)		Tris
Top of Pipe Elevation	. . (feet)	top	2.35
Bottom of Pipe Elevation	(feel)	Pinv	1.35
Percent of Pipe above Water	\%		0.28

NOTES:

1. تhaded cells denote data requtred
2. For self-conained systems without control structure Top of trench $=$ Weir Elev.

```
SCS PROGRAM
```

PROJECT NAME : NEW RESIDENCE AT 4354 ALTDN RD
REVIEWER : STANLEY FARDIN, PE
PROJECT AREA : . 29 ACRES
GROUND STORAGE . . . : 1.30 INCHES
TERMINATION DISCHARGE : 100.00 CFS
OISTRIBUTIDN TYPE . . : SFWMD
RETURN FREQUENCY . . : 5.00 YEARS
RAINFALL DURATIDN . . : 1-OAY
24-HOUR RAINFALL . . : 7.50 INCHES
REPORTING SEQUENCE . : STANDARDIZED

STAGE	STORAGE	OISCHARGE
(FT)	(AF)	(CFS)

4.35	$\because .15$.00
4.75	.20	.00
5.00	.23	.00
5.25	.26	.00
5.50	.0 .29	.00
	.00	
5.75		.32
6.00	.35	.00
6.25	.00	
6.50	.	.00
6.75	.	.00
	.44	.00
		.00

Page 1

TAPE 7

12.00	4.92	3.64	1.5	.1	.1	.0	.0	.0	2.09
12.50	5.47	4.17	.3	.1	.1	.0	.0	.0	2.83
13.00	5.75	4.44	.2	.1	.1	.0	.0	.0	3.06
14.00	6.14	4.81	.1	.1	.1	.0	.0	.0	3.34
16.00	6.60	5.26	.1	.1	.1	.0	.0	.0	3.67
20.00	7.14	5.79	.0	.1	.1	.0	.0	.0	4.04
24.00	7.50	6.14	.0	.1	.1	.0	.0	.0	4.29

SUMMARY INFORMATION

MAXIMUM STAGE WAS 4.29 FEET AT 24.00 HOURS MAXIMUM DISCHARGE WAS .0 CFS AT . 00 HOURS

FORM 405-10

FLORIDA ENERGY EFFICIENCY CODE FOR BUILDING CONSTRUCTION

Florida Department of Business and Professional Regulation - Residential Performance Method

- Project Name: 4354 Aiton Road Street: 4354 Atton Road City, State, Zip: Miami Beach , FL, 33139- \because Owner: Design Location: FL, Miarsi Beach	Builder Name: 3 DESIGN ARCHTTECTURE Permit Office: Miami Beach Permit Number: Jurisdiction: 232500
Glass/Floor Area: 0.275	Loads: 93.16 Pads: 121.47 PS
 Code. PREPARED BY: DATE: I hereby certify that this building, as desighedilid hillompliance with the Florida Energy Code. OWNER/AGENT: \qquad DATE: \qquad	Review of the plans and specifications covered by this catculation indicates compliance with the Florida Energy Code. Before construction is completed this building will be inspected for compliance with Section 553.908 Florida Statutes. BULLDING OFFICIAL: \qquad DATE: \qquad

[^0]- Compliance requires completion of a Florida Air Barrier and Insulation Inspection Checklist

Florida Department of Business and Professional Regulations Residential Whole Building Performance Method

ADDRESS: 4354 Alton Road
PERMIT \#:
Miami Beach, FL, 33139-

MANDATORY REQUIREMENTS SUMMARY - See Individual code sections for full details.

COMPONENT	SECTION	SUMMARY OF REQUIREMENT(S)	CHECK
Air leakage	402.4	To be caulked, gasketed, weatherstripped or otherwise sealed. Recessed lighting IC-rated as meeting ASTM E 283. Windows and doors $=0.30 \mathrm{cfm} / \mathrm{sg} . \mathrm{ft}$. Testing or visual inspection required. Fireplaces: gasketed doors \& outdoor combustion air. Must complete envelope leakage report or visually verify Table 402.4.2.	V
Thermostat \& controls	403.1	At least one thermostat shall be provided for each separate heating and cooling system. Where forced-air furnace is primary system, programmable thermostat is required. Heat pumps with supplemental electric heat must prevent supplemental heat when compressor can meet the load.	$\sqrt{ }$
Oucts	$403.2 .2$ 403.3.3	All ducts, air handlers, filter boxes and building cavities which form the primary air containment passageways for air distribution systems shall be considered ducts or plenum chambers, shall be constructed and sealed in accordance with Section 503.2.7.2 of this code. Building framing cavities shall not be used as supply ducts.	$\sqrt{ }$
Water heaters	403.4	Heat trap required for vertical pipe risers. Comply with efficiencies in Table 403.4.3.2. Provide switch or clearly marked circuit breaker (electric) or shutoff (gas). Circulating system pipes insulated to $=R-2$ + accessible manual OFF switch.	V
Mechanical ventiation	403.5	Homes designed to operate at positive pressure or with mechanical ventilation systems shall not exceed the minimum ASHRAE 62 level. No make-up air from attics, crawispaces, garages or outdoors adjacent to pools or spas.	N / A
Swimming Pools \& Spas	403.9	Pool pumps and pool pump motors with a total horsepower (HP) of $=1$ HP shail have the capability of operating at two or more speeds. Spas and heated pools must have vapor-retardant covers or a liquid cover or other means proven to reduce heat loss except if 70% of heat from site-recovered energy. Off/timer switch required. Gas heaters minimum thermal efticiency $=78 \%(82 \%$ after $4 / 16 / 13)$. Heat pump pool heaters minimum $C O P=4.0$.	2.
Cooling/heating equipment	403.6	Sizing calculation performed \& attached. Minimum efficiencies per Tables 503.2.3. Equipment efficiency verification required. Special occasion cooling or heating capacity requires separate system or variable capacity system. Electric heat >10kW must be divided into two or more stages.	V
Ceilings/knee walls	405.2. 1	A-19 space permitting.	\checkmark

Building Input Summary Report

Building Input Summary Report

Building Input Summary Report

WALLS
Wall orientation below is as entered. Actual orientation is modified by rotate angle shown in "Project" section above.

- \#	Ornt	$\begin{aligned} & \text { Adjacent } \\ & \text { Jo } \end{aligned}$	Wałl Type	Space	Gavity R-Value	$\begin{aligned} & \text { Width } \\ & \text { Ft in } \end{aligned}$			Area	Sheathing Framing R-Value fraction	Solar Absor.	Below Grade\%
18	NW	Exterior	Concrete	Ond Florr	5	123	10	0	$12.2 .5 \mathrm{tt}^{2}$	0	0.75	0
19	NW	Exterio:	Concrete	econd Floor	5	21.10	10	0	$218.3 \mathrm{fl}^{2}$	0	0.75	0
- 20	SW	Exterior	Concrete	econd Floor	5	26 3	10	0	$262.5 \mathrm{ft}^{\text {2 }}$	0	0.75	0

INFILTRATION

\#	Scope	Methoc	SLA	CFM 50	ELIA	EqLA	ACH	ACH 50	Space(s)
1	Wholehouse	Best Guess	. 0005	5709	313.42	589.43	. 4247	7.3939	Al
MASS									
Mass Type			Area		Thickness		Furniture F		Space
No Added Mass			$0 \mathrm{fr}^{2}$		0 t		${ }^{\cdot} 0.3$		1st Floor
No Added Mass			$0 \overbrace{}^{\text {¢ }}$		0 ft		0.3		Second Floor
No Added Mass			$0 \mathrm{ft}^{2}$		0 ft		0.3		Garage1

Building Input Summary Report

Building Input Summary Report

Building Input Summary Report

ENERGY PERFORMANCE LEVEL (EPL) DISPLAY CARD

ESTIMATED ENERGY PERFORMANCE INDEX* $=77$

The lower the EnergyPerformance Index, the more efficient the home.
4354 Alton Road, Miami Beach, FL, 33139-

1. New construction or existing	New (From Plans)	9. Wall Types	Insulation	Area
2. Single family or mutipue fantly	Single-family	a. Concrete Block - int Insil, Exterior	Rm5.0	$4616.20 \mathrm{ft}^{2}$
		b. NA	$\mathrm{R}=$	ta^{2}
3. Number of units, it multiple family	1	c. NA	$\mathrm{R}=$	tt ${ }^{2}$
4. Number of Bedrooms	5	d. NA	$\mathrm{R}=$	fl^{2}
		10. Ceiling Types	Insulation	A
5. is this a worst case?	No	a. Cathedral/Single Assembty (Unvented)	$\mathrm{R}=0.1$	$2201.00 \mathrm{ft}^{\mathbf{2}}$
6. Conditioned floor area (i^{2})	4353	b. N/A	$\mathrm{R}=$	ft^{2}
7. Windows"* Description	Area	c. NA	$\mathrm{R}=$	
a. UFactor: $\quad \mathrm{Sgl}, \mathrm{U}=0.96$	$1198.20 \mathrm{ft}^{2}$	11. Ducts ist floor Rel: ist Floor, AH: isl		R ${ }_{4 .}{ }^{\text {fiz }}$
SHGC: \quad SHGC=0.46		b. Sup: Second Floor, Ret: Second Ftoor,	AH: Seco	4.2 4.2500
b. U-Factor: N/A				
SHGC:		12. Cooting systems	kBtwhr	Eficiency
c. U-Factor: N/A	ti^{2}	a. Central Unit		SEER:15.30
SHGC:		b. Central Unit	61.4	SEER:16.79
d. U-Faclor: N/A	tt^{2}	c. Central Unit	17.2 S	SEER:19.20
SHGC:		13. Heating systems	kBtu/hr	Efficiency
Area Weighted Average Overhang Depth:	6.078 ft.	a. Electric Strip Reat		3 COP: 1.00
				HSP
8. Floor Types	fnsulation Area	14. Hot water systems		ap: 1 gallons
a. Slab-On-Grade Edge Insulation	R=0.0 $2150.00 \mathrm{ft}^{2}$	a. Natural Gas		$\text { EF: } 0.92$
b. Flow: Over Other Space	$\mathrm{R}=0.0$ 2150.00 $\mathrm{tt}^{\mathbf{2}}$			
c. other (see details)	$\mathrm{R}=\quad \ldots . .51 .00 \mathrm{ft}^{2}$	b. Conservation teaures		
		15. Credits		Pstat

I certify that this home has complied with the Florida Energy Efficiency Code for Buiding Construction through the above energy saving features which will be installed (or exceeded) in this home before final inspection. Otherwise, a new EPL Display Card will be completed based on installed Code compliant features.

Builder Signature: \qquad Date:

Address of New Home: \qquad City/FL Zip:

*Note: This is not a Building Energy Rating. If your Index is below 70, your home may qualify for energy efficient mortgage (EEM) incentives if you obtain a Florida EnergyGauge Rating. Contact the EnergyGauge Hotline at (32t) 638-1492 or see the EnergyGauge web site at energygauge.com for information and a list of certified Raters. For information about the Florida Building Code, Energy Conservation, contact the Florida Building Commission's support staff.

[^1]13301 SW 132 AVE Sthe 21t Miami, FL 33186 Phone: 786-473-8025 License: 71534

Project Information

For: $\quad 4489$ N. Michigan Ave, 3 Design Architecture 4300 Biscayne BLVD, Suite G-04, Miami, FL 33154
Phone: 305-866-7324 Fax: 305-866-7474
Notes:

Design Information

Weather: Mami Intl AP, FL, US

Winter Design Conditions

Outside db		52 of
Inside db		
Design TD		18

Heating Summary

Structure	20396	Btuh
Ducts	0	Btuh
Central vent (14 cmm)		Btah
Humidification	0	Btuh
Piping	0	Btun
Equipment load	20396	Btuh
Infiltration		
Method Construction quality Fireplaces		Simplified
		Loose
		0
Area (fl^{2})	Heating	Cooling
	1558	1558
Volume (t^{3})	17605	17605
Air changes/hour	0.53	0.27
Equiv. AVF (cfm)	156	81

Heating Equipment Summary

Make	n/a
Trade	N/a
Madel	N/a
AHRI ret.	n/a

Efficiency N/a
Heating input Heating output Temperature rise
Actual air flow Air flow factor
Static pressure
Space thermostat

[^2]Summer Design Conditions

Sensible Cooling Equipment Load Sizing

Structure	47292 Btuh
Ducts	0 Btuh
Central vent (14 cfm)	0 Btuh
Blower	0 Btuh
Use manufacturer's data	${ }^{\mathrm{n}}$
Rate/swing multiplier	0.97
Equipment sensible load	45779 Btuh

Structure	5259	Btuh
Ducts	0	Bith
Central vent (14 cfm)	0	Btuh
Equipment latent load	5259	Btuh
Equipment total load	51038	Btuh
Req. total capacity at 0.70 SHR	5.4	ton

Cooling Equipment Summary

Calulations appoverd by ACCA tomet al requirenents of Manval \backslash sth Ed .

Project Information

For: $\quad 4489$ N. Michigan Ave, 3 Design Architecture
4300 Biscayne BLVD, Suite G-04, Miami, FL 33154
Phone: 305-866-7324 Fax: 305-866-7474

Design Information				
	Htg	Clg		Infiltration
Ontside db (F)	52	92	Method	Simplified
Inside db (9)	70	75	Construction quality	Loose
Design TD (F)	18	17	Fireplaces	0
Daily range	-	1		
Inside humidity (\%)	30	50		
Moisture difference (gr/b)	-13	56		

HEATING EQUIPMENT

Make n/a	
Trade Na	
Model Na	
AHRiref. Na	
Efficiency	Na
Heating input	
Heating output	0 Btuh
Temperature rise	0 9F
Actual air flow	0 cfm
Air flow factor	$0 \mathrm{ctm} / \mathrm{Btuh}$
Static pressure	0 in H 2 O
Space thermostat	

COOLING EQUIPMENT

Make Na	
Trade N/a	
Cond Na	
Coil n/a	
AHRI ref. n/a	
Efficiency	n/a
Sensible cooling	0 Btuh
Latent cooling	0 Btuh
Total cooling	0 Btuh
Actual air flow	0 ctm
Air flow factor	$0 \mathrm{cfm} / \mathrm{Btuh}$
Static pressure	0 in H 2 O
Load sensible heat ratio	0

ROOM NAME	Area (ft^{2})	Htg load (Btuh)	Clg load (Btun)	Htg AVF (cm)	Clg AVF (cfm)
Ground Floor	1558	20396	47292	1993	2152
AHU 1 Other equip loads Equip. @ 0.97 RSM Latent cooling	1558	20396 0	$\begin{array}{r} 47292 \\ 0 \\ 45779 \\ 5259 \end{array}$	-1993	2152
TOTALS	1558	20396	... 51038	1993	2152

Calculations approved by ACCA to meet all requirements of Manual $J 8$ th Ed.

Project information

For: $\quad 4489$ N. Michigan Ave, 3 Design Architecture 4300 Biscayne BLVD, Suite G-04, Miami, FL 33154 Phone: 305-866-7324 Fax: 305-866-7474

Notes:

Design Information

Weather: Miami IntlAP, FL, US

Winter Design Conditions

Outside db
Inside db
Design TD

Heating Summary

| Structure | \ldots | 9784 | 8 Btuh |
| :--- | ---: | ---: | ---: | ---: |
| Ducts | 0 | 8 tuh | |
| Central vent $(7 \mathrm{cim})$ | \ddots | 0 | Btuh |
| Humidification | | 0 | 8 tuh |
| Piping | | 0 | 8 tuh |
| Equipmert load | | 9784 | Btuh |

infiltration

Method Construction quality Fireplaces		Simplified
		. Loose
		0
	Heating	Cooling
Area (ft^{2})	734	734
Volume (ft^{3})	7340	7340
Air changes/hour	0.66	0.34
Equiv. AVF (cfm)	81	42

Heating Equipment Summary

Make Na	
Trade Na	
Model Na	
AHRI ref. Na	
Efficiency	Na
Heating input	
Heating oufput	0 Btuh
Temperature rise	0 O
Actual air flow	0 cm
Air flow factor	0 cimbetuh
Static pressure	0 in $\mathrm{H}_{2} \mathrm{O}$
Space thermostat	

Summer Design Conditions

Sensible Cooling Equipment Load Sizing

\quad Latent Cooling Equipment Load Sizing		
Structure	\ldots	2485
Ductuh		
Ducts	0	8 tuh
Central vent $(7 \mathrm{cfm})$		0
Equh		
Equipment latent load		2485
8 tuh		
Equipment total load		22461
Btuh		
Req. total capacity at 0.70 SHR	2.4 ton	

Cooling Equipment Summary

Calculations approved by ACCA to meet all requirements of Manual δ 8th Ed.

Project Information

For: $\quad 4489$ N. Michigan Ave, 3 Design Architecture
4300 Biscayne BLVD, Suite G-04, Miami, FL 33154
Phone: 305-866-7324 Fax: 305-866-7474

Design Information				
	Htg	Clg		Infiltration
Outside db (9)	52	92	Method	Simplified
Inside db (\%)	70	75	Construction quality	Loose
Design TD (F)	18	17	Fireplaces	-
Daily range		5		
Inside humidity (\%)	30	50		
Moisture difference (gr/b)	-13	56		

HEATING EQUIPMENT

COOLING EQUIPMENT

$\left.\begin{array}{llllll}\text { Make } & \text { n/a } \\ \text { Trade } \\ \text { N/a }\end{array}\right)$

ROOM NAME	Area $\left(\mathrm{ft}^{2}\right)$	Htg load (Btun)	Clg load (Btuh)	Htg AVF (cm)	Clg AVF (cm)
Master Bedroom	734	9784	20636	956	939
AHU 2 Other equip loads Equip. @ 0.97 RSM Latent cooling	734	\% 9784	$\begin{array}{r} 20636 \\ 0 \\ 19976 \\ 2485 \end{array}$956	939
TOTALS	734	9784	… 22461	$\cdots 956$	939

Calculaions spacoved by ACCA to meta al requirementh of Marivad J oth Ed.

Date: August 11, 2015
By: M.G.

Project Information

For: 4489 N. Michigan Ave, 3 Design Architecture 4300 Biscayne BIVD, Suite G-04, Miami, FL. 33154 Phone: 305-866-7324 Fax: 305-866-7474

Notes:

Design Information

Weather: Miami Intl AP, FL, US

Winter Design Conditions

Outside ob
Inside db
Design TD

Heating Summary

Structure	7138 Btuh
Ducts	0 Btuh
Central vent (5 cfm)	0 Btuh
Humidification	Btuh
Piping	0 Btuh
Equipment load	7138 Btuh

Infiltration

| Method | | Simplified |
| :--- | ---: | ---: | ---: |
| Coose | | |

Heating Equipment Summary

Make	N/a
Trade	N/a
Model	N/a

Model Na

Summer Design Conditions

Sensibie Cooling Equipment Load Sizing

Structure	15456 Btuh
Ducts	0 Btuh
Central vent (5 cfm)	0 Btuh
Blower	0 Btuh
Use manufacturer's data	n
Rate/swing multiplier	0.97
Equipment sensithe load	14961 Btuh

Calculations approved by ACCA to meet all requirements of Manual J 8 th Ed.

Job: - 1410003
Date: Auguat 11, 2015
By: M.G.

13301 SW 132 AVE, Suise 211, Miaml, FL 33186 Phone: 786-473-802
License: 71594

Project Information

For: $\quad 4489$ N. Michigan Ave, 3 Design Architecture
4300 Biscayne BLVD, Suite G-04, Miami, FL 33154
Phone: 305-866-7324 Fax: 305-866-7474

Design Information				
	Htg	Clg		
Outside db (${ }^{(7)}$	52	92	Method	Simplified
Inside do (\%)	70	75	Construction quality	Loose
Design TD (9)	18	17	Fireplaces	0
Daily range	-	1.		
Inside humichity (\%)	30	50		
Moisture difference (gr/b)	-13	56		

HEATING EQUIPMENT

Make	Na
Trade	Na
Model	Na
AHR1 ref.	Na

Efficiency

Heating input Heating output Temperature rise Actual air flow Air flow factor Static pressure
Space thermostat

na

$$
0 \text { Btuh }
$$

0 F
0 cfm
$0 \mathrm{cfm} / \mathrm{Btuh}$
0 in $\mathrm{H}_{2} \mathrm{O}$

ROOM NAME	Area $\left(\mathrm{ft}^{2}\right)$	Htg load (Btuh)	Clg load (Btuh)	$\operatorname{Htg} A V F$ (cfm)	ClgAVF (ctm)
Bedrooms 2 and 3	544	7138	15456	698	703
AHU 3 Other equip loads Equip. @ 0.97 RSM Latent cooling	544	7138	$\begin{array}{r} 15456 \\ 0 \\ 14961 \\ 2234 \end{array}$	698	703
TOTALS	544	. 7138	17195	698	703

Calculations approved by ACCA to meet alil requirements of Manual J 8th Ed.

Job: 1410003
Date: August 11, 2015
By: M.G.

Project Information

For: $\quad 4489$ N. Michigan Ave, 3 Design Architecture 4300 Biscayne BLVD, Suite G-04, Miami, FL 33154
Phone: 305-806-7324 Fax: 305-866-7474
Notes:

Design information

Weather: Miami Intl AP, FL., US

Winter Design Conditions

Outside db		
inside db		
Design TD		
ar		

Heating Summary

Structure	7021	Btuh
Ducts	0	Btuh
Centrai vent $(8 \mathrm{cfm})$	0	Btuh
Humidification	0	Btuh
Piping	0	Btuh
Equiprnent load	7021	Bun

Infiltration

Method		Simplified	
Construction quality		0	
Fireplaces		0	
		Heating	Cooling
Area $\left(\mathrm{ft}^{2}\right)$	923	923	
Volume $\left(\mathrm{ft}^{3}\right)$		9230	9230
Air changes $/ \mathrm{hour}$		0.42	0.21
Equiv. $A V F(\mathrm{cfm})$		64	33

Heating Equipment Summary

Make rua	
Trade \quad /a	
Model \quad /a	
AHRI ref. Na	
Efficiency	nua
Heating input	
Heating output	0 Btuh
Temperature rise	0 9
Actual air flow	0 cfm
Air flow factor	$0 \mathrm{cfm} / \mathrm{Btuh}$
Static pressure	0 in H 2 O
Space thermostat	

Summer Design Conditions

Sensible Cooling Equipment Load Sizing

Structure	20500 Btuh
Ducts	0 Btuh
Central vent (8 cfm)	0 Btuh
Blower	0 Btuh
Use manufacturer's data	n
Rate/swing multiplier	0.97
Equipment sensible load	19844 Btuh

Latent Cooling Equipment Load Sizing

Structure	1956 Btuh
Ducts	0 Btuh
Central vent (8 cmm)	0 Btuh
Equipment latent load	1956 Btuh
Equipment total load	21800 Btuh
Req. total capacity at 0.70 SHR	2.4 to
Cooling Equipmen	Immary
Make n/a	
Trade Na	
Cond Na	
Coil n/a	
AHRl ref. Na	
Efficiency	na
Sensible cooling	0 Btuh
Latent cooling	0 Btuh
Total cooling	0 Btuh
Actual air flow	0 cfm
Air flow factor	$0 \mathrm{cfm} / \mathrm{Btuh}$
Static pressure	0 in H2O
Load sensible heas ratio	0

Calculations approved by ACCA to meet all requirements of Manual J 8th Ed.

Job: 1410D03
Date: August 11, 2015
By: M.

Project Information

For: $\quad 4489$ N. Michigan Ave, 3 Design Architecture
4300 Biscayne BLVD, Suite G-04, Miami, FL 33154
Phone: 305-866-7324 Fax: 305-856-7474

Design information

Design information				
	Htg	Clg		Infiltration
Outside db (9)	52	92	Method	Simpified
Inside db (9)	70	75	Construction quality	Loose
Design TD (${ }^{\text {(}}$)	18	17	Fireplaces	0
Daily range	\bigcirc	1		
Inside humidity (\%)	30	50		
Moisture difference ($\mathrm{gr} / \mathrm{lb}$)	-13	56		

HEATING EQUIPMENT

Make rva	
Trade rla	
Model rva	
AHRI ref. Na	
Efficiency	n/a
Heating input	
Healing coutput	0 Btuh
Temperature rise	0 OF
Actual air flow	0 cfm
Air flow factor	$0 \mathrm{cfm} / \mathrm{Btuh}$
Static pressure	0 in $\mathrm{H}_{2} \mathrm{O}$
Space thermostat	

COOLING EQUIPMENT

Make	n/a
Trade	r/a
Cond	r/a
Coil	n/a
AHRI ref. r/a	
Efficiency	
Sensible cooling	
Latent cooling	
Total cooling	
Actual air flow	
Air flow factor	
Static pressure	
Load sensible heat ratio	

ROOM NAME	Area (ff^{2})	Hitg load (Btuh)	Cig load (Btuh)	$\mathrm{Htg} A V F$ (cmi)	$\operatorname{Clg} A V F$ (cm)
Bedt, Hall, Utilily	923	7021	20500	686	933
AHU 4 Other equip loads Equip. @ 0.97 RSM Latent cooling	$923 .$	7021 0	$\begin{array}{r} 20500 \\ 0 \\ 19844 \\ 1956 \end{array}$	686	933
TOTALS	923	7021	- 21800	686	- 933

Calculations approved by ACCA to meet all requirements of Manual J Bth Ed.

Proiect Information

For: $\quad 4489$ N. Michigan Ave, 3 Design Architecture
4300 Biscayne BLVD, Suite G-04, Miami, FL 33154
Phone: 305-866-7324 Fax: 305-866-7474
Notes:

Design Information

Weather: Miami Int|AP, FL, US

Winter Design Conditions

Outside do
Inside db
Design TD

Heating Summary

Structure		6405	Btuh
Ducts		0	Btuh
Central vent $(5 \mathrm{cfm})$		0	Btuh
Humidification		0	Btuh
Piping		0	Btuh
Equipment load		6405	Btuh

Infiltration

Method		Simplified
Construction quality		Loose
Fireplaces		0
	Heating	Cooing
Area (ft^{2})	592	592
Volume (t^{3})	6690	6690
Air changes/hour	0.71	0.37
Equiv. AVF (cim)	79	41

Heating Equipment Summary

Make	N/a
Trade	n/a
Model	n / a
AHRI ref.	n/a

Efficiency
Heating inptt
Heating output
Temperature rise
Actual air flow
Air flow factor
Static pressure
Space thermostat
n/a

	na	
	0	Btuh
0	F	
0	cfm	
0	cfm/Btun	
	0	in H2O
n/a		

0 Btuh
0 cm
$0 \mathrm{cfm} /$ Btun
n/a

Summer Design Conditions

Structure	14674	Btuh
Ducts	0	Btuh
Central vent (5 cmm)	0	Btuh
Blower	0	0 Btuh
Use manufacturer's data		0.97^{n}
Rate/swing mutiplier		14205
Equipment sensible load		

Latent Cooling Equipment Load Sizing

Structure	2560
Btuh	
Ducts	0
Central vent (5 cfm)	0
Btuh	
Equipment latent load	2560
Btuh	
Equipment total load	16765
Req. total capacity at 0.70 SHR	1.7
Btun	

Cooling Equipment Summary

Calculations approved by ACCA to meet all requirements of Manual I 8th Ed.

Project Information

For: $\quad 4489$ N. Michigan Ave, 3 Design Architecture 4300 Biscayne BLVD, Suite G-04, Miami, FL 33154 Phone: 305-866-7324 Fax: 305-866-7474

Design information					
	Htg	Clg		Infilitration	
Outside do (\%)	52	92	Method		Simplified
Inside di (${ }^{\text {F }}$)	70	75	Construction quality		Loose
Design TD (F)	18	17	Fireplaces		0
Daily range	-	L			
Inside humidity (\%) Moisture difference (gr/b)	30 -13	50 56			

HEATING EQUIPMENT

COOLING EQUIPMENT

Make n/a		Make \quad /a	
Trade n/a		Trade raa	
Model N / a		Cond n/a	
AHR1 ref. n/a		Coil n/a	
		AHR1 ref. n/a	
Efticiency	na	Efficiency	n/a
Heating input		Sensible cooking	0 Btuh
Heating output	0 Btuh	Latent cooling	0 Btuh
Temperature rise	0 \%	Total cooling	0 Btuh
Actual air flow	0 cfm	Actual air flow	0 cfm
Air flow factor	$0 \mathrm{cfm} / \mathrm{Btuh}$	Air flow factor	$0 \mathrm{cfm} / \mathrm{Btuh}$
Static pressure	0 in $\mathrm{H}_{2} \mathrm{O}$	Static pressure	$0 \mathrm{inH2O}$
Space thermostat	n/a	Load sensible heat ratio	0

ROOM NAME	Area (ft^{2})	Htg load (Btuh)	Clg load (Btuh)	Htg AVF (cm)	Clg AVF (cm)
Garage	592	6405	14674	626	668
AHU 5 Other equip loads Equip. © 0.97 RSM Latent cooling	592	$\begin{array}{r} 6405 \\ 0 \end{array}$	$\begin{array}{r} 14674 \\ 0 \\ 14205 \\ 2560 \end{array}$	626	668
TOTALS	*. 592	6405	16765	626	- 668

FLORIDA ENERGY EFFICIENCY CODE FOR WELLDHG CONSTRUCTION

F. Fiorida Department of Business and Professional Regulation - Residential Performance Method

Projgs. Name:
Strel!
City, Slate. 2ip:
Ownei.
Design Location:

Bubder Name: '3 DESHEN ARCHITECTURE
Pernil Office: Mismi Beach
Pemitil Number: Jurisdiction: 232500
9. Wall Types (4533.7 sqth.)
a. Concrele Block - int Instul, Exterior
b. N/A
c. N / A
d. N.A
10. Ceiling Types (2152.3 sfill)
a. Calluedral/Single Astsembly (Unvanted)
b. W/A
c. IJ/A
11. Ducts
a. Sto Ist Floor. Ret: ist Floor, Ah: ist Floor
b. Sup: 2nd FL fled'3. Ret: 2nd FL Bed 3, AH: 2nd 4.2175
c. Sup: Secomi FIcor, Ret: Second Fiour, AH: Seco . 4.2260
12. Coolnesyslems kBluht Eficionoy
a. Certhat Unit
53.1 SEEP. 15.30
b. Canleat Unit

2 adiditional cooting systems
13. Heatimy sysiems
a. Electric SIrip Heat
h. Eletetric Strip ifeal

2 addilimal lueuting systems
14. hiot water systems

15. Credils

Pstal

- Compliance requires certification by the air handier unit manufacturer that ife air hander enclosure qualifies as certified factory sealed in accordance with 403,2.2.1.1.
\therefore. Comphance requires completion of a Florida Air Darrier and Insutation Inspection Checklist
2.. Compliance requires an air distribution system test report, by a Florklir Giass \& Rater, confirming syrtem leakago to outdeors tested at 25 pascals prescure differnce in accordame witl $403.22,1$. is not grester than

WINDOWS
Orientation shown is lite entered; Proposed orienlalion.

INFILTRATION

| \# | Scope | Method | SLA | CFM 50 | ELA | EqLA | ACH | ACH50 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Wholehouse | Best Guess | .0005 | 5545.3 | 304.43 | 572.53 | .4247 | 8.6931 |

heating system

$\sqrt{ }$	\#	System Type	Subtype	Efficiency	Capacity	Block	Ducts
	1	Electric Slfip Heal	None	COP: 4	26.3 kBtu/hr	1	sys\#1
	2	Electric Sthp Heat	None	COP: 1	$8.2 \mathrm{kBlu} / \mathrm{hr}$	2	sys\#2
	3	Electric Strip Heat	None	COP: 1	$18.4 \mathrm{kBlu} / \mathrm{hr}$	3	sys\#3
	4	Electric Heat Pump	None	COP: 10	$21.6 \mathrm{kBtu} / \mathrm{hr}$	4	Ductiess

COOLING SYSTEM

V	\#	Syslem Type		Subtype			Capacity	Alr Flow	SHR	Block	Ducts	
	1234	Central Unit Central Unit Centrá Unit Centrai Unit		Split		SEER: 15.353 .1 kEtuhr		1593 cfm	0.720000	1	sys\#1	
				Split		SEER: $16.2516 .8 \mathrm{kBtu} / \mathrm{hr}$		504 cfm	0.699999	2	sys\#2	
				Split		SEER: 16.2543 .3 kEt whr		1299 cfm	0.69	3	sys\#3	
				Split		SEER: 19.217 .2 kBtahr		516 cfm	0.69	4	systo	
HOT WATER SYSTEM												
$\sqrt{ }$	\#	System Type		SubType	Location	EF	Cap	Use	SelPnt		ervation	
-	1	Natural Gas	Tankless	Exlerior	0.82	1 gal	40 gal	120 deg		Sone		

SOLAR HOT WATER SYSTEM

Florida Code Compliance Checklist

Florida Department of Business and Professional Regulations Residential Whole Building Performance Method

ADORESS: 4354 Alton Road
Miami Beach, FL, 33139-
PERMIT \#:

$$
\text { Miami Beach, } \mathrm{HL}, 33139-
$$

MANDATORY REQUIREMENTS SUMMARY - See Individual code sections for full detalls.

Building Input Summary Report

Building Input Summary Report

DISHWASHERS									
10	Type	Screen	Location	Capacty	Vintage	Make	Model	Schedule	kWhPerYr
1	Dishwash	Default New	Main	12	2004 or N			HERSZOA	
RANGE OVEN									
ID	Type	Screer	Localion	Type	Fuellype	Make	Modal	Cooktop ${ }^{\text {- }}$,
1	Ranges	Defaut New	Main	CooktopOven C Electric				Electric	Not Conv
HARD WIRED LIGHTING									
1 D	Type	Screen	Location	Total\# Quatily ${ }^{\text {c }}$ Comp Ft		Al Oher Fi txiButbype		Schedule	Walts per but
$\begin{aligned} & 1 \\ & 2 \end{aligned}$	Hard-Wir Hard-Wir	Defautit Defaut	Main Exterior	$20 \quad 2$	0	2	Incandes	HERS201*	
			MISC ELECTRICAL LOADS					-•••	
!	Type	Screen	Item	Quantily	Catagery	Operaling	Location	Schedule	Off Standby
1	Misc Elec	Simple Defaul		1		1	Main	HERS201	1

ENERGY PERFORMANCE LEVEL (EPL) DISPLAY CARD

ESTIMATED ENERGY PERFORMANCE INDEX* $=74$

The lower the EnergyPelformance Index, the more efficient the home.
4354 Alton Road, Miami Beach, FL, 33139-

I certify that this home has complied with the Florida Energy Efficiency Code for Building Construction through the above energy saving features which will be instailed (or exceeded) in this home before final inspection. Otherwise, a new EPL Display Card will be completed based on installed Code compliant features.

Builder Signature: \qquad Date:
Address of New Home: \qquad City/FL Zip:

*Note: This is not a Building Energy Rating. If your Index is below 70, your home may qualify for energy efficient mortgage (EEM) incentives if you obtain a Florida EnergyGauge Rating. Contact the EnergyGauge Hotline at (321) 638-1492 or see the EnergyGauge web site at energygauge.com for Information and a list of certified Raters. For Information about the Florida Bullding Code, Energy Conservation, contact the Florida Building Commission's support staff.
**Label required by Section 303.1 .3 of the Florida Building Code, Energy Conservation, if not DEFAULT.

EnergyGauge8 USA - FlaRes2010 Section 405.4.1 Compliant Soffware

Job: 14010003
Date: November 25, 2014
Ey: M.G.

Project Information

For: $\quad 4354$ Alton Road, 3 Design Architecture 4300 Biscayne BLVD, Suite G-04, Miarni, FL 33154 Phone: 305-866-7324 Fax: 305-866-7474

Notes:

Design Informátion
Weather: Miami intl AP, FL, US

Winter Design Conditions

| Outside db |
| :--- | :--- | :--- |
| Inside db |
| Design TD |$\cdots,$| $52{ }^{\circ} \mathrm{F}$ |
| :--- |
| 70 |

Heating Summary

| Structure | 18913 | Bteh |
| :--- | ---: | ---: | :--- |
| Ducts | 0 | Btuh |
| Central vent (52 cfm) | 0 | Btuh |
| Humidification | 0 | Btuh |
| Piping | 0 | Btuh |
| Equipment load | 18913 | Btuh |

Infiltration

Method		Simplified Construction quality Fireplaces
	$\cdots \cdots$	Average

Heating Equipment Summary

Sensible Cooling Equipment Load Sizing

Latent Cooling Equipment Load Sizing

Structure	4789	Btuh
Ducts	0	Btuh
Centrai vent (52 cfm)	0	Btuh
Equipment latent load	4789	Btuh
Equipment total load	48089	Btuh
Req. total capacity at 0.70 SHR	5.2	ton

Cooling Equipment Summary

Calculations approved by ACCA to meet all requirements of Manual J 8th Ed.

Load Short Form
AHU 1
MEGPE Engineers, Inc

Date: November 25, 2014
By: W.G.

HEATING EQUIPMENT

Make n/a	
Trade n/a	
Model n/a	
AHRI ref n/a	
Efficiency	n/a
Heating input	
Heating output	0 Btuh
Temperature rise	$0^{\circ}{ }^{\circ} \mathrm{F}$
Actual air flow	0 cfm
Air flow factor	$0 \mathrm{cfm} / \mathrm{Btuh}$
Static pressure	0 in $\mathrm{H}_{2} \mathrm{O}$
Space thermostat	

COOLING EQUIPMENT

Make n/a	
Frade n/a	
Cond n/a	
Coil n/a	
AHRI ref n/a	
Efficiency	n/a
Sensible cooling	0 Btuh
Latent cooling	0 Btuh
Fotal cooling	0 Btuh
Actual air flow	0 cfm
Air flow factor	$0 \mathrm{cfm} / \mathrm{Btuh}$
Static pressure	0 in $\mathrm{H}_{2} \mathrm{O}$
Load sensible heat ratio	

ROOM NAME		Area (f^{2})	Htg load (Btuh)	Clg load (Btuh)	Htg AVF (cfm)	Clg AVF (cfm)
Ground Floor		1495	18913	44731	1768	2008
AHU 1 Other equip loads Equip. @ 0.97 RSM Latent cooling		1485	18913 0	$\begin{array}{r} 44731 \\ 0 \\ 43300 \\ 4789 \end{array}$	1768	2008
TOTALS		1495	. 18913	$\cdots 48089$	1768	2008

Calculations approved by ACCA to meet all requirements of Manual J 8th Ed.

Project Information

Design Information

Weather: Miami intl AP, FL., US

Winter Design Conditions

Heating Summary

| Structure | 15490 | Btuh |
| :--- | ---: | ---: | ---: |
| Ducts | 0 | Btuh |
| Centrai vent $(55 \mathrm{cfm})$ | 0 | Btuh |
| Humidification | 0 | Btuh |
| Piping | 0 | Btuh |
| Equipment load | 15490 | Btuh |

Infiltration

Method		Simplified Construction quality		
Fireplaces		0		
		0		
		Heating	\quad	Cooling
:---				
Area $\left(\mathrm{A}^{2}\right)$				

Heating Equipment Summary

Make n/a	
Trade n/a	
Model n/a	
AHRI ref n/a	
Efficiency	n/a
Heating input	
Heating output	0 Btuh
Temperature rise	$0{ }^{\circ} \mathrm{F}$
Actual air flow	0 cfm
Air flow factor	$0 \mathrm{~cm} /$ Btun
Static pressure	0 in $\mathrm{H}_{2} \mathrm{O}$
Space thermostat	

Sensible Cooing Equipment Load Sizing

Structure	37070 Btuh
Ducts	0 Btuh
Central vent (55 ctm)	0 Btuh
Btower	0 Btuh
Use manufacturer's data	n
Rate/swing multiplier	0.97
Equapment sensible load	35883 Btuh
Latent Cooling Eq	Load Siz
Structure	4083 Btuh
Ducts	0 Btuh
Central vent (55 cfm)	0 Btuh
Equipment latent load	4083 Btah
Equipment total load	39966 Btuh
Req. total capacity at 0.70 SHR	4.3 ton

Cooling Equipment Summary

Make r/a	
Trade n/a	
Cond n/a	
Coil n/a	
AHRI ref n/a	
Efficiency	n/a
Sensible cooling	0 Btuh
Latent cooling	0 Btuh
Total cooling	0 Btuh
Actual air flow	0 cfm
Ais flow factor	$0 \mathrm{cfm} / \mathrm{Btuh}$
Static pressure	0 in H 2 O
Load sensible heat ratio	0 .

Calculations approved by ACCA to meet all requirements of Mantual 5 8th Ed .

Load Short Form
Job: 14010003
Date: November 25, 2014
AHU 2
By: M.G.
MEGPE Engineers, Inc

HEATING EQUIPMENT

Make n/a	
Trade n/a	
Model n/a	
AHRI ref n/a	
Efficiency	n/a
Heating input	
Heating output	0 Btuh
Temperature rise	$0{ }^{\circ} \mathrm{F}$
Actual air flow	0 cfm
Air flow factor	$0 \mathrm{cfm} / \mathrm{Btuh}$
Static pressure	0 in $\mathrm{H}_{2} \mathrm{O}$
Space thermostat	

COOLING EQUIPMENT

Make n/a	
Trade n/a	
Cond n/a	
Coil n/a	
AHRI ref n/a	
Efficiency	n/a
Sensible cooling	0 Btuh
Latent cooling	0 Btuh
Total cooling	0 Btuh
Actual air flow	0 cfm
Air flow factor	$0 \mathrm{cmm} / \mathrm{Btuh}$
Static pressure	0 in $\mathrm{H}_{2} \mathrm{O}$
Load sensible heat ratio	0

ROOM NAME		Area (fi)	Htg load (Bluh)	Clg load (Btuh)	Htg AVF (cfm)	Clg AVF (cfm)
Second Floor		1570	15490	37070	1448	1664
AHU 2 Other equip loads Equip.@ 0.97 Latent cooling	RSM	1570	15490 0	$\begin{array}{r} 37070 \\ 0 \\ 35883 \\ 4083 \end{array}$	1448	1664
TOTALS		1570	15490	39966	. 1448	1664

Calculations approved by ACCA to meet all requirements of Manual $\sqrt{ } 8$ th Ed.

Job: 14010003
Date: November 25, 2014
By: M.G.

13301 SW 132 AVE, Sulta 211, Miami, FL 33186 Phona; 786-473-8025 Licentse: 71594

Project Information

For: $\quad 4354$ Alton Road. 3 Design Archisecture 4300 Biscayne BLVD, Suite G-04, Miami, FL 33154 Phone: 305-866-7324 Fax: 305-866-7474

Notes:

Weather: Miami Int AP, FL, US

Winter Design Conditions

Outside db	\cdots	$52{ }^{\circ} \mathrm{F}$
Inside db	\cdots	70
Design TD	\ddots	18

Heating Summary

Structure	6443	Btuh	
Ducts	0	0	Btuh
Central vent $(20 \mathrm{cfm})$		0	Btuh
Humidification		0	Btuh
Piping		0	Btuh
Equipment load		6443	Btuh

Infiltration
$\left.\begin{array}{lrr}\text { Method } & & \text { Simplified } \\ \text { Construction quality } & & \text { Average } \\ \text { Fireplaces } & & 0 \\ & & \\ & & \text { Heating }\end{array}\right)$ Cooling

Heating Equipment Summary

Make n/a	
Trade n/a	
Model n/a	
AHRI ref n/a	
Efficiency	n/a
Heating input	
Heating output	0 Btuh
Temperature rise	$0{ }^{\circ} \mathrm{F}$.
Actual air flow	0 cfm
Air fiow factor	$0 \mathrm{~cm} /$ Btuh
Static pressure	0 in H 2 O
Space thermostat	

Summer Design Conditions :

Sensibie Cooling Equipment Load Sizing

Structure	14579	Btum
Ducts	0	Btuh
Cenfral vent $(20 \mathrm{cfm})$	0	0
Btuh		
Blower	0	Btuh
Use manufacturer's data		
Rate/swing multiplier		$0.97^{\text {n }}$
Equipment sensible load	14112	Btuh

Latent Cooling Equlpment Load Sizing		
Structure		1093 Btuh
Ducts	0	Btuh
Central vent (20 cim)		0
Bluh		
Equipment latent load		1093
Btuh		
Equipment total load		15205
Btuh		
Req. total capacity at 0.70 SHR	1.7	ton

Cooling Equipment Summary

Make n/a	
Trade n/a	
Cond n/a	
Coil n/a	
AHRi ref n/a	
Efficiency	n/a
Sensible cooling	0 Btuh
Latent cooling	0 Btuh
Total cooling	0 Btuh
Actual air flow	0 cmm
Air flow factor	$0 \mathrm{~cm} /$ Btuh
Static pressure	0 in $\mathrm{H}_{2} \mathrm{O}$
Load sensible heat ratio	0

Calululitins approved by $A C C A$ to meet all requiremenis of Manual J Sth Ed .
"F| ${ }^{\text {F }}$ wrightsoft" Right-Suited Universal 2013 13.0.09 RSU20089

HEATING EQUIPMENT

Make	n / a
Trade	n / a
Model	n / a

$\begin{array}{lll}\text { Make } & n / a & \\ \text { Trade } & \mathrm{n} / \mathrm{a} \\ \text { Model } & \mathrm{n} / \mathrm{a} \\ \text { AHPI ref } & \mathrm{n} / \mathrm{a} & \\ \\ \begin{array}{l}\text { Efficiency } \\ \text { Heating input }\end{array} & & \end{array}$

Heating input
Heating output
Temperature rise
Actual air flow
Air flow factor
Static pressure
Space thermostat
n/a

0 Btuh
$0{ }^{\circ} \mathrm{F}$
0 cfm
0 cfm/Btuh
0 in $\mathrm{H}_{2} \mathrm{O}$

COOLING EQUIPMENT

Make n/a	
Trade n/a	
Cond n/a	
Coil n/a	
AHRI ref n/a	
Efficiency	n/a
Sensible cooling	0 Btuh
Latent cooling	0 Btuh
Total cooling	0 Btuh
Actual air flow	0 cfm
Air fow factor	$0 \mathrm{~cm} / \mathrm{Btuh}$
Static pressure	0 in H 2 O
Load sensible heat ratio	0

ROOM NAME	Area (tit)	Hitg load (Btuh)	Clg load (Btuh)	Htg AVF (cfin)	$\mathrm{Clg} A V F$ (cfm)
2nd FL Bed 3	582	6443	14579	602	654
AHU 3 Other equip loads Equip. @ 0.97 RSM Latent cooling	582	6443 0	$\begin{array}{r} 14579 \\ 0 \\ 14112 \\ 1093 \end{array}$	$\cdots 602$	654
TOTALS	582	6443	15205	602	$\cdots 654$

Project Summary

Job: $140\{0003$
Date: November 25, 2014
By: M.G.

Project Information

For: $\quad 4354$ Alton Road, 3 Design Architecture 4300 Biscayne BLVD, Suite G-04, Miami, FL 33154 Phone: 305-866-7324 Fax: 305-866-7474

Notes:

Design Information

Winter Design Condltions

Outside db	$52{ }^{\circ} \mathrm{F}$	
Inside db		
Design TD	\ddots	70
${ }^{\circ} \mathrm{F}$		

Heating Summary

Heating Equipment Summary

Make	n/a
Trade	n/a
Model	n/a
AHRl ref	n/a

Efficiency Heating input Heating output Temperature rise
Actual air flow Air flow factor Static pressure Space thermostat
$70^{\circ} \mathrm{F}$
$18{ }^{\circ} \mathrm{F}$ Average 0 ooling 6794

11

Miami intl AP, FL, US

Summer Design Conditiorss.

Outside db	$92{ }^{\circ} \mathrm{F}$
Inside db	$75{ }^{\circ} \mathrm{F}$
Design TD	$17{ }^{\circ} \mathrm{F}$
Daily range	
Relative humidity	
Moisture difference	$56 \mathrm{gr} / \mathrm{l} \mathrm{b}$

Sensible Cooling Equipment Load Sizing

Stracture	14726 Btuh
Ducts	0 Btuh
Central vent (21 cfm)	0 Btuh
Blower	0 Btuh
Use manufacturer's data	n
Rate/swing muitiplier	0.97
Equipment sensible load	14255 Btuh

Latent Cooling Equipment Load Sizing

Structure	3632	Btuh	
Ducts	0	Btuh	
Central vent (21 cfm)	0	Btuh	
Equipment latent load	3632	Btuh	
Equipment total load		17886	Btuh
Req. total capacity at 0.70 SHR	1.7	ton	

Cooling Equipment Summary

Fiterrigintsoft*

HEATING EQUIPMENT

ROOM NAME		Area (fir)	Htg load (Btuh)	Clg load (Btuh)	Htg AVF (cm)	Clg AVF (cim)
Garage		596	5820	14726	544	661
AH 4 Other equlp loads Equip.@ 0.97 Latent cooling	RSM	596	5820	$\begin{array}{r} 14726 \\ 0 \\ \cdots \quad 14255 \\ 3632 \end{array}$	544	661
TOTALS		596	$\cdots 5820$	$\therefore 17886$	544	661

Calculations approved by ACCA to meet all requirements of Manual $\sqrt{ } 8$ th Ed.

INCLUDES:

\author{

- Two Line LCD Tri-Lingual Digital NexusT ${ }^{\text {TM }}$ Controller
}
- Isochronous Electronic Governor
- Sound Attenuated Enclosure
- Closed Coolant Recovery System
- Smart Battery Charger
- UV/Ozone Resistant Hoses
- $\pm \dagger \%$ Voltage Regulation
- Natural Gas or LP Operation*
- 2 Year Limited Warranty
- UL 2200 Listed
*Note: 25-45 kW units are fied convertible between natural gas or tP 60 kW units are built per fuel requirement and are not convertible.

Standby Power setikige
Model QT025 (Stee - Bisque) - 25 kWe 60 iz:
Model QT030 (Steel - Bisque) - 30 kW 60 Hz
Model QT045 (Steel - Bisque) - 45 kW 60 Hz
Model QT060 (Steel - Bisque or Aluminum - Gray) - 60 kW 60 Hz

Meets EPA Emission Regulations $25,30 \& 45 \mathrm{~kW}$ CA/MA emissions compliant 60 kW not for sale in CAMA

FEATURES

O. INNOVATNE DESIGN \& PROTOTYPE TESTHG are key components of generac's success in "mproving power by oesign." But it doess'l stop there. Total commitment to componenl testing, reliability testing, envirommental tesling, destruction and lide testing, plus tesling to applicable CSA, NEMA, EGSA, and othet standards, allows you to choose gentrac POWER SYSTEMS with the conlidence that these systerns whll provide superiot pertormance.

O TEST CRITERH:

\checkmark PROTOTYPE TESTED
\checkmark SYSTEM TORSIONAL TESIED

NEMA MG1-22 EVALUATON
WOTOR STARTING ABIISTY

O SOLID-STATE, FREQUENCY COMPENSAIEB VOLTAGE REGULATHON. This state-of-the-att power maximizing regulation systern is standard on all Generac models. It provides optimized FAST RESPONSE to changing load conditions and MAXIMUM MOTOR STARTING CAPABILITY by electronically torque-matching the sutge loads to the engine. Digilal voltage regulation at $\pm 1 \%$.

- SINGLE SOURCE SERVIGE RESPOHSE fom Generac's extensive dealer netrork prowides parts and sevice know-how for the enlise unil, form lhe engine to the smatest electronic component.

O GENERAG TRAMSFER SWITCHES. LOng life and relability are symonymous with GENERAC POWER SYSTEMS. One reason for this conitidence is that the GENERAC product line includes its own transler systems and controls for total system compatibitily.

GENERATOR SPECIFICATIONS

Type	Synchronous
Fiotor Insulation Class	H
Stator Insulation Class	4
Tetephene interemence Factor (Tif)	<50
Atternator Othput Leads i-Phase	4 wire
Allemator Oftpot heads 3-Phase	6 wire
Bearings	Sealed Ball
Corpting	Flexible Disc
Excitation Systen	Direct

VOLTAGE REGULATION

Type	Electronic
Sensing	Single fhase
Regufalion	$\pm 1 \%$

GOVERNOR SPECIFICATIONS

Type	Electronle
frequency Regulation	isochronous
Steaty State Regulation	$\pm 0.25 \%$

ELECTRICAL SYSTEM

Eatiery Charge Allemator	12 Vol $15 \mathrm{Amp}-25$ \& 30 kW 12 Volt 30 Amp-45 \& 60 kW
Static Battery Ctatarger	2 Amp
Frecommended Battery	Group 26, 525CCA
System Vollage	12 VoHs

GENERATOR FEATURES

Fevolving field hearyy duty generalor
Directly connetted to the engine
Operating lemperatore rise t $20^{\circ} \mathrm{C}$ above a $40^{\circ} \mathrm{C}$ ambient
Class H insulation is ratert at $150^{\circ} \mathrm{C}$ rise al $25^{\circ} \mathrm{C}$ ambient
All modets fully prolotyped tested

ENCLOSURE FEATURES

Sleel weather protective enclosure with aluminum roof (all models) or aluminum weather prolective enclosure (available of 60 kN only)	Ensures proteclion against mother nature. Electrostalically applied texdued epoxy paink for added durability.
Enclosed cuitical grade mutifiter	Quiet, crilical grade mather is mounled inside the shit to prevent inuries.
Smaill, compact, attraclive	Wakes for an easy, eye appealimg installalion.
SAE	Sound amensated enclosure ensures quiet operation.

ENGINE SPECIFICATIONS: 25 \& 30 kW

Make	Genay
Model	cilline
Oplinders	. 0.8
Displacement (Lilers)	1.5
Bore (in/mm)	3.057774
Stroke (ivinma)	6.13/79.5
Compression Ratio	- 71.6
hitake Air Systern	Nadualy Asportei
Lifer Type	Hydrautic

ENGINE SPECIFICATIONS: 45 \& 60 KW

Make	Generac
Model	tr-line
Cylfnders	4
Displacerfent (Liters)	2.4
Bore (in/mm)	3.41/86.5
Stroke (in/mam)	3.94/100
Compression Ralio	9.5:1
Intake Air System	Natuality Aspirated (45 x) or Twbochagel/A解cooted (60 納)
Litea Type	Hydrautic

ENGINE LUBRICATION SYSTEM

Oin Pamp Type	Gear
Oil Fitter lype	Fulit low spin-on cartidge
Crankcase Capacity (q /fl)	4/3.8

ENGINE COOLING SYSTEM

Type	Closed
Waler Pump	Bell dfiven
Fan Speed (pmm)	$\begin{array}{r} 2484-25 \& 30 \mathrm{~kW} \\ 1865-45 \mathrm{~kW} \\ 2100-60 \mathrm{~kW} \end{array}$
Fan Diameter (inimm)	$17.7 / 449.6$ ($25 \& 30 \mathrm{WW}$) or 225558.8 (45 \& 60 kW$)$
Fan Mode	Pasher (25 \& 30 kW) or Puller (45 \& 60 kM)

FUEL SYSTEM

Fuel hype	Nalusal gas, propase vapor
Camurear	Down Urat
Secondary Fuel gegutator	Standara
Fuel Shert Off Solenoid	Standard
Operativo Fuel Pressure	5-14 water column/9-26 mm HG

GENERATOR OUTPUT VOLTAGE/KW - 60 Hz

		WW LPG	Amp LPG	WW Nat. Gas	Amp Nat Gas	CB Size (foth)
07025	120/240 V, 10, 1.0 pf	25	104	25	104	$125 \cdots$
	120/208V, 30, 0.8 pf	25	87	25	87	104.0\%.
	120/240V, $30,0.8 \mathrm{pf}$	25	75	25	75	90
07030	120/240V, $10,1.0 \mathrm{pf}$	30	125	30	125	150.e.:-
	120/208 V, 30, 0.8 pl	30	104	30	104	125
	120/240 $, 30,0.8 \mathrm{pf}$	30	90	30	90	100\%:
07045	$120 / 240 \mathrm{~V}, 10,1.0 \mathrm{ff}$	45	188	45	188	200
	120/208 V, 30, 0.8 pf	45	156	45	156	175
	120/240V, 30, 0.8 pf	45	135	45	135	150
	277/480 V, 38, 0.8 pl	45	68	45	68	80
07060	120/240 V, $10,1.0 \mathrm{pf}$	60	250	60	250	300
	120/208V, $36,0.8 \mathrm{pf}$	60	208	60	208	250
	120/240V, 30, 0.8 pf	60	180	60	180	200
	$277 / 480 \mathrm{~V}, 30,0.8 \mathrm{pf}$	60	90	60	90	100

SURGE CAPACITY IN AMPS

		Voltage Dip @ < 4 pf	
		15\%	30\%
07025	120/240 V, 16	86	209
	$120 / 208 \mathrm{~V}, 38$	84	204
	120/240 V, 30	73	177
ar030	$120 / 240 \mathrm{~V}, 10$	109	264
	120/208V, 36	109	264
	$120 / 240 \mathrm{~V}, 38$	94	229
07045	120/240 V. 18	61	153
	$120 / 208 \mathrm{~V}, 36$	64	160
	$120240 \mathrm{~V}, 36$	55	139
	277/480 V, 36	29	72
0.050	120/240 V. 16	95	237
	120/208 V, 30	100	251
	120/240 V, 36	87	218
	$277 / 480 \mathrm{~V}, 30$	42	105

Note: Fuel pipe nust be sized for tull foad.

ENGINE FUEL CONSUMPTION
Natural Gas
(fthm) $\quad\left(\mathrm{m}^{3} / \mathrm{mr}\right) \quad(\mathrm{gal} / \mathrm{hr}) \quad(1 / \mathrm{mr})$

07025	Exercise cycle	60	1.7	0.7	2.5
	25\% of rated load	220	6.3	2.9	9.1
	50\% of raled load	297	8.4	3.3	12.3
	75% of rated load	362	10.3	4	15
	100\% of fated liad	430	12.2	4.7	17.8
07030	Exercise cycle	60	1.7	0.7	2.5
	25\% of rated load	240	6.8	2.6	10
	50\% of rated load	320	9.1	3.5	13.3
	75\% of rated load	400	11.4	4.4	16.6
	100\% of rated load	492	14	5.4	20.4
0.045	Exercise cycle	65	1.8	0.7	2.6
	25\% of rated lad	210	6	2.3	8.6
	50\% of faled load	380	10.8	4.2	15.7
	75\% of rated laad	545	15.5	5.9	22.4
	100\% of cafed load	730	20.7	8	30.1
0.060	Exercise cycle	123	3.5	1.34	5.1
	25% of rated toad	267	7.6	2.7	10.5
	50\% of rated load	483	13.7	5	19
	75\% of faled load	672	19.1	7	26.5
	100\% of rated 1036	862	24.5	9	33.9

Fereet to "Emissions Data Sheets" for maximum fuel fow for EPA and SCAMUD peemititing puposes.

[^3]| ENGIRE COOLHE | 25 kw | 30 xW | 45 kw | |
| :---: | :---: | :---: | :---: | :---: |
| | | | | |
| Air flow (indet ari inctuding alierator and combuslion ain in chavemm) | 249070.5 | 249070.5 | 2725/77.2 | 3800928° |
| System coolanil capacity (gal/iters) | 277.6 | 277.6 | 3/11.4 | 27.595 |
| Heat rejection to coclant (Bru per hr/M per hr) | 112,000/118.2 | 135,000/142.4 | 193,000/203.6 | 270,000/284.9 |
| Maximum opention air temperature on radiato (${ }^{\circ} \mathrm{C} / \mathrm{P}$) | $60 / 450$ | | | |
| Maxinum arnbienil temperature (${ }^{\circ} /{ }^{\circ} \mathrm{F}$) | $50 / 140$ | | | \cdots |
| COMBUSTIOH REOUIREMENTS | | | | |
| Flow at ated powel (cfinvemay) | 621.8 | 7212 | 144/4.1 | \$80,5. 1 |

SOUNO EMISSIONS

Sound output in 4 ((A) at $23 \mathrm{At}(7 \mathrm{~m})$ with generator in execcise mode*	59	59	61	65
Sound output in des(A) at $23 \mathrm{ft}(7 \mathrm{~m}$) with generator popelating at nomal foad*	72	73	73	72

*Sound levels are taken fiom the chon of the genetalor. Sound lerels taken ltom ohar sides of the generalor may be highes depenting on instalakion parameters.
EXHAUST

Exhaust flow at rated output (chm/cram)	203/5.7	237/5.7	420/11.9	494/14
	583/1100	61011130	583/1100	5667050

ENGINE PARAMETERS

fated Symchorous mipm	3600
	1
POWER ADJUSTMENT FOR AMBIENT CONOITIOHS	
Temperaluse Deration	. 3% for every $10^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$ or 1.65% for every $10{ }^{\circ} \mathrm{F}$ above $77^{\circ} \mathrm{F}$
Altitude Deralion (25, 30 \& 45 kW). 1% for every 100 m above $183 \mathrm{mor} 3 \%$ for every 1000 ft above 600 ff
Altilude Deration ($60 \mathrm{~kW} \mathrm{)} \mathrm{}, \mathrm{}, \mathrm{{ }}^{\text {a }}$ (I
CONTROLLER FEATURES	
2-Line Plain Text LCo Display.Simple user inteflace for ease of operation.
Mode Switch: Auto	Automatic Start on Sitility failure. 7 day exerciser
	I
Mantal ..Stai	art with starter contol, unit stays on. If utity fails, translef to load takes place.
Progmanmable start delay betweent 10-30 seconds	1 ...Standard
Engine Start Sequence.-yclic cranking: 16 sec on, 7 fest (90 sec maximum duralion)
Engine Warm-up.... 5 Sec
Engine Coot-bown.	. 1 min
Starter Lock-out.Stater cannot re-engage untill 5 sec alter engine has stopped.
Smart Battery Charger.Slandard
Atlonatic Voilage Regulation wilh Over and Under Vottaga Protection.	Standard
Allomatic Low Oil Pressure Shudown	...Standard
Overspeed Shutdown.	Standard, 72 Hz
High Temperatue Shuidown.Standard
Overcanak Protection.Standard
Salety Fused. Standard
Failure to Transler Protection.Standard
Low Batery Protection..., Standard
50 Event Run Log...	Standard
Fulure Set Capable Exerciser.	Standard
Incorret Wiring Protection.	Standard
Internal Fank Protection	... Standard
	M,
Governor Falue Protection..	Standard

[^4]

GENERAC

NOTICE OF ACCEPTANCE (VOA)

(305) 375-2901 FAX (305) 375-2908

F\&L Aluminum Parts, Inc.
1720 NW. $22^{\text {ad }}$ Court, Unit \#3
Pompann Beach, Florida 33069

Scope:

This NOA is being issued under the applicable rules and regulations governing the use of construction materials. The documentation submitted has been reviewed and accepted by Miami-Dade County PERA-Product Control Section to be used in Miami Dace County and other areas where allowed by the Authority Having Jurtstriction (AHJ).

This NOA shall not be valid after the expiration date stated below. The Miami-Dade County Product Control Section (In Miami Dace County) and/or the AHJ (in areas other than Miami Dade County) reserve the right to have this product or material tested for quality assurance purposes. If this product or material fails to perform in the accepted manner, the manufacturer will incur the expense of such testing and the AIIJ may immediately revoke, modify, or suspend the use of such product or material within their jurisdiction. PERA reserves the right to revoke this acceptance, if it is determined by Miami-Dade County Product Control Section that this product or material fails to meet the requirements of the applicable building code.

This product is approved as described herein, and has been designed to comply with the High Velocity Hurricane Zone of the Florida Building Code.

DESCRIPTION: Aluminum Roof Mounted Stand Frame Support for Air Conditioning Units

APPROVAL DOCUMENT: Drawing No. FNL. 11003 , titled "Aluminum Stands for Rooftop Equipment, Square Posts ", sheets 1 through 3 of 3, prepared by Nu -Wind Engineering, dated July 15, 2011 , signed and sealed by Christian Langley, P.E., on March 07, 2012, bearing the Miami-Dade County Product Control Revision stamp with the Notice of Acceptance number and the expiration date by the Miami-Dade County Product Control Section.

Missile Impact Rating: None

LABELING: Each stand frame shall bear a permanent label with the manufacturer's name or logo, city, state and the following statement: "Miami-Dade County Product Control Approved", unless otherwise noted herein.
RENEWAL of this NOA shall be considered after a renewal application has been filed and there has been no change in the applicable building code negatively affecting the performance of this product.
TERMINATION of this NOA will occur after the expiration date or if there has been a revision or change in the materials, use, and/or manufacture of the product or process. Misuse of this NOA as an endorsement of any product, for sales, advertising or any other purposes shall automatically terminate this NOA. Failure to comply with any section of this NOA shall be cause for termination and removal of NOA.
ADVERTISEMENT: The NOA number preceded by the words Miami-Dade County, Florida, and followed by the expiration date may be displayed in advertising literature. If any portion of the NOA is displayed, then it shall be done in its entirety.
INSPECTION: A copy of this entire NOA shall be provided to the user by the manufacturer or its distributors and shall be available for inspection at the job site at the request of the Building Official.
This NOA revises \& renew NOA \# 09-0709.04 and consists of this page 1, evidence submitted pages E-1 \& E-2 as well as approval document mentioned above. The submitted documentation was reviewed by Helmy A. Makar, R.E., M.S.

$04 / 12 / 2012$

NOA No. 11-0824.01
Expiration Date: 12/28/2016
Approval Date: 04/12/2012

F\&LAluminum Parts, Inc.

NOTICE OF ACCEPTANCE: EVIDENCE SUBMITTED

1. EVIDENCE SUBMITTED UNDER PREVIOUS APPROVAL \#06-0922.03
A. DRAWINGS
2. . Drawing No. 06-501, titled "Air Conditioning Stands", sheets 1 through 3 of 3, prepared by Thornton Tomasetti, dated September 13, 2006, signed and sealed by..... John W. Knezevich, P.E.
B. TESTS
3. None.

C. CALCULATIONS

4. Calculation titled "Air Conditioning Stands Calculations", dated September 15, 2006, sheets 1 through 160 of 160 , signed and sealed by J. W. Knezevich, P.E.
D. QUALITY ASSURANCE
5. By Miami-Dade County Building Code Compliance Office.
E. MATERIAL CERTIFICATIONS
6. None.
7. EVIDENCE SUBMITTED UNDER PREVIOUS APPROVAL \# 09-0709.04
A. DRAWINGS
8. Drawing No. S-1, titled "Air Conditioning Stands Florida", sheets 1 through 3 of 3, prepared by Milton Cubas, P.E., Inc., dated May 12, 2009, signed and . sealed by Milton Cubas, P.E, on December 02, 2009.
B. TESTS
9. None.
C. CALCULATIONS
10. Calculation titled " Air Conditioning Stands", dated May 13, 2009, sheets 1 through 206 of 206, signed and sealed by Milton Cubas, P.E.
D. QUALITY ASSURANCE
11. By Miami-Dade County Building Code Compliance Office.
E. MATERIAL CERTIFICATIONS
12. None.

F \& L Aluminum Parts, Inc.

NOTICE OF ACCEPTANCE: EVIDENCE SUBMITTED

3. NEW EVIDENCE SUBMITTED

A. DRAWINGS

1. Drawing No. FNL. 11003 , titled "Aluminum Stands for Rooftop Equipment, Square Posts", sheets 1 through 3 of 3, prepared by Nu-Wind Engineering, dated July 15, 2011, signed and sealed by Christian Langley, P.E., on March 07, 2012.
B. TESTS
2. None.
:....
C. CALCULATIONS
3. Calculation titled "Air Conditioning Stands Calculations", dated August 10, 2011, sheets 1 through 50 of 50, prepared by Nu-Wind Engineering, signed and sealed by Christian Langley, P.E.
4. Calculation titled "Air Conditioning Stands Calculations", dated March 07, 2012, sheets 1 through 30 of 30 , prepared by Nu-Wind Engineering, signed and sealed by Christian Langley, P.E
D. QUALITY ASSURANCE
5. By Miami-Dade County Department of Permitting, Environment, and regulatory Affairs (PERA).
E. MATERIAL CERTIFICATIONS
6. None.

Heme A. Malar, P. E., M.S. PERA, Product Control Unit Supervisor NOA No. 11-0824.01
Expiration Date: 12/28/2016
Approval Date: 04/12/2012

DRGGNW

3 DESIGN ARCHITECTURE

4300 BISCAYNE BLVD. \#G-04
MIAMI, FL 33137
P. 305-438-9377 / F. 305-438-9379

4354 ALTON ROAD
MIAMI BEACH, FLORIDA 33139

STRUCTURAL CALCULATIONS
 11/23/2015

Anchorage for Generator

Structural Engineers 40114 Threshold inspectors 0947 State Plans Examiner PX 1305 State Builoing lnspector RN 3318

2520 N.W. $97^{7 \mathrm{lb}}$ Avenue, Suite \#240 Doral, Flonida 33172
PH: 786-3i36-0881 Fax: 786-336-088.1 Email: jflengeabellsouth net www.juanfernanderbarquiape.cora

MecaWind std v2.2.5.7 per ASCE 7-10
 Developed by $U E C A$ Enterprises, inc. Copyright whw,mecaenterprises.com

Date : 11/23/2015
Company Name : JUAN FERNANDEZ
Adaress :2520 NW 97 A
city :DORAE
State :FLORIDA
rocatio

Project No. :1
Designed By : E
Description :Winn pressures
Customer Name : 3DESIGN
Proj Location : 4354 ALTON RD MIAMI BEACH

Input Parameters: Other Structures \& Building Appurtances MWFRS (Ch 29) Basic wind Speedf
Structural Category Natural Frequency Importance Factor Alpha
At
Am
Cc Cc
Epsilon
$=175.00 \mathrm{mph}$
$=175.00 \mathrm{II}$
$=\quad \mathrm{N} / \mathrm{A}$

N/A
1.00
11.50
0.09
0.11
$\begin{array}{ll}= & 0.11 \\ = & 0.15\end{array}$
$=0.13$
Exposure category
Flexi
Kd Di
Zg
Zt
Bm
1
Zmin

$\bullet_{*}^{* *}$
$=0.85$
$=9.00 \mathrm{ft}$
$=0.19$
$=552.56 \mathrm{ft}$
$=0.93$
$=0.89$

Gust Factor Summary
Not a Flexible structure use the Lessor of Gust1 or Gust2 $\quad=0.85$
Design wind Pressure - Other Structures

Wind on Chimneya, ranks, Rooftop Equip. \& Similax Structures per Figure 29.5-2:

Elev £t	$\mathbf{X z}$	Xzt	XC	$\begin{array}{r} \text { GZ } \\ \text { pef } \end{array}$	$\begin{aligned} & \text { Pres } \\ & \text { paf } \end{aligned}$
3.00	1.03	1.00	0.90	43.616	37.073

Notes:
Top E1 $=$ Top elevation of element under consideration relative to grade.
Btm $E 1=T O p$ elevation of alement under consfderation relative to grade.
Width $=$ Dia of circular cross-section \& least horizontal dim of square, hexagonal or octagonal cross section.
Type $=$ (1)Square-Wind on Face, (2)Square-wind Along Diagonal, \{3)Hexag. or Octag. (4) Round-Moderately Smooth, (5) Round-Rough, (6) Round-Very Rough

Cf = Shape factor per Figure 6-21 based upon H/D ratio and Type selected.
Addl $=$ Additional Area (piping, Ladders, platforms, etc..), cf=1.0 is assumed.
Tot wid $=$ rotal Wind width: cf * Width + Addl
Shear $=$ Shear (Btm: Press * Tot Wid + Shear (top)

Structural Engineers 40114 Threshold inspectors 0947 State Plans Examinet PX 1305 State Buidding Inspector BN 3318

250 N W. $97^{1 \mathrm{lo}}$ Avenue, Suite $\# 240$ Dorat Florida 33172
PH: 786-336-088) Fax: 786-336-0884 Email. jibeng (abllscmuth net

Stuctural Engizeers 40114 Threshold inspectors 09 年 7 State Plans Examiner PX 1305 State Building Inspector ON $3: 18$

2520 NW. 97^{th} Avceuc, Suite $\# 240$ Doral, Florida 39172
PH: 786-336-0881 Fax: 786-336-0884 Fnail jlbeng@bellsoulh net тษw.juanfernandezbargulape.conn

KWIK Bolt 3 Expansion Anchor 3.3.6
Table 6 - Carbon Steel KWIK Bolt 3 Allowable Loads in Normal-Weight Concrete ${ }^{\text {t }}$

Anchor Diameter in. (mm)	Embedment Depth in. (mma)	$f_{6}^{\prime}=2000 \mathrm{psi}(13.8 \mathrm{MPa})$		$f_{6}^{\prime}=3000 \mathrm{psi}(20.7 \mathrm{MPa})$		$f_{\text {c }}^{\prime}=4000 \mathrm{psi}(27.6 \mathrm{MPa})$		$f_{c}^{\prime}=6000 \mathrm{psi}$ (4 I .4 MPa)	
		$\begin{aligned} & \text { Tenston } \\ & \text { ib (kN) } \end{aligned}$	$\begin{aligned} & \text { Shear } \\ & \text { ib (kN) } \end{aligned}$	Tension b (kN)	$\begin{aligned} & \text { Shear } \\ & \text { ib (kN) } \end{aligned}$	Tension 觔 (kN)	$\begin{aligned} & \text { Shear } \\ & \text { ib }(\mathrm{kN}) \end{aligned}$	Tension $\mathrm{lb}(\mathrm{kN})$	$\begin{aligned} & \text { Shear } \\ & \text { ib }(\mathrm{kN}) \end{aligned}$
$\begin{gathered} 1 / 4 \\ (6.4) \end{gathered}$	1-1/8 (29)	$\begin{aligned} & 300 \\ & \text { (1.3) } \end{aligned}$	$\begin{aligned} & 530 \\ & \text { (2.4) } \end{aligned}$	$\begin{aligned} & 365 \\ & (1.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 530 \\ & (2.4) \end{aligned}$	$\begin{aligned} & 430 \\ & \text { (1.9) } \\ & \hline \end{aligned}$	$\begin{aligned} & 530 \\ & (2.4) \end{aligned}$	$\begin{aligned} & 550 \\ & (24) \\ & \hline \end{aligned}$	
	2 (51)	$\begin{aligned} & 635 \\ & (2.8) \end{aligned}$		$\begin{aligned} & 715 \\ & \text { (3.2) } \end{aligned}$		$\begin{gathered} 800 \\ (3,6) \end{gathered}$		\because 845	
	3 (76)	$\begin{aligned} & 755 \\ & (3.4) \\ & \hline \end{aligned}$		$\begin{aligned} & 795 \\ & (3.5) \end{aligned}$		$\begin{array}{r} 840 \\ (3.7) \\ \hline \end{array}$			
$\begin{gathered} 3 / 8 \\ (9.5) \end{gathered}$	1-5/8 (41)	$\begin{gathered} 730 \\ (3.2) \end{gathered}$	$\begin{aligned} & 1135 \\ & (5.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 910 \\ & (4.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 1275 \\ & (5.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 1095 \\ & (4.9) \\ & \hline \end{aligned}$	$\begin{aligned} & 1315 \\ & (5.8) \end{aligned}$	$\begin{aligned} & 1090 \\ & (4,8) \end{aligned}$	
	2-1/2 (64)	$\begin{aligned} & 1260 \\ & (5.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 1315 \\ & \{5.8) \end{aligned}$	$\begin{aligned} & 1555 \\ & (6.9) \\ & \hline \end{aligned}$	$\begin{aligned} & 1315 \\ & (5.8) \end{aligned}$	$\begin{aligned} & 1850 \\ & \text { (8.2) } \\ & \hline \end{aligned}$		$\begin{aligned} & 2060 \\ & (96)^{\circ} \end{aligned}$	1315. (5.8)
	3-1/2 (89)	$\begin{aligned} & 1580 \\ & (7.0) \end{aligned}$		$\begin{aligned} & 1770 \\ & (7.9) \end{aligned}$		$\begin{gathered} 1965 \\ (8.7) \end{gathered}$		$\begin{aligned} & 2150 \\ & (9.8)^{\circ} \end{aligned}$	
	2-1/4 - (57)	$\begin{aligned} & 1235 \\ & (5.5) \end{aligned}$	$\begin{aligned} & 1865 \\ & (8.3) \end{aligned}$	$\begin{aligned} & 1430 \\ & (6.4) \end{aligned}$	$\begin{aligned} & 2300 \\ & (10.2) \end{aligned}$	$\begin{aligned} & 1620 \\ & 7.2) \end{aligned}$	$\begin{aligned} & 2405 \\ & (\ddagger 0.7) \end{aligned}$	$\begin{aligned} & 1975 \\ & (8.8) \end{aligned}$	$\begin{aligned} & 2415 \\ & (10.7) \end{aligned}$
$\begin{gathered} 1 / 2 \\ (12.7) \end{gathered}$	(89)	$\begin{aligned} & 1930 \\ & (8.6) \end{aligned}$	$\begin{aligned} & 2415 \\ & (10.7) \end{aligned}$	$\begin{aligned} & 2185 \\ & (9.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 2415 \\ & (10.7) \end{aligned}$	(2440)	$\frac{(2415)}{(10.7)}$	$\begin{aligned} & 3240 \\ & (14.4) \end{aligned}$	
	4-3/4) (121)	$\begin{aligned} & 2135 \\ & (9.5) \end{aligned}$		$\begin{aligned} & 2355 \\ & (10.5) \end{aligned}$		$\begin{aligned} & 2575 \\ & (11.5) \end{aligned}$		$\begin{aligned} & 3620 \\ & (16.1) \end{aligned}$	
	2-3/4 (70)	$\begin{aligned} & 1920 \\ & (8.5) \end{aligned}$	$\begin{aligned} & 2750 \\ & (12.2) \end{aligned}$	$\begin{aligned} & 2065 \\ & (9.2) \end{aligned}$	$\begin{aligned} & 3410 \\ & (15.2) \end{aligned}$	$\begin{aligned} & 2210 \\ & (9.8) \end{aligned}$	$\begin{aligned} & 3785 \\ & (16.8) \end{aligned}$	$\begin{aligned} & 2830 \\ & (12.6) \end{aligned}$	$\begin{array}{r} 3910 \\ (17.4) \end{array}$
$\begin{gathered} 5 / 8 \\ (15.9) \end{gathered}$	4 (102)	$\begin{aligned} & 2660 \\ & (11.8) \end{aligned}$	$\begin{aligned} & 3910 \\ & (17.4) \end{aligned}$	$\begin{aligned} & 3020 \\ & (13.4) \end{aligned}$	$\begin{aligned} & 3910 \\ & (17.4) \end{aligned}$	$\begin{aligned} & 3385 \\ & (15.1) \\ & \hline \end{aligned}$	$\begin{aligned} & 3910 \\ & (17.4) \end{aligned}$	$\begin{aligned} & 4770 \\ & (21.2) \\ & \hline \end{aligned}$	
	5-1/2 (140)	$\begin{aligned} & 3285 \\ & (14.6) \end{aligned}$		$\begin{aligned} & 3695 \\ & (16.4) \end{aligned}$		$\begin{aligned} & \hline 4100 \\ & 18.2) \end{aligned}$		$\begin{aligned} & 5325 \\ & (23.7) \\ & \hline \end{aligned}$	
$\begin{gathered} 3 / 4 \\ (19.1) \end{gathered}$	3-7/4 (83)	$\begin{aligned} & 2 \ddagger 20 \\ & (9.4) \end{aligned}$	$\begin{aligned} & 4090 \\ & (18.2) \end{aligned}$	$\begin{aligned} & 2425 \\ & (10.8) \end{aligned}$	$\begin{aligned} & 4900 \\ & (21.8) \end{aligned}$	$\begin{aligned} & 2730 \\ & (12.1) \end{aligned}$	$\begin{aligned} & 5310 \\ & (23.6) \end{aligned}$	$\begin{aligned} & 3785 \\ & (96.8) \end{aligned}$	$\begin{aligned} & 5310 \\ & (23.6) \end{aligned}$
	4-3/4 (121)	$\begin{aligned} & 3240 \\ & (14.4) \\ & \hline \end{aligned}$	$\begin{aligned} & 5340 \\ & (23.8) \end{aligned}$	$\begin{array}{r} 4260 \\ (18.9) \\ \hline \end{array}$	$\begin{aligned} & 5340 \\ & (23.8) \end{aligned}$	$\begin{aligned} & 5285 . \\ & (23.5) . \end{aligned}$	$\begin{aligned} & 5495 \\ & \{24.4\} \end{aligned}$	$\begin{array}{r} 6155 \\ (27.4) \\ \hline \end{array}$	$\begin{aligned} & 6225 \\ & (27.7) \end{aligned}$
	6~1/2 (165)	$\begin{aligned} & 4535 \\ & (20.2) \end{aligned}$		$\begin{aligned} & 5860 \\ & (26.1) \end{aligned}$		$\begin{aligned} & 7\{85 \\ & (32) \\ & \hline \end{aligned}$		$\begin{aligned} & 7005 \\ & (31.2) \end{aligned}$	
$\begin{gathered} 1 \\ (25.4) \end{gathered}$	4-1/2 (114)	$\begin{aligned} & \hline 3330 \\ & (14.8) \\ & \hline \end{aligned}$	$\begin{array}{r} 7070 \\ 31.47 \\ \hline \end{array}$	$\begin{gathered} 4050 \\ (18.0) \end{gathered}$	$\begin{array}{r} 7600 \\ (33.8) \\ \hline \end{array}$	$\begin{aligned} & 4670 \\ & (20.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 8140 \\ & (36.2) \end{aligned}$	$\begin{array}{r} 5070 \\ (22.6) \\ \hline \end{array}$	$\begin{aligned} & 9200 \\ & (40.9) \end{aligned}$
	$6 \quad(152)$	$\begin{array}{r} 4930 \\ (21.9) \\ \hline \end{array}$	$\begin{aligned} & 9200 \\ & (40.9) \end{aligned}$	$\begin{aligned} & 6000 \\ & (26.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 9200 \\ & (40.9) \end{aligned}$	$\begin{array}{r} 7070 \\ (31.4) \\ \hline \end{array}$	$\begin{aligned} & 9200 \\ & (40.9) \end{aligned}$	$\begin{aligned} & 8400 \\ & (37.4) \\ & \hline \end{aligned}$	
	9 (229)	$\begin{aligned} & 6670 \\ & (29.7) \\ & \hline \end{aligned}$		$\begin{aligned} & 7670 \\ & (34.1) \end{aligned}$		$\begin{aligned} & 8670 \\ & (38.6) \\ & \hline \end{aligned}$		$\begin{aligned} & 10670 \\ & (47.5) \end{aligned}$	

1 intermediate load values tor other concrete strengths and embedments can be calcutated by linear interpolation.

KWIK Bolt 3 Expansion Anchor 3.3.6

Influence of Edge Distance and Anchor Spacing on Anchor Performance

Load Adjustment Factors for $1 / 4^{\prime \prime}$ Diameter Anchors											
Adjustment Factor $1 / 4 \mathrm{in}$.	Spacing Tension/Shear f_{N}		Edge Distance Tension $f_{\text {RN }}$		Spacing Shear $f_{A v}$		Edge Distance Shear				
			1. Toward Edge $f_{\text {ant }}$	$\begin{gathered} \text { II } \\ \text { Toward } \\ \text { Edge } \\ f_{\text {Rn }} \end{gathered}$			1 Away from Edge $f_{\mathrm{P} \times 3}$				
Embedment Depth, in.	$1 \cdot 1 / 8$	22			1-1/8	22	1-1/8	≥ 2	$\geq 1.1 / 8$	$21.1 / 8$	$\geq 1.1 / 8$
1-1/8	0.60		0.80		0.90						
1.11/16	0.75		0.93		0.94		0.50	0.60	0.83		
1.3/4	0.78		0.95		0.94		0.52	0.61	0.84		
2	0.85	0.60	1.00	0.80	0.96	0.90	0.59	0.67	0.86		
2-1/4	0.92	0.64		0.83	0.98	0.91	0.67	0.73	0.89		
co $2-1 / 2$	0.99	0.68		0.87	1.00	0.92	0.74	0.79	0.91		
93	1.00	0.76		0.93		0.94	0.89	0.91	0.96		
\% 3.3/8		0.82		0.98		0.96	1.00	1.00	1.00		
$03.1 / 2$		0.84		1.00		0.96	1.00	1.00	1.00		
4		0.92				0.98					
4.1/2		1.00				1.00					
4-3/4											
5											

Load Adjustment Factors for 3/8 ${ }^{\text {" }}$ Diameter Anchors														
Adjustment factor $3 / 8$ in.		$\begin{gathered} \text { Spacing, } \\ \text { Tension/Sifer } \\ f_{N N} \end{gathered}$		Edge pistance Tenision $f_{\text {for }}$		Spacing Shear f_{Nv}		Edge Distance Shear						
		1 Toward Edge $f_{\text {RN }}$	\# Toward Edge $f_{R N}$			1 Away from Edge $f_{\text {m }} 3$								
	mbedment Depth, fn.			1-5/8	$\geq 2-1 / 2$			1.5/8	22-1/2	1-5/8	$\geq 2.1 / 2$	$21.5 / 8$	$\geq 1.5 / 8$	$\geq 1-5 / 8$
	1.5/8.	0.60		0.80		0.90								
	2. $:=$	0.67		0.86		0.92								
	2.1/4	0.72		0.90		0.93								
	2.1/2	0.77	0.60	0.94	0.80	0.94	0.90	0.51	0.61	0.83				
$\dot{5}$	3	0.87	0.66	1.00	0.85	0.97	0.92	0.62	0.69	0.87				
-	3.1/4	0.92	0.70		0.88	0.98	0.92	0.67.	0.73	0.89				
.	3.1/2	0.97	0.73		0.91	0.99	0.93	0.72	0.77	0.90				
\%	3.3/4	1.00	0.76		0.93	1.00	0.94	0.77	0.82	0.92				
∞	4		0.79		0.96		0.95	0.82	0.86	0.94				
	4.1/2-		0.86		1.00		0.96	0.92	0.94	0.97				
	5		0.92				0.98	1.00	1.00	1.00				
	5.5/8		1.00				1.00							
	5.3/4													

Load Adjustment factors for $1 / 2^{\prime \prime}$. Diameter Anchors											
 Adjustment Fractor $1 / 2 \mathrm{in}$.	$\begin{gathered} \text { Spacing } \\ \text { Tension/Shear } \\ f_{\text {At }} \end{gathered}$		Edge Distance Tension f_{pN}		Spacing Shear $f_{A v}$		Edge Distance Shear				
				II Yoward Edge f_{RNH}			\perp Away from Edge $f_{\text {gns }}$				
Embedment Depth, in.	2.9/4	$23.1 / 2$			2-1/4	23-1/2	2-1/4	$23.1 / 2$	$22 \cdot 1 / 4$	$\geq 2.1 / 4$	$\geq 2-1 / 4$
2.1/4	0.60		0.80		0.50						
$2.1 / 2$	0.64		0.83		0.91						
3	0.71		0.89		0.93						
3.3/8	0.76		0.93		0.94		0.50	0.60	0.83		
3-3/4	0.81	0.62	0.98	0.82	0.95	0.91	0.56	0.64	0.85		
4.1/4	0.88	0.67	1.00	0.86	0.97	0.92	0.63	0.70	0.87		
6, 4.3/4	0.96	0.71		0.90	0.99	0.93	0.70	0.76	0.90		
5	1.00	0.74		0.91	1.00	0.93	0.74	0.79	0.91		
(5) 5-3/4		0.81		0.97		0.95	0.85	0.88	0.95		
6		0.83		1.00		0.96	0.89	0.91	0.96		
$6.1 / 2$		0.87				0.97	0.96	0.97	0.99		
7.1/4		0.94				0.99	100	1.00	1.00		
7.9/4		1,00		,		1.00					

Note: Tables apply for listod etmbedment
depths. Reduction factors for other embedment depths must be calcutated tising equations below.

Spacing -- Tension	
$\begin{aligned} & h_{\text {man }} \leq h_{x+1} \leq h_{\text {nom }} \\ & f_{N N}=\frac{s h_{x 1}+0.88}{\frac{3.13}{}} \end{aligned}$	$\begin{gathered} h_{\text {nci }} \geq h_{\text {mom }} \\ f_{N N}=\frac{s / h_{\text {mon }}+0.88}{-\frac{13}{3.13}} \end{gathered}$

Edge Distance - - Tension	
$\begin{aligned} & h_{\text {min }} \leq h_{\mathrm{cc} 1} \leq h_{\text {nom }} \\ & f_{\mathrm{fiN}}=\frac{\mathrm{c} / \mathrm{h}_{\mathrm{kc} 1}+2}{3.75} \end{aligned}$	$\begin{gathered} h_{\text {Nit }} \geq h_{\text {NoMT }} \\ f_{\text {AK }}=\frac{\mathrm{c} / h_{\text {foan }}+2}{3.75} \end{gathered}$

Spacing - Shear	
$\begin{gathered} \mathrm{h}_{\text {m/n }} \leq \mathrm{h}_{\mathrm{scl} 1} \leq h_{\mathrm{som}} \\ f_{\mathrm{AV}}=\frac{\mathrm{s} / \mathrm{h}_{\mathrm{scl}}+10.25}{12.5} \end{gathered}$	$\begin{gathered} h_{* A K} 2 h_{\operatorname{tax}} \\ f_{\mathrm{AV}}=\frac{\mathrm{s} / \mathrm{h}_{\mathrm{DNan}}+10.25}{12.5} \end{gathered}$

$\begin{aligned} & \text { Edge Distance - Shear } \\ & h_{\operatorname{mat}} \geq h_{\min } \end{aligned}$
perpendicular toward edge $f_{\mathrm{Rvt}}=\frac{\mathrm{c}}{3 h_{\min }}$
parallel to edge $f_{\mathrm{RN} / 2}=\frac{\mathrm{c} / \mathrm{m}_{\min }+0.75}{3.75}$ perpendicular away from edge $f_{\mathrm{RN} 3}=\frac{\mathrm{c} / \mathrm{h}_{\min }+5.82}{8.82}$

Note: Edge distance and anchor spacing for all lightweight and sand-lightweight concrete are obtained by dividing the normat-weight dimensions by 0.75 and 0.85 , respectively.

н

Generac Power Sysiems, lic. - S45 W29290 HW, 59, Waukesha, Wi 53189 - generac.com

PROJECT: 4354 Alton Road

Juan Fernandez-Barquin, P.E.
Structural Engineers $40114 \quad 2520$ N.W. $977^{\text {th }}$ Avenue, Suite $\$ 240$ Toreshold laspectors 0947 State Plans Examiner PX 1305 State Building lospector BN 3318

PH: 786-336-0881 Fax: 786-336-0884 Email: jfbeag@belisouth,net www.juaufernendezbarquippe.com

3 DESIGN ARCHITECTURE
4300 BISCAYNE BLVD. \#G-04
M\{AM1, FL 33137
P. 305-438-9377 / F. 305-438-9379

4354 ALTON ROAD MIAMI BEACH, FLORIDA 33139

STRUCTURAL CALCULATIONS 12/15/2015

Expansion Bolt Design

Stuchual Engineers 40114 Threshole Inspectors 0947 State Plans Examiner YX 1305 State Building lnspector BN 3 3 18

2520 N.W. $97^{\text {th }}$ Avenue, Sunte $\$ 240$ Dorah, Flonida 35172

P1: 786-336.0881 Fax: 786-336.0884

Email jfueag@belsouth ne:
Emarquiape.com

project name 4354. Altor Rd.

\qquad 12/15/15 PAGE $\because \bullet=\bullet-$
$\bullet \bullet \bullet \bullet$
 \div

KWIK Eolt 3 Expansion Anchor 3.3.6
Table 6 . Carbon Steel KWIK Bolt 3 Allowable Loads in Normal-Weight Concrete ${ }^{1}$

Anchor Diamete: in. (mm)	Embedment Depth in. (mm)	$f_{c}^{\prime}=2000 \mathrm{psi}(13.8 \mathrm{MPa})$		$f_{c}^{\prime}=3000 \mathrm{psi}(20.7 \mathrm{MPa})$		$f_{\text {c }}^{\prime}=4000 \mathrm{psi}(27.6 \mathrm{MPa})$		$f_{\varepsilon}^{\prime}=6000 \mathrm{psi}(41.4 \mathrm{MPa})$	
		Tension ib (kN)	$\begin{aligned} & \text { Shear } \\ & \text { ib (kN) } \end{aligned}$	Tension lb (kN)	Shear lb (kN)	Tension lb (kN)	Shear $\mathrm{lb}(\mathrm{kN})$	Tension forn)	$\begin{aligned} & \text { Shear } \\ & \text { ib }(\mathrm{kN}) \end{aligned}$
$\begin{gathered} 1 / 4 \\ (6.4) \end{gathered}$	1-1/8 (29)	$\begin{aligned} & 300 \\ & (1,3) \end{aligned}$	$\begin{aligned} & 530 \\ & \text { (2.4) } \end{aligned}$	$\begin{array}{r} 365 \\ (1.6) \end{array}$	530 (2.4)	$\begin{aligned} & 430 \\ & (1.9) \end{aligned}$	530(2.4)	$589 .$	
	2 (51)	$\begin{aligned} & 635 \\ & (2.8) \end{aligned}$		$\begin{aligned} & 715 \\ & \text { (3.2) } \end{aligned}$		$\begin{aligned} & 800 \\ & (3.6) \end{aligned}$			
	3 (76)	$\begin{aligned} & 755 \\ & (3.4) \end{aligned}$		$\begin{aligned} & 795 \\ & \{3.5) \end{aligned}$		$\begin{aligned} & 840 \\ & (3.7) \end{aligned}$			
$\begin{gathered} 3 / 8 \\ \text { (9.5) } \end{gathered}$	1-5/8 (4)	$\begin{aligned} & 730 \\ & \text { (3.2) } \end{aligned}$	$\begin{aligned} & 1135 \\ & (5.0) \end{aligned}$	$\begin{gathered} 910 \\ (4.0) \end{gathered}$	$\begin{aligned} & 1275 \\ & (5.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 1095 \\ & (4.9) \\ & \hline \end{aligned}$	$\begin{aligned} & 1315 \\ & (5.8) \end{aligned}$		
	2-1/2 (64)	$\begin{aligned} & 1260 \\ & (5.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 13 Y 5 \\ & (5.8) \end{aligned}$	$\begin{aligned} & 1555 \\ & (6.9) \\ & \hline \end{aligned}$	$\begin{aligned} & 1315 \\ & (5.8) \end{aligned}$	$\begin{aligned} & 1850 \\ & (8.2) \\ & \hline \end{aligned}$			
	3-1/2 (89)	$\begin{aligned} & 1580 \\ & (7.0) \end{aligned}$		$\begin{aligned} & 1770 \\ & \text { (7.9) } \end{aligned}$		$\begin{aligned} & 1965! \\ & (8.7) \end{aligned}$			
$\begin{gathered} 3 / 2 \\ (12.7) \end{gathered}$	2-1/4 : (57)	$\begin{aligned} & 1235 \\ & (5.5) \end{aligned}$	$\begin{aligned} & 1865 \\ & \text { (8.3) } \end{aligned}$	$\begin{aligned} & 1430 \\ & \text { (6.4) } \end{aligned}$	$\begin{aligned} & 2300 . \\ & (10.2) \\ & \hline \end{aligned}$	$\begin{aligned} & 1620 \\ & (7.2) \end{aligned}$	$\begin{aligned} & 2405 \\ & (10.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 1975 \\ & (8.8) \end{aligned}$	$\begin{aligned} & 2415 \\ & (10.7) \end{aligned}$
	3-1/2 (89)	$\begin{aligned} & 1930 \\ & (8.6) \end{aligned}$	$\begin{aligned} & 2435 \\ & (10.7) \end{aligned}$	$\begin{aligned} & 2185 \\ & (9.7) \end{aligned}$	$\begin{aligned} & 2415 \\ & (10.7) \end{aligned}$	$\begin{aligned} & 2440 \\ & (10.9) \end{aligned}$	$\begin{aligned} & 2415 \\ & (10.7) \end{aligned}$	$\begin{aligned} & 3240 \\ & (14.4) \\ & \hline \end{aligned}$	
	$4-3 / 4)(121)$	$\begin{aligned} & 2135 \\ & (9.5) \end{aligned}$		$\begin{aligned} & 2355 \\ & (10.5) \end{aligned}$		$\begin{aligned} & 2575 \\ & (31.5) \end{aligned}$		$\begin{aligned} & 3620 \\ & (16.1) \\ & \hline \end{aligned}$	
$\begin{gathered} 5 / 8 \\ (15.9) \end{gathered}$	2-3/4. (70)	$\begin{aligned} & 1920 \\ & (8.5) \end{aligned}$	$\begin{aligned} & 2750 \\ & (12.2) \end{aligned}$	$\begin{aligned} & 2065 \\ & (9.2) \end{aligned}$	$\begin{array}{r} 3410 \\ (15.2) \\ \hline \end{array}$	$\begin{aligned} & 2210 \\ & (9.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 3785 \\ & (16.8) \end{aligned}$	$\begin{array}{r} 2830 \\ 12.69 \end{array}$	$\begin{aligned} & 3910 \\ & (17.4) \end{aligned}$
	$4 \quad$ (102)	$\begin{aligned} & 2660 \\ & (11.8) \end{aligned}$	$\begin{aligned} & 3910 \\ & (17.4) \end{aligned}$	$\begin{aligned} & 3020 \\ & (13.4) \end{aligned}$	$\begin{aligned} & 3910 \\ & (17.4) \end{aligned}$	$\begin{aligned} & 3385 \\ & \text { (15.1) } \end{aligned}$	$\begin{aligned} & 3910 \\ & \text { (17.4) } \end{aligned}$	$\begin{array}{r} 4770 \\ \text { (21.2) } \end{array}$	
	5-1/2 (140)	$\begin{aligned} & 3285 \\ & (\$ 4.6) \end{aligned}$		$\begin{aligned} & 3695 \\ & (76.4) \end{aligned}$		$\begin{aligned} & 4100 \\ & (18.2) \end{aligned}$		$\begin{aligned} & 5325 \\ & (23.7) \end{aligned}$	
$\binom{3 / 4}{119.1}$	3-1/4 (83)	$\begin{aligned} & 2120 \\ & (9.4) \end{aligned}$	$\begin{array}{r} 4090 \\ (18.2) \\ \hline \end{array}$	$\begin{array}{r} -2425 \\ (10.8) \end{array}$	$\begin{aligned} & 4900 \\ & (21.8) \end{aligned}$	$\begin{aligned} & \hline 2730 \\ & (12.1) \end{aligned}$	$\begin{array}{r} 5310 \\ (23.6) \\ \hline \end{array}$	$\begin{array}{r} 3785 \\ (16.8) \\ \hline \end{array}$	$\begin{array}{r} 5310 \\ \text { (23.6) } \end{array}$
		$\begin{aligned} & \hline 3240 \\ & (14.4) \\ & \hline \end{aligned}$	$\begin{aligned} & 5340 \\ & (23.8) \end{aligned}$	$\begin{aligned} & 4260 \\ & (18.9) \end{aligned}$	$\begin{aligned} & 5340 \\ & (23.8) \end{aligned}$	$\begin{aligned} & 5285 . \\ & (23.5) \end{aligned}$	5	$\begin{aligned} & 6155 \\ & (27.4) \end{aligned}$	$\begin{aligned} & 6225 \\ & (27.7) \end{aligned}$
	6-1/2 (765)	$\begin{aligned} & 4535 \\ & (20.2) \end{aligned}$		$\begin{aligned} & 5860 \\ & (26.1) \end{aligned}$		$\begin{aligned} & 7185 \\ & \text { (32) } \end{aligned}$		$\begin{array}{r} 7005 \\ (31.2) \\ \hline \end{array}$	
$\begin{gathered} 1 \\ (25.4) \end{gathered}$	4-1/2 (114)	$\begin{aligned} & 3330 \\ & (14.8) \end{aligned}$	$\begin{aligned} & 7070 \\ & (31,4) \end{aligned}$	$\begin{aligned} & 4050 \\ & (18.0) \end{aligned}$	$\begin{array}{r} 7600 \\ (33.8) \\ \hline \end{array}$	$\begin{aligned} & 4670 \\ & (20.8) \end{aligned}$	$\begin{array}{r} 8140 \\ (36.2) \end{array}$	$\begin{array}{r} 5070 \\ (22.6) \\ \hline \end{array}$	$\begin{gathered} 9200 \\ (40.9) \end{gathered}$
	$6 \quad$ (152)	$\begin{aligned} & 4930 \\ & (21.9) \end{aligned}$	$\begin{aligned} & 9200 \\ & (40.9) \end{aligned}$	$\begin{aligned} & 6000 \\ & (26.7) \end{aligned}$	$\begin{aligned} & 9200 \\ & (40.9) \end{aligned}$	$\begin{array}{r} 7070 \\ (31.4) \end{array}$	$\begin{aligned} & 9200 \\ & (40.9) \end{aligned}$	$\begin{array}{r} 8400 \\ (37.4) \\ \hline \end{array}$	
	9 (229)	$\begin{aligned} & 6670 \\ & (29.7) \end{aligned}$		$\begin{array}{r} 7670 \\ (34.1) \end{array}$		$\begin{array}{r} 8670 \\ (38.6) \\ \hline \end{array}$		$\begin{array}{r} 10670 \\ (47.5) \\ \hline \end{array}$	

[^5]
3.3.6 KWIK Bolt 3 Expansion Anchor

Influence of Edge Distance and Anchor Spacing on Anchor Performance

Load Adjustment Factors for 5/8" Diameter Anchors														
Adjustment Factor 5/8 in.		\qquad		Edge Distance Tension f_{kN}		Spacing Shear f_{sv}		Edge Distance Shear .						
		1 Toward Edge $f_{\text {RIt }}$	II Toward Edge $f_{\text {gus }}$			1 Away from Edge f_{kxa}								
	Embedment Depth, in.			2-3/4	24			2.3/4	≥ 4	2.3/4	24	$22.3 / 4$	$22-3 / 4$	$22 \cdot 3 / 4$
0	2-3/4	0.60		0.80		0.90								
	3-1/2	0.69		0.87		0.92								
	4	0.75	0.60	0.92	0.80	0.94	0.90							
	4.1/4	0.77	0.62	0.95	0.82	0.94	0.91	0.52	0.61	0.84				
	$4.3 / 4$	0.83	0.606	1.00	0.85	0.96	0.92	0.58	0.66	0.86				
	5.1/2	0.92	0.72		0.90	0.98	0.93	0.67	0.73	0.89				
	6	0.98	0.76		0.93	0.99	0.94	0.73	0.78	0.91				
	6.1/4	1.00	0.78		0.95	1.00	0.95	0.76	0.81	0.92				
	7		0.84		1.00		0.96	0.85	0.88	0.95				
	7.1/2		0.88				0.97	0.91	0.93	0.97				
	7.3/4		0.90				0.98	0.94	0.95	0.98				
	$8.1 / 2$		0.96				0.99	1.00	1.00	7.00				
	9		1.00											

Load Adiustment Factors for 3/4' Diameter Anchors											
Adjustmant factor $3 / 4 \mathrm{in}$.	\qquad		Edge Distance Tension $f_{\text {杖 }}$		Spacing Shear $f_{\text {N }}$		Edge Distance Shear				
			1 Toward Edge $f_{\text {An }}$	1 Toward Edge $f_{\text {win }}$			$\begin{gathered} \perp \\ \text { Away } \\ \text { from } \\ \text { Eoge } \\ f_{\text {fus }} \end{gathered}$				
Embodment Depth, in.	3.1/4	$\geq 4 \cdot 3 / 4$			3-1/4	$\geq 4.3 / 4$	3-1/4	$\geq 4-3 / 4$	$\geq 3-1 / 4$	$\geq 3 \cdot 1 / 4$	$\geq 3.1 / 4$
3.3/8	0.61		0.81		0.90						
4	0.67		0.86		0.92		-				
5	0.77	0.62	0.94	0.81	0.94	0.90	(0.53)	0.61	0.83		
5.3/4	0.85	0.67	1.00	0.86	0.96	0.92	0.59	0.67	0.86		
- 5 6-1/4	0.90	0.70		0.88	0.97	0.93	0.64	0.71	0.88		
¢ $6.1 / 2$	0.92	0.72		0.90	0.98	0.93	0.67	0.73	0.89		
등 7	0.97	0.75		0.93	0.99	0.94	0.72	0.77	0.90		
\% $7.1 / 2$	1.00	0.79		0.95	1.00	(0.95)	0.77	0.82	0.92		
∞ 8.1/4		0.84		1.00		0.96	0.85	0.88	0.95		
9		0.89				0.97	0.92	0.94	0.97		
9.3/4		0.94				0.98	1.00	1.00	1.00		
10.1/4		0.97				0.99					
10:3/4		1.00				1.00					

Load Adjustment Factors for \ddagger " Diameter Anchors														
Adjustment Factor 1 im.		\qquad		Edge Distance Tension \int_{SN}		Spacing Shear $f_{\text {NV }}$		Ecrge Distance Shear						
		1 Toward Edge $f_{\text {RNI }}$	It Toward Edge f_{kyt}			1 Away from Edge $f_{\mathrm{FV} 3}$								
	Embedinent Depth, in.			4.1/2	26			4.1/2	26	4-1/2	26	$24.1 / 2$	$\geq 4.1 / 2$	$\geq 4.1 / 2$
-	$4.1 / 2$	0.60		0.80		0.90								
	6	0.71	0.60	0.89	0.80	0.93	0.90							
	7	0.78	0.65	0.95	0.84	0.94	0.91	0.52	0.61	0.84				
	8	0.85	0.71	1.00	0.89	0.96	0.93	0.59	0.67	0.86				
	9	0.92	0.76		0.93	0.98	0.94	0.67	0.73	0.89				
	9.3/4	0.97	0.80		0.97	0.99	0.95	0.72	0.78	0.91				
	10.1/4	1.00	0.83		0.99	1.00	0.96	0.76	0.81	0.92				
	11.1/4		0.88		1.00		0.97	0.83	0.87	0.94				
	11.5/8		0.90				0.98	0.86	0.89	0.95				
	12-1/2		0.95				0.90	0.93	0.94	0.97				
	13		0.97				0.99	0.96	0.97	0.99				
	13.1/2		1.00				1.00	1.00	1.00	1.00				
	10. ${ }^{\text {a }}$.				

1. Embedment depth shown reflects embedment for carbon steel amthors. deep embecment depth for steminesto steel anchor is 8 inch.

Note: Tables apply for listed embedment depths. Reduction factors for other embedment depths must be calcutated using equations below.

Edge Distance - Tension	
$\begin{aligned} & \mathrm{h}_{\min } \leq \mathrm{h}_{\mathrm{NH}} \leq \mathrm{h}_{\text {noxa }} \\ & f_{\mathrm{RN}}=\frac{\mathrm{c} / \mathrm{h}_{\mathrm{xit}}+2}{3.75} \end{aligned}$	$\begin{gathered} h_{\text {sci }} \geqslant h_{\text {room }} \\ f_{\mathrm{RN}}=\frac{\mathrm{c} / \mathrm{h}_{\text {Dam }}+2}{3.75} \end{gathered}$

Spacing - Shear	
$\begin{gathered} h_{\min } \leq h_{k 1} \leq h_{\text {som }} \\ f_{A V}=\frac{s / h_{\mathrm{act}}+10.25}{12.5} \end{gathered}$	$\begin{gathered} h_{\mathrm{Acl}}=\frac{\mathrm{zh}}{\mathrm{mam}} \\ \frac{\mathrm{~s} / h_{\mathrm{mom}}+10.25}{12.5} \end{gathered}$

Edge Distance - Shear $h_{a c 1} \geq h_{\min }$
perpendicular toward edge $f_{\mathrm{Rvi}}=\frac{c}{3 h_{\min }}$
parallel to edge $f_{\mathrm{FNR} \mathrm{~K}}=\frac{\mathrm{c} / \mathrm{h}_{\min }+0.75}{3.75}$ perpendicular away from edge $f_{\mathrm{Rva}}=\frac{\mathrm{c} h_{\mathrm{man}}+5.82}{8.82}$

Note: Edge distance and anchor spacing for all lightweight and sand lightweight concrete are obtained by dividing the normal-weight dimensions by 0.75 and 0.85 , respectively,

$$
\begin{aligned}
& \text { !e }
\end{aligned}
$$

BASE PLATE

TEEL COLUMN ST-2
SECOND FLOOR BASE PLATE

STEEL COLUMN ST-3 GROUND FLOOR BASE PLATE

NEW RESIDENCE
 AT:
 4354 ALTON ROAD MIAMI BEACH, FLORIDA 33139

Architect	Structural Engineer	MEP/FP Engineer	Civil Engineer	Landscape Architect
ANTHONY LEON	JUAN FERNANDEZ	MIGUEL E. GONZALEZ, P.E.	STANLEY FARDIN	HERBERT L. MARTIN
3DESIGN, INC.	JUAN FERNANDEZ-BARQUIN, P.E.	MEGPE ENGINEERS, INC.	SAMABI GROUP INC.	H.L. MARTIN, Landscape Architect, PA
4300 BISCAYNE BOULEVARD, G-04	2520 NW 97th AVENUE, Suite 240	13301 SW 132nd AVENUE	CONSULTING ENGINEERS	5965 SW 38th STREET
MIAMI, FLORIDA	DORAL, FLORIDA	MIAMI, FLORIDA	13335 SW 124th STREET, Suite 111	MIAMI, FLORIDA
33137	33172	33186	MIAMI, FLORIDA	33155
Off: 305-438-9377	Off: 786-336-0881	Off: 786-473-8025	33186	Off: 305-790-4372
Fax: 305-438-9379	Fax: 786-336-0884	E-mail: miguelg@megpeengineers.com	Off: 305-454-8212	E-mail: hlmartinufiu@bellsouth.net
E-mail: 3dtony@bellsouth.net	E-mail: jfbeng@f-m.fm		E-mail: samabi@bellsouth.net	

MEETNG date Juhy 0,2015
FILE NO: 231
property: ass4 Atoo Rou
Applcant: - Rhanen M. Pestio

orobs
 - Dosign Revem

 wes of ithe entanace ivive.

1.. Varanace(o)

Genveril wot
为

, mix

LOT COVERAGE DIAGRAM | Lot AREA: |
| :--- |
| $12,46 \mathrm{~s}$. | OT Coverage:

and 22 S.F. (19.48)

FiRT FLIOR: 1,684S.F. $\quad\lceil\quad$ SECOND FLOOR: \quad 3,006 S.

(2) AERIAL VIEW/LOCATION MAP

DECAY \& TERMITE PROTECTION NOTES

 , Mind为 , mond

BURGLARY/SECURITY NOTES

 2inn

 Sin Sind

Mand

 4.

 Lest wo sucs on

 (ir thouei

 ERTSSION AND SEDMENT CONTROL NOTES

STORMWATER POLLUTION PREVENTION PLAN FOR CONSTRUCTION

FRTSSION AND SEDiment control general note

\qquad

GENERAL CONDTITONS LEGENO:
(A). MANTAN GRAVEAT THE FRONT OF THE

 TO ISSUE OF PREMT

Reflected Celing plan legend:					
O-4		(10)	Smoxe detector	T	TmeR
				T	Juctoron bx
	Recesse ulow frxune		(SEE MECH. OWCS.)		
	(SEEEEEEC. OWGS.).	\square			Vaporp
	wall wastri Ligh fxture	\triangle	(SEE MECH. OWSS.)		
		$\overline{\text { F }}$	SIDEWALL R/A GRILLE (SEE MECH. DWGS.)		Vation mark
	ON MOTION SENSOR (SEE ELEC. DWGS.)	ป	Stiowal suppy		
	celmg anc access		(incerorfyser		

Ifrecter c cung wotes:

- REEER Mup cooromate with i. opeawnucs per findics

2nd FLOOR REFLECTED CEILING PLAN

$\frac{\text { NOTE: }}{\text { FOR WINDOW \& DOOR PRESSURES, SEE STRUCTURAL DRAWINGS. }}$

Maxemem
A.3.1
elevations

WINDOWS A, A-1, A-2

WINDOW B

WINDOW C
SCALE: $1 / 2^{=}=1 \cdot 0:$

$\frac{\text { WINDOW E }}{\text { SCALE: } 11 / 2^{W}=1 \cdot 1 \cdot 0^{\prime}}$

$\frac{\text { WINDOW }}{\text { SCALE } 1 / 12^{2}=1 \cdot 0^{-1}}$

WINDOW F

(8)+ (9)

-(2)
(10)

B $\frac{\text { B }}{\text { A8.0 }} \frac{\text { INTERIOR ELEV. }- \text { HALLWAY }}{\text { SCALE: } 3 / 8=1 \cdot 0^{\circ}}$

(A8.0 INT. ELEV. - POWDER ROOM
E $\frac{\text { E }}{\text { A8.0 }}$ INTERIOR ELEV. - KITCHEN

(A) INTERIOR ELEV. - KITCHEN

(C $\frac{\text { C }}{48.0} \frac{\text { INTERIOR ELEV. - GUEST BATH }}{\text { SCALE: } 3 / 8^{\circ}=1 \cdot 0^{\circ}}$

A.8.0
(14)

FOUNDATION FRAMING PLAN

LOADS DESGON:

DEAD LOADE 25 PIFF
 -

 DAEE $10-20-2004$
\triangle

founvation
FRAMNG PLAN

SECOND FLOOR FRAMING PLAN

\qquad

Hank kix
S-3

\qquad

4

$$
\text { DAIE: } 10-20-2014
$$

S-5.2
$\underset{\substack{\text { gutuma } \\ \text { suctoen }}}{ }$

DARE: $10-20-2014$

CONNECTION DETALL

$\begin{array}{ll}\text { SHEAR WALL \#1 BAR PLACEMENT DIAGRAM } & 3 \\ \text { FOUNDATION OF THE SECOND FLOOR } \\ \text { s-9 }\end{array}$

SHEAR WALL NOTES:

Evatons

2. FOR HORZZNTAL WaLL REN

ELEVATION DETAIL
SHEAR WALL \#1

S-9

GROUND FLOOR DROP PANEL DETAIL ($1 \cdot($

2P.C. (14" $\varnothing 35$ TONS)

2P.C.A (14" $\quad 35$ TONS)
 (LSEE Foco

NOTE: - CENTVR OF PLLE CAP TO BE LOCATED
AT CETROD OF COLUN LON

4P.C. (14"申 35 TONS)

TYPICAL PILE CAP/GRADE BEAM DETAIL 2

CONCRETE POOL

EXTERIOR CEILING DETAIL $\frac{1}{s-13}$

TYPICAL COLUMN STRIP-BAR PLACING DIAGRAM FLAT PLATE

TYPICAL MIDDLE STRIP - BAR PLACING DIAGRAM FLAT PLATE

FLAT PLATE BAR PLACING PLAN DIAGRAM DATE: 10-20-2014

S-13

GENERAL STRUCTURAL NOTES:

cackere
ATM

3. cacerit conse
Tobe As follous.

To

 Masomer
 An Amill

Expastangeals

Muse evacu

\qquad

ROOF MEMBRANE WIND UPLIFT PRESSURES

GENERAL H.V.A.C. NOTE

General

 23. 26. vot useb.

 4.4.
 Noll

4. .incer buch

M.

- test mid adanceng

SPLT A/C EQUPMEN SCHEDULE-1				
	Unt dessanaton	ANU-1	AIHV-2,4	ANH-3
	Area servid	${ }_{\text {SEE PLN }}$	Ste plav	${ }_{\text {SEE PLIN }}$
	UnT MANFACATMER	Yoak	roak	Yagk
	Moob Numer	Anveo	Avvse	AHE18B
	NownAL Tons	5.0	2.0	1.5
	sisten ser	${ }^{15,3}$	15.25	${ }^{16.25}$
	Total AR Suply Crim	2.000	1.600	${ }^{600}$
	OUTSOE AR Crim	--	--	--
	Revan AR Crim	2.000	1.600	600
	Extranl stanc pressure w.w.	0.5	0.5	${ }^{0.3}$
	FAN STE HP	3/4	1/3	1/3
	Fan motor fa mep	4.9	2.8	2.8
		75/63	15/63	75/63
		55/55	55/55	55/55
	Total coolnc cal capaciry mer	53.1	${ }_{4} 4.3$	18.8
	Total sensiel heat mar	35.2	29.8	12.1
	Total heatic capactr mer	26.3	18.4	8.2
		7.7	4.8	2.4
		462/2/50	28.5/30	16/20
	Electrcal Citaractresics $\mathrm{V} / \mathrm{PH} / \mathrm{Hz}$	240/1/80	200/1/80	2481/160
	owensows (trme)	57/2.5/21.5	57/2.5/21.5	46/21.577.5
	мевнt	157	154	15
	unt ossonaton	cu-1	cu-2,4	cu-3
	UnT Manveacturer	roak	roak	Yoak
	Model numer	${ }^{\text {CzIF60011 }}$	${ }^{\text {cziofe811 }}$	rafriss
	Locatow	Roof	grouno	Roof
	andent tempravire	95	${ }^{95}$	${ }^{95}$
	Refroczant	${ }_{\text {R-410a }}$	R-410A	${ }^{8-4108}$
	MN. Refr. Lnes sizes (La/AAS)	3/8/7/8	3/8/7/8	3/8/3/4
	COMPRESSOR MOTOR FLA AMP	25.6	10.3	9.0
	FNN Motoo Size	1/3	1/3	1/8
	fan motor fa map	2.8	28	${ }^{0.8}$
	MCA / Mocp an and	${ }^{3.8 .8 / 80}$	15.6/25	12/20
		200/1/80	240/1/80	240/1/80
	Owessiows (tymos)	40/4/3/3	40/4/3/	28/29/29
	wecht mor ba	330	310	125
SPUT A/C EQUPMENT NOITS AND ACCESORES: . SuAp MAINTENANCE ACCESS. . CONDENSING UNIT SHALL BE INSTALLED TO WTHSTAND WIND PRESSURE FROM ANY DIRECTION AS PER THE "HVHZ" REQUIREMENTS OF THE F.B.C. PROVIDE SNGLE STAGE FOR AHU-3 AND 2 STAGES FOR AHU-1,2 PROGRAMABLE, DIGITAL THERMOSTAT AS RECOMMENDED BY UNITS MANUFACTURER AND SHALL BE CAPABLE OF PROVIOING AFTER HOURS SET BACK FOR ENERGY EFFICIENCY PURPOSES. 15. PROVDE APPROVED ELECTRONIC WATER LEVEL OETECTOR. DETECTOR SHALL SHUT DOWN THE UNIT UPON DETTCTON OF CONENSATE HGH LEVEL. Chencis.				

FAN SCHEDULE				
unt Numer		Ef-1	EF-2	Ef-3
area ssived		exmmows	entreaus	виппой
Locaton		celum	celum	ceume
our	Supely / Extaust	Exthust	Exthust	Extaust
fant Tre		Cenrrigah	Cenrrugat	cenrruven
orve	beti/ dorect	orect	Oirecr	овест
fan speeo	! ${ }_{\text {RPM }}$	---	---	---
Arrountry	cma	50	${ }^{64}$	${ }_{9}$
total stanc pressure	"	0.2	0.2	0.2
Opeank requreo	w	---	---	--
Fan motor	amp.	0.5	0.4	0.6
ELECTrical. Charact.	$\downarrow / 8 / \mathrm{Mz}$	120/1/60	${ }^{120 / 1 / 180}$	${ }^{120 / 1 / 80}$
Manfacturer		cook	cook	cook
Moot numbr		${ }_{\text {oc-122 }}$	${ }_{\text {cc-124 }}$	cc-144
weght	1 ba	15	15	15
Rewares		(1)(2)	(1) 2	(1)(2)
NOTES: (1) PROVIDE SOLID STATE SPEED CONTROL (2) PROMOE BACKDRAFT DAMPER.				

AIR DISTRIBUTION SCHEDULE					
srmboL	descripton	manufacturer	mooel number	matral	REmarks
cc	celunc crille	$\begin{gathered} \text { TTTUS } \\ \text { (OR EQuVALELTT) } \end{gathered}$	300F SERES	ALUMMUM	w/ о.в.D.
L/LD1	Flowear diffuser	(or tituivalent)	rt SERES	aluminum	PATERN CONTROLLER, PLENUM
Lor	flowar return	(or RUUUNALENT)	ft SERES	Aluminu	

NEW work voris:

 3.) countacior shal provid/MSTAL AU REOURED

7) SEE STMBOL LEGEND iN SHEET E-1.0

- Le. Stre Latrs carrolle \qquad

\square

\square \square \square

COMCRETE Note:

S Smich NoIE
\qquad

5 max

New work notes:

(1) factory provideo circuit beeaker mounied on antu. 2.) ALL Connotis in finshed areas shall be concealie.

 6.) ALL RECEPTACLES SHALL BE DECORA WHTE -COVER PLAT

Z 0 0 0 0

\qquad


```
comeat ine
```



```
[mone
```


E-3
(9) Cl 1 l .

GENEPAL ELECTHICAL NOTES

20. Repuve all wenc onacs

25.

	Lanes		voluse		cks	wne	Pruse		mwow	Wentracurer			TPE
P	10	120/240			13	3	1		cosfust				${ }^{\text {Natan }}$
					вкR								
cor	mer	F					sternc		at. Mme	${ }^{\text {como }}$		Lemes	seranc
							Frume					20	Lunsaman
3				${ }_{\text {cral }}^{2}$								120	Eviver Pool lichr
5								${ }^{6}$				120	Pure Poon lect lemens
7					20		в во\%R	${ }^{8}$				20	Fuviet hitire butir
9					${ }^{20}$		spare	10				20	spare
1	-		-				Space	12			,	20	Spare
13	-		-	-	-		Space	${ }^{14}$	-	-	-	--	Space
${ }^{15}$	-		-	-	-		Space	${ }^{16}$	${ }^{6}$	-			SPace
${ }_{17}$			-	-	-		space	18		-			space

supply Pme a toral gelanin.

RSER NOIES
 (*) Contractor stall provil

5ume

Q.

c. smitrary pepe frtmess:

Oity

5. wal deemours.

 Q.
 11. Sum fian sisisu in sin

 20. A. Ropmo

PLHE $12 / 2 l 15$

NOT VALID FOR CONSTRUCTION UNLESS SIGNED AND SEALED IN THIS BLOCK
CONSTRUCTION DOCUMENTS SET 12.10 .2014
CONSTRUCTION DOCUMENTS SET. 12.10.2014

 ta gux pux Mand

 Mand and
 Mamin

 Man and kuk Nan

MMAMBEACI $=1$ GENERAL NOTES \mid GN1d

FOLIO No：

LEGAL DESCRIPTION
 HERED AS RECRRDED N PLAT BOOK 8，AT
RECOROD OF MAMM－DADE COUNTY，FLORDA．

 mend Mand

LEGEND		ABBREVIATIONS	
－n－	Ffow drection	${ }_{\text {ABD }}$	$\cdots{ }^{\text {aba }}$
cr	Storm manlole		Butierli
c	Santary manhole		${ }^{\text {cheut south telephone }}$
［圆］	－dramage well	${ }_{\text {c，}}^{\text {cip }}$	ASt Reon pipe
速	catimasim	${ }^{\circ}$	
－	valye		－
－	TEE	Come	Eepation
	4450 de．ben	ExST	IsTM
，	－90 DEG．BEI	$\stackrel{\text { Pr }}{\text { PT }}$	floria Pmer at
＋	cross		ATE EVWe
－	：REUCER	㜢	佼
	Plug	NTs	SRIH
－	Ffre horan		隹
¢	W wate meter		
二	exalimatom trench	ss．	
	Exss．elevatow		
	Elevation		
			West wal w

PL MES I2／2lis

SCHEDULE OF DRAINAGE STRUCTURES

1- SEE SHEET C-1 for dranage and crabmi plans.

- all exstinc pavement markincs and sigade il the richi-of-way to remand

THPE I SKKMMER FOR RRENCH-DBAN OUTEETS

AVING, GRADING AND DRAINAGE NOTES:

5- all elevations resir to n.g.v.,., 1929 datum. \qquad

- contractor shall renove and reflace sidewalk alonc the enire property line.
(0 - contractor Shall reconstruct swale/Sod along the entre properriy lime.

Samabie

WATER \& SEWER INSTALLATION NOTES:

 (reEGARLLESS OF SEFARAROON).

SPECIALE NOTES

See sheet c-2 for drannage plant, and sheer c-4 for drannage detalls. ald

 6- For manilvance of traffc, refer to foot miex no. 600 , and no. 603
 - MATER DRANAGEE SYSEEM.

12

GITY OF MIAMI BEACH
TREE PROTECTION BARRIER DETALL \qquad N.T.S.

TY OF MIAMI BEAC
TREE PROTECTION NOTES
4

 tedrnques
tuthry
neses

Landscape legend City of Miami Beach	
	Na
	,
F. Tout nume of tres poweded duts	2
	${ }_{34}^{161}$

Plant List				
ary	Key	Boionical / Common Nome	Desscrition	
4	so			
3	sm			${ }^{\text {vem }}$
1	RE	Resposee este / Ropol fatm		${ }^{6}$
3	THR	Tminox Redate / Thosh polm	5, 7,9 , oo nt	\%
4	w		27, 18, 201400 hmo	No
7	co	Cocecoboo diesstiole / Pigeon Pum		${ }^{\text {reabe }}$
8	cm	Capgot mitis / Fismoll Pam		No
3	Sp	sobol odmototo / Sobol Pam		vea
3	we		$188^{\text {oon the matered }}$	No
3	RHE			${ }^{\text {No }}$
14	CoE	Conoceprus eecetus / / Treen buteomed		rea
20	c+1			
92	Pom		$7-8 \mathrm{BH} \times 3.3 \mathrm{seof} 45 \mathrm{sol}$	No
36	0.6	Cusio yutitere / smal Loof clusi		No
13	clor		$8-9 \mathrm{ght} \times$ S Sop 25 gol.	No
7	cov	Coricaum voristum/ $/$ crobos	307m. 24 sper 15 sol.	${ }^{\text {No}}$
${ }^{3}$	HEC	Heosthium coronaium / whits binee		No
31	Moo	Nosasers deticiose / Nonetera		${ }^{\text {so }}$
80	Pнв		$1184 . \times 16$ ber. 3 gol	No
11	PRC			wo
15	bar			10
36	SPP			no

[^6]

LA 1.1
Lanoscape plan

City of Miami Beach
Tre Planting \& Bra

wis
City of Miami Beach
Tree Planting ", "Bracing Detail
Tree Planting ${ }^{\text {" }}$ Bracing De
Caliper of 2.5 or Greater

 cincle

[^7]
City of Miami Beach
City of Miami Beach Detail

PLANT NOTES

6. ALL PLANTIN EEDS To te MEED AND CrRASS FREE.

C. Lincol

- Accep

 To conour phe

1 City of Miami Beach, Greenspace Management Notes:

21 AREA LIGHT \quad AL－ $03-3 T$ W－H Bulb
国回 TRANSFORMER
－12－300．Wall mounted，weotherproof
［1］TRANSFORMER

Londscope Lighting Contractor to provide
$2^{\text {＂PVC }}$ PVC（electrical roted）under oll poved \＆sodded oreos
Londscope Lighting Controctor to coordinote
CFI \＆tronsformer locations w／electricol subcontrocto

Note：Bottom of wall mtd．tronformers to be －minimum of $24^{\prime \prime}$ obove adjocent grade．

LANDSCAPE LIGHTING PLAN

AYOUT
AYロUT IRRIGATIUN SYSTEM MAINLINES AND LATERAL LINES. MAKE ALL
NECCESSARY ADJUSTMENTS AS REQUIRED TO TAKE INTD ACCDUNT ALL SITE GBSTRUCTIONS AND LIMTATIONS PRIDR TD EXCAVATING TRENCHES
FLAG ALL SPRINKLER HEAD LICATIUNS ADJUST LICATIUN AND MAKE THE NECESSARY MDDIFICATIONS TV NOZZLE TYPES ETC. REQUIRED TD INSURE 100% CDVERAGE.

PIPE

pipe Lucations shuwn un plan are
SCHEMATIC \quad INLY AND SHALL
BE ADJUSTED IN THE FIELD. WHEN
$\begin{aligned} & \text { LAYING-DUT MAINS AND LATRALS, } \\ & \text { LOCATE PIPE NEAR EDGES } \square F \text { PAVEMENT }\end{aligned}$
$\begin{aligned} & \text { LICATE PIPE NEAR EDGES DF PAVEMENT } \\ & \text { QR AGAINST BUILDINGS WHENEVER }\end{aligned}$
possible ta allow space for plan
out balls.
PIPING UNDER HARDSCAPES SUCH AS
RDADS, WALKS, AND PATIUS ARE
TI BE SLEEVED USING SCH. 40 PIPE,
PRIDR TI PLACEMENT OF HEADS FLUSH
ALL LINES UNTIL LINES ARE

IRRIGATION PLAN

PERMIT \#	COMP TYPE	SUB TYPE	APPLIED	APPROVED	EXPIRED
BA913979	AUTOPROJ	OTH	06-Dec-89	06-Dec-89	04-Jun-90
BA901035	AUTOPROJ	OTH	17-Nov-89	17-Nov-89	02-Dec-89
BC910158	BCOMPL	OTH	27-Feb-91	27-Feb-91	01-Mar-91
BD040169	BDEMO	PARTIAL	15-Jun-04	26-Jul-04	22-Jan-05
BD070070	BDEMO	PARTIAL	28-Dec-06	08-Feb-08	
BD060142	BDEMOPRJ	PARTIAL	16-May-06		
BD140089	BDEMOPRJ	ALL	11-Dec-13	02-May-14	29-Oct-14
BE042522	BELEC	DEMO	20-Jul-04	20-Jul-04	08-Apr-06
BMS51258	BMISC	OTH	08-Aug-95	08-Aug-95	
BMS0400064	BMISC	RESEARCH	06-Oct-03		
BMS0505616	BMISC	DOC HIST	29-Sep-05		
BMS1601710	BMISC	DOC HIST	08-Apr-16		
BP920502	BPLUM	OTH	10-Mar-92	10-Mar-92	02-Feb-93
BP920964	BPLUM	OTH	17-Jul-92	17-Jul-92	03-Feb-93
BP041426	BPLUM	DEMO	23-Jul-04	23-Jul-04	19-Jan-05
B1403916	BSBUILD	FENCE-R	13-May-14	13-May-14	09-Nov-14
B9802610	BSBUILD	OTH	04-Jun-98	04-Jun-98	01-Dec-98
B0500165	BSBUILD	RPR-R	12-Oct-04	26-Apr-05	14-Jan-07
B0604117	BSBUILD	AWNING	23-May-06		
B1501641	BUILD	NCONST-R	26-Dec-14		
B0702848	BUILD	ALTRMD-R	01-Mar-07		
BV13000424	BVIO	UNSAFE	14-Feb-13	14-Feb-13	20-Feb-13
BV14000627	BVIO	UNSAFE	08-Apr-14	08-Apr-14	06-Jun-14
BS890360	SBUIL	OTH	06-Dec-89	06-Dec-89	04-Jun-90

STATUS
CLOSED
CLOSED
CLOSED
CLOSED
VOID
VOID
FINAL
CLOSED
CLOSED
CLOSED
CLOSED
APPLIED
FINAL
FINAL
CLOSED
FINAL
VOID
VOID
VOID
APPLIED
VOID
CLOSED
CLOSED

PAINT INT. \& REPLACE 3 WINDOWS
MULTI-FAMILY
CONSTRUCTION W/O PERMIT
INTERIOR DEMOLITION, FLOOR , CEILING, NON-STRUCTURAL WALLS, ETC.
RENEWAL OF PERMIT BD040169.INTERIOR DEMOLITION, FLOOR, CEILING, NON STRUCTURAL WALLS, ETC
PARTIAL DEMOLITION OF ILEGAL ROOM IN BACK OF THE HOUSE.
Total Demolition of single family home (4500sq ft)
ELECTRICAL DEMOLITION (
TWO MICROFILM COPIES
permit research
4 COPIES MICROFILM
1 Cd
GAS PIPING
REPLACE WATER HEATER
DEMO, SEWER CAP
BD140089---->Chain link fence around property vacant land
REMOVE 113LF. WALL \& PATCHING
FOUNDATION AT THE PERIMETER LOAD BEARING WALLS.
Install temporary shade umbrella in backyard.
New construction SFR.
Int \& Ext rpr, struc rprs, nw hvac sys, nw wndw \& doors, nw ele, plum, kitchen cabinets, finishes, int \& ext paint
NOTICE OF VIOLATION ISSUED.
PROPERTY OPEN AND ABANDON, NEED TO SECURE THE PROPERTY.
NOTICE OF VIOLATION ISSUED.
Property with Extension failure of foundation, reinforced concrete elements corroded, property has been
unoccupied for an extended period of time, cracks in walls and, roof caved in,
As per Florida Building Code and Miami-Dade County chapter 8-5 (6) Physical criteria (2) building is unsafe.
Emergency demolition must occur.
Compliance must be obtained by the due date an additional penalty of \$500.00 fees will be imposed.
PAINT INT. \& REPLACE 3 WINDOWS

STREET_NO	TREET_DIRECTIO	STREET_NAME	PARCEL_NO
4354		ALTON RD	32220111430
4354		ALTON RD	32220111430
4354		ALTON RD	32220111430
4354		ALTON RD	32220111430
4354		ALTON RD	32220111430
4354		ALTON RD	32220111430
4354		ALTON RD	32220111430
4354		ALTON RD	32220111430
4354		ALTON RD	32220111430
4354		ALTON RD	32220111430
4354		ALTON RD	32220111430
4354		ALTON RD	32220111430
4354		ALTON RD	32220111430
4354		ALTON RD	32220111430
4354		ALTON RD	32220111430
4354		ALTON RD	32220111430
4354		ALTON RD	32220111430
4354		ALTON RD	32220111430
4354		ALTON RD	32220111430
4354		ALTON RD	32220111430
4354		ALTON RD	32220111430
4354		ALTON RD	32220111430
4354		ALTON RD	32220111430
4354		ALTON RD	32220111430

血

ALTERATLONS \& ADDITIONS

 heads: AN: elazquez: contr!.

Ho4329-Keyes Co.-Fro Sale Sign-\$5-10-16-73

17578-Owner-Garden house over garage- $\$ 200-7-9-75$
H89025-Scope Construction-Add pool, 14, 334 gal11ons - $\$ 6000-3$-11-76
109971-0mer-Add carport and a gate-S150-10-11-76

490829 3/9/83 owner buililing dech wood deck a trellis as per plans (double fee) s700.

Plumbing Permits:

\#39141 Economy flabg' 1 4' Sewer - Fob. 18 , 1957
\#4.1812 Roy loving; 2 sinks; 1 dish washing ficifine; 1 water service $-6 / 15 / 65$ 53542 -R \& L Plumbing l pool piping 3 - $16-16$
\#61707 614,04 - Serota Plumb - replace heater t fine $\$ 110.00$

 462473 Fassbach Elec, Co. 4 partial permit - $1 / 1 / 65$
 1. fan outhet; 4arolimice outhets a 1/17/66
\$66688 Fassbach Elect, Co, 200 A Service Equipment $2 / 14 / 69$ \#79645 8/14/84 ocean Elec remove violation S10.00

[^0]: - Compliance requires certitication by the alr handier unit manufacturer that the air hander enclosure qualifies as certified factory-sealed in accordance with 403.2.2.1.1.

[^1]: **Label required by Section 303.1.3 of the Florida Building Code, Energy Conservation, if not DEFAULT.

[^2]: 0 Btuh
 0 of
 0 cfm
 $0 \mathrm{cfm} /$ Btuh
 0 in $\mathrm{H}_{2} \mathrm{O}$

[^3]: STANOBY RATING: Standhy raings appiy to instalations seved by a reliabte utility source. The standily raing is applicable to varying loads for the duration of a yower outage. There

[^4]: * Note: Bisquie kits are used fin conjunction with steel enclosures. Gray kits are used in conienction with aumixum anclosures (availabe on 60 kW urits only).

[^5]: Intermediate foad values for other concrete strengths and embedments can be calculated by linear interpolation.

[^6]: Tree Disposition List creamin a Reaceal

[^7]: NOTES:
 NOTES:

 6.

