BELLA ISLA APARTMENTS

Traffic Study Project No. 14255 David Plummer & Associates

Responses to the FTE Comments on Behalf of City of Miami Beach (March 30, 2016)

Re: Bella Isla Apartments Traffic Impact Analysis Review

1. Exhibit 2 – The calculated peak hour volumes for the intersection of Venetian Causeway at West Island Avenue seems to be incorrect. Please review the calculations for the volumes entering the West Island Avenue.

Response: The eastbound and westbound turn volumes headed to the south at this intersection were adjusted to match the southbound volumes on West Island Avenue. All other entering / exiting volumes were checked and they reflect the counts taken. The source volumes and the calculated volumes at the Island Avenue intersections have been graphically portrayed in Exhibit A-1 and included in Appendix C. Please note that the counts taken at these intersections reflected all traffic from Belle Isle travelling east due to the bridge closure. The approach volumes were adjusted to reflect a re-distribution of 50% eastbound / 50% westbound once the bridge is open.

2. Exhibit 2 – It is not clear how the volumes for the intersection of Venetian Causeway at Purdy Avenue and at Bay Road were determined. In addition, there was not 2015 count information provided for Bay Road in the appendix.

Response: Counts at Purdy Avenue were collected in 2015 (with the Venetian Causeway closed) and diversions were taken to 'match' the FDOT directional volumes collected in 2014 (prior to closure). Counts used for Bay Road were collected in 2012 and grown to reflect 2015 conditions using the background growth rate. Diversions were also taken at this intersection to 'match' the FDOT directional volumes. The volume development sheet has been included in the appendix as reference and Exhibit A-1 also show the sources of counts and intersection volumes used.

3. Exhibit 3 – At the intersection with West Island Avenue, the figure shows two through lanes for the southbound movement; however there is only one receiving lane.

Response: Lane geometry for the southbound movement at the intersection with West Island Avenue has been revised.

4. Exhibit 3 – The lane geometry for the westbound movement at the intersection with East Island Avenue is missing.

Response: Lane geometry for the westbound movement at the intersection with East Island Avenue has been added to Exhibit 3.

1750 PONCE DE LEON BOULEVARD, CORAL GABLES, FLORIDA 33134 305 447-0900 • FAX: 305 444-4986 • EMAIL: DPA@DPLUMMER.COM

5. Intersection Capacity Analysis – Please review the Synchro models as follows:

- Complete signal timing should be coded including offsets, minimum green, yellow and red times and walk and don't walk times.
- Please verify the correct phasing templates and control type for all intersections.
- Check the box for adjacent parking lane and area type CBD.
- Please verify the speed input.
- Please include a table summarizing existing turn lanes and expected queues.

Please note that the intersection LOS analysis was not reviewed since the items above need to be corrected first.

Response: Necessary changes to Synchro files have been made and updated Synchro reports have been included in the Appendix. Please note the Synchro HCM 2010 analysis supports speed limit in the range of 25 and 55 mph. Therefore, 25 mph was used as the lowest speed limit in the analysis.

6. A growth rate of 0.5% was used. Please provide the supporting documentation.

Response: Historical growth documentation has been included in the appendix.

7. Committed Development -

- a. The information used for Sunset Palau was not the latest approved documentation. Please update accordingly.
- b. There is two additional projects recently approved that need to be included:
 - 1750 Alton Road
 - 1824 Alton Road
- c. To facilitate the review process please, provide in the appendix summary tables of how the volumes were developed.

Response: As requested, the committed developments listed above have been included in the analysis. The information for Sunset Palau, 1750 Alton Road, and 1824 Alton Road was updated as provided by the city's consultant and included in Appendix E.

8. Trip Generation – Please verify that the land use code 220 is the most appropriate. Note that the land use Code 220 is for rented propertied.

Response: The proposed use is rental units (see Site Plan in Appendix A). Therefore, Land Use 220, Apartment is appropriate for the project.

1750 PONCE DE LEON BOULEVARD, CORAL GABLES, FLORIDA 33134 305 447-0900 • FAX: 305 444-4986 • EMAIL: DPA@DPLUMMER.COM

9. Exhibit 8 – The distribution summarized in the table do not correspond to the percentages published in the Miami-Dade Long Range Transportation Plan.

Response: The MDC Long Range Plan publishes cardinal distributions for 2010 and 2040. These were extrapolated to reflect the 2017 buildout year. For clarification purposes, the exhibit was revised to show all years.

10. Trip assignment – Please provide a figure summarizing the trip assignment.

Response: Exhibit 10 has been added depicting the project trip assignment, as requested.

11. Future conditions with West Avenue Bridge – Please provide the necessary supportive documentation, i.e. the PD&E Peak hour 2015 volumes, how were the volumes shown on figure 13 developed, etc.

Response: The PD&E information is included in Appendix F.

12. Parking – Please indicate the type of parking will be provided (self-parking, valet parking, mechanical parking, etc.)

Response: The residents of the building will self-park in the garage. There will be valet parking for guests only. The project currently proposes a total of 33 tandem spaces which will be used by valet or by residents with 2 vehicles.

13. The following items need to be analyzed and discussed within the report.

- Internal Circulation of the garage.
- The operations for the loading area and the trash picked up.
- Driveway Proper sight distance and turning radius.
- Any proposed signs.

Please provide Auto turn files where needed,

Response: Text has been added to Section 5.0 of the report discussing the items listed above and additional information has been included in Appendix G.

14. Please indentify on the site plan where will the bike racks be provided.

Response: The project provides Short Term racks for a total of 33 Bikes in the subterranean level. These are located in two groups near both elevators one area has 15 bikes and the other 18 bikes as labeled. In addition to this, there are 172 long term bike spaces located in the subterranean, second and third floor (labeled as long term bike parking).

Additional Comments

1. The city parking in front of the property and the proposed driveway are cause for safety concerns

Response: This condition exists today. In addition, there are currently 13 tandem parking spaces directly along Island Avenue, which create greater concerns for parking safety. However, the project will eliminate the existing tandem spaces and replace with landscape. The proposed driveway approach will be stop controlled. Vehicles exiting the driveway will need to make a complete stop, giving them time to yield to opposing traffic and any possible parking maneuvers coming from the city parking spaces in front of the property. Therefore, conflicts are not expected to occur.

2. The proposed project will have some tandem spacing. Please clarify how will this be operated as it seems that no valet service will be provided

Response: The proposed tandem parking spaces will be used by valet for guest or assigned to residents with two vehicles and will be self-park. The project is providing valet parking for visitors only. A queuing analysis has been performed at the proposed valet drop-off pick-up area and is included in the report.

BELLA ISLA APARTMENTS

PREPARED FOR: Deforma Studio, INC.

PREPARED BY: David Plummer & Associates

> **DATE:** May 2016

DPA JOB# 14255

TABLE OF CONTENTS

	Pag	<u>e</u>
LIST	OF EXHIBITS	ii
EXEC	CUTIVE SUMMARY i	ii
1.0 I	NTRODUCTION	1
1.1	Project Background	1
1.2	Study Objective	1
1.3	Study Area and Methodology	3
1.4	Project Site Information	5
2.0	EXISTING CONDITIONS	6
2.1	Roadway Characteristics	6
2.2	Traffic Counts	7
2.3	Intersection Data	8
2.4	Intersection Capacity Analysis1	1
3.0 F	PLANNED AND PROGRAMMED ROADWAY IMPROVEMENTS1	3
4.0 F	FUTURE TRAFFIC CONDITIONS1	4
4.1	Background Traffic and Committed Developments1	4
4.2	Future without Project Intersection Capacity Analysis1	4
4.3	Project Trip Generation1	7
4.4	Project Trip Assignment1	8
4.5	Future with Project Intersection Capacity Analysis1	8
4.6	Future with Project Intersection Capacity Analysis with West Avenue Bridge2	4
5.0 CI	IRCULATION PLAN2	7
6.0 Q	UEUING ANALYSIS	0
6.1	Valet Drop-Off / Pick-Up Area	0
7.0 CO	ONCLUSIONS	4

- Appendix B: Methodology
- Appendix C: Traffic Data
- Appendix D: Intersection Capacity Analysis Worksheets
- Appendix E: Committed Development
- Appendix F: West Avenue Bridge PD&E Documentation
- Appendix G: Circulation / Bus Route Information
- Appendix H: Queuing Documentation

LIST OF EXHIBITS

<u>Exhibit</u>

Page

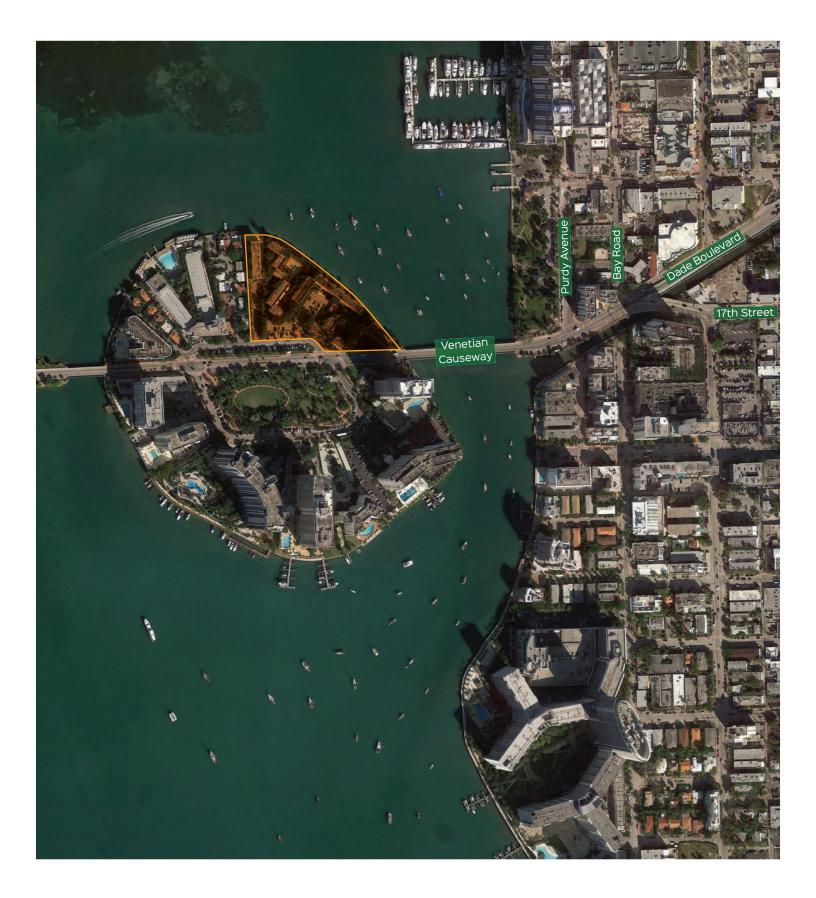
1	Location Map	2
2	Existing PM Peak Hour Traffic Volumes	9
3	Existing Lane Configurations1	0
4	Existing Intersection Capacity Analysis1	2
5	Future without Project PM Peak Hour Traffic Volumes1	5
6	Future without Project Intersection Capacity Analysis1	6
7	Project Trip Generation1	7
8	Cardinal Distribution1	8
9	Project Trip Distribution1	9
10	Project Trip Assignment2	0
11	Future with Project Intersection Capacity Analysis2	1
12	Future with Project Queue Analysis2	2
13	Future with Project PM Peak Hour Traffic Volumes2	3
14	Future with Project Intersection Capacity Analysis with West Avenue Bridge2	5
15	Future with Project PM Peak Hour Traffic Volumes with West Avenue Bridge2	6
16	Circulation Plan – Bus Routes2	8
17	Circulation Plan – Mobility	9
18	Project Trip Generation	0
19	Valet Processing Rate	2
20	Queue Calculations	3

EXECUTIVE SUMMARY

The Bella Isla Apartments will be located at 31 Venetian Way in Miami Beach, Florida. The project proposes to replace an existing 120-unit apartment complex with a new 172-unit apartment building. Main access to the site will be via a two-way driveway accessing Island Avenue, providing access to the proposed parking garage. A second driveway also accessing Island Avenue will provide access to the drop-off / pick-up area. For the purpose of this traffic analysis, project build-out is anticipated by 2017.

An assessment of the traffic impacts associated with the proposed Bella Isla Apartments was performed in accordance with the requirements of the city of Miami Beach. The analysis shows that all intersections analyzed currently operate and will continue to operate within the City's LOS standards.

In addition, a mobility and circulation plan was completed as part of the study. The plan shows that the project area is currently served by various Miami-Dade Transit bus routes. The project is located in an area that is conducive for pedestrian and bicycle activities providing bike lanes, ample sidewalks, and crosswalks. An assessment of circulation as it relates to the valet services during the PM peak hour was performed. The queuing analysis shows that the anticipated queue at the designated valet drop-off / pick-up area during the typical PM peak traffic conditions can be accommodated within the project site.


1.0 INTRODUCTION

1.1 Project Background

The Bella Isla Apartments will be located at 31 Venetian Way in Miami Beach, Florida (See Exhibit 1). The project proposes to replace an existing 120-unit apartment complex with a new 172-unit apartment building. Main access to the site will be via a two-way driveway accessing Island Avenue, providing access to the proposed parking garage. A second driveway also accessing Island Avenue will provide access to the drop-off / pick-up area. For the purpose of this traffic analysis, project build-out is anticipated by 2017. The proposed site plan is included in Appendix A.

1.2 Study Objective

The purpose of this study is to assess the traffic impacts associated with the proposed project. This traffic study is consistent with the methodology provided to and approved by the city of Miami Beach. Appendix B includes the approved methodology provided to the city.

1.3 Study Area and Methodology

The analysis undertaken follows the study methodology provided and approved by the city of Miami Beach (see Appendix B). The following is a brief description of the study methodology:

- <u>Traffic Counts (Intersections)</u> Due to the construction in the study area and re-routing of traffic patterns, present day traffic counts could not used for the analysis. Therefore, FDOT directional segment counts collected on Venetian Way west of Purdy Avenue prior to the causeway closure and construction were used to distribute directional eastbound/westbound approach volumes at each intersection. Furthermore, the two-hour turning movement counts were collected on Wednesday December 16th, 2015 during the PM peak hour (4-6 PM) at the Island Avenue intersections in order to distribute northbound/southbound approach volumes at each intersections were considered:
 - Venetian Way / Island Avenue East
 - Venetian Way / Island Avenue West
 - Purdy Avenue / Dade Boulevard
 - 17th Street / Bay Road/ Dade Boulevard
- <u>Signal Location and Timing</u>- Signal phasing and timing for the signalized intersections were obtained from Miami-Dade County. Signal Timings are included in Appendix C, Traffic Data.
- <u>Future Transportation Projects</u> The 2015 Transportation Improvement Program (TIP) and the 2040 Long Range Transportation Plan (LRTP) were reviewed to include future transportation projects which add capacity to the network. The proposed West Avenue Bridge (between 17th Street and Dade Boulevard) was taken into consideration for future traffic analysis.
- <u>Background Traffic</u> Available Florida Department of Transportation (FDOT) and Miami-Dade County (MDC) traffic counts were consulted to determine a growth factor consistent with historical annual growth in the area. The growth factor was applied to the existing traffic volumes to establish background traffic.
- <u>Committed Developments</u> The following three projects were considered as committed developments:

- Sunset Palau
- 1901 Alton Road
- 17thStreet Hotel
- 1614-1634 Alton
- <u>Project Trip Generation</u> Trip generation for the project was estimated using trip generation information published by the Institute of Transportation Engineers (ITE) <u>Trip Generation</u> <u>Manual</u>, 9th edition.
- <u>Project Trip Distribution / Trip Assignment</u> Net new external project traffic was assigned to the adjacent street network using the appropriate cardinal distribution from the <u>Miami-Dade</u> <u>2040 Long Range Transportation Plan</u>, published by the <u>Metropolitan Planning Organization</u>. Area traffic patterns in the area were considered when assigning project trips. A figure showing all of the assigned trips to the adjacent transportation network was provided as part of the study.
- <u>Future Traffic Conditions</u> Project traffic was combined with projections of background traffic to obtain future conditions with project. Intersection capacity analyses were performed for existing, future without project and future with project conditions.
- <u>Circulation Analysis/Plan</u> A circulation plan is provided depicting the project site, driveways, delivery areas, location of street signs/signals, crosswalks, sidewalks, location of bus facilities, bike facilities, adjacent streets configuration (travel lanes, etc.) including names, on-street parking and any other pertinent transportation feature in the vicinity of this project.

1.4 Project Site Information

The Bella Isla Apartments will be located at 31 Venetian Way in Miami Beach, Florida. The project proposes to replace an existing 120-unit apartment complex with a new 172-unit apartment building. Main access to the site will be via a two-way driveway accessing Island Avenue, providing access to the proposed parking garage with 297 parking spaces. Delivery truck load/off-load access will also be provided on this driveway. A second driveway also accessing Island Avenue will provide access to the drop-off / pick-up area.

2.0 EXISTING CONDITIONS

Data collection for this study included roadway characteristics, intersection traffic counts, signal timing, and seasonal adjustment factors. The data collection effort is described in the following sections.

2.1 Roadway Characteristics

Venetian Way

Venetian Way is a minor arterial that provides east/west access. It is the only roadway connecting Biscayne Island, San Marco Island, Di Lido Island, Rivo Island, and Belle Island with the mainland and the city of Miami Beach. Within the project area, Venetian Way is a two-lane two-way undivided roadway with left turn lanes at major intersections. The posted speed limit is 30 mph. On-street parking is not permitted on the Venetian Way. The city of Miami Beach has jurisdiction over Venetian Way.

Island Avenue

Island Avenue is a local roadway that loops around Belle Island. Island Avenue is two-lane twoway undivided roadway that intersects with Venetian Way at the east end and west end of the island. There is on-street angled parking on Island Avenue. The speed limit is 20 mph. The city of Miami Beach has jurisdiction over Island Avenue.

Purdy Avenue

Purdy Avenue is a local roadway that provides north/south access between Dade Boulevard and 20th Street. Purdy Avenue is two-lane two-way divided roadway. There is on-street parallel parking on Purdy Avenue within the study area. There is no posted speed limit. The city of Miami Beach has jurisdiction over Purdy Avenue.

17th Street

17th Street is a local roadway that runs east/west across the city of Miami Beach between east of Collins Avenue (the boardwalk) and Dade Boulevard. 17th Street is a four-lane undivided two-way roadway with left turn lanes at major intersections. There is no posted speed limit. The city of Miami Beach has jurisdiction over 17th Street.

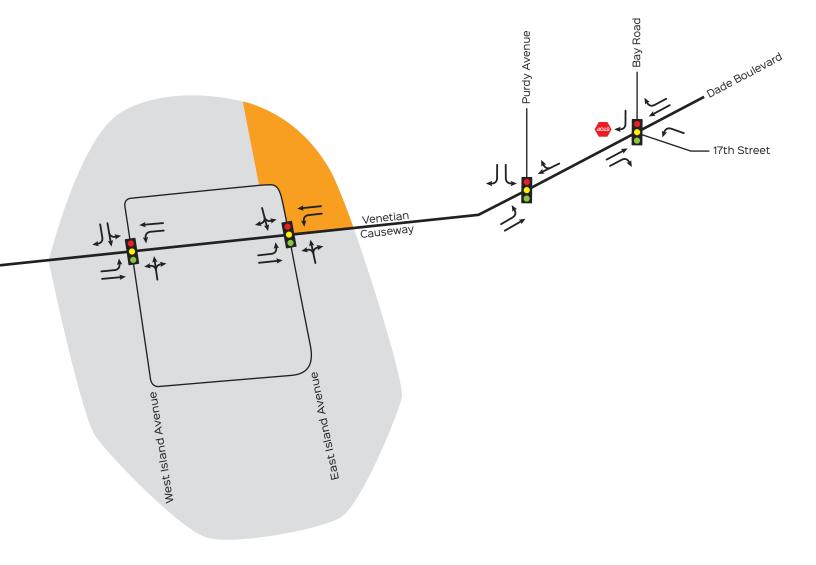
Dade Boulevard

Dade Boulevard is a minor arterial that provides east/west access between Purdy Avenue and 23rd Street. Within the project area, Dade Boulevard is a four-lane undivided roadway with left turn lanes at major intersections. The posted speed limit is 30 mph. The city of Miami Beach has jurisdiction over Dade Boulevard.

2.2 Traffic Counts

Due to the construction in the study area and re-routing of traffic patterns, present day traffic counts could not be used for the analysis. Therefore, FDOT directional segment counts collected on Venetian Way west of Purdy Avenue prior to the causeway closure and construction were used to distribute directional eastbound/westbound approach volumes at each intersection. Furthermore, two-hour turning movement counts were collected on Wednesday December 16th, 2015 during the PM peak hour (4-6 PM) at the Island Avenue intersections in order to distribute northbound/southbound approach volumes at each intersection. A weekly volume adjustment factor of 1.06 (for Miami-Dade County North) corresponding to the dates of the counts was used to adjust the raw traffic counts to peak season conditions. The weekly factor was obtained from FDOT. The approach volumes based on the collected data were assigned as turning movement volumes using a 50% eastbound / 50% westbound distribution. The FDOT directional segment volumes were then carried through the intersections as the through movement volume. An exhibit showing collected data and volume distribution / assignment is included in Appendix C. Existing turning movement volumes used for the analysis at the intersections for weekday PM peak hour are graphically portrayed in Exhibits 2.

2.3 Intersection Data


Existing signal phasing and timing for all the intersections were obtained from Miami-Dade County. This information was used for the signal phasing and timing required for the intersection capacity analysis and can be seen in Appendix C. A field survey was conducted to obtain the intersection lane configurations to be used in the intersection analysis. Exhibit 3 shows the existing lane configurations at the analyzed intersections.

DAVID PLUMMER & ASSOCIATES | Project No. 14255 | May 2016

2.4 Intersection Capacity Analysis

The Synchro software was used to perform intersection capacity analysis at the analyzed intersections. Synchro is a macroscopic analysis and optimization software application that implements the Intersection Capacity Utilization method for determining intersection capacity. Synchro also supports the Highway Capacity Manual's methodology for signalized / un-signalized intersections. Exhibit 4 shows the resulting LOS for existing weekday PM peak hour conditions. All analyzed intersections currently operate within the City's LOS standards. Analysis worksheets are included in Appendix D.

Intersection	Signalized/ Unsignalized	Direction	PM Peak LOS
Island Avenue East / Venetian Way	S	NB SB EB WB Overall	B B D C C
Island Avenue West / Venetian Way	S	NB SB EB WB Overall	C C A C B
Purdy Avenue / Dade Boulevard	S	SB EB WB Overall	C C D C
17 th Street / Bay Road / Dade Boulevard	S	SB NEB SWB WB Overall	B E B D B

Exhibit 4 Existing Intersection Capacity Analysis Weekday PM Peak Hour Conditions

Source: David Plummer & Associates

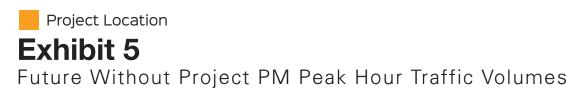
3.0 PLANNED AND PROGRAMMED ROADWAY IMPROVEMENTS

The 2015 Miami-Dade County <u>*Transportation Improvement Program*</u> (TIP) and the <u>2040 Long</u> <u>Range Transportation Program</u> (LRTP) were reviewed to identify any programmed project within the limits of the study area established. These documents identified the construction of a new bridge on West Avenue (between 17th Street and Dade Boulevard). This project was taken into consideration for future traffic analysis.

4.0 FUTURE TRAFFIC CONDITIONS

4.1 Background Traffic and Committed Developments

Average Daily Traffic counts published by FDOT were reviewed to determine historic growth in the area. This analysis indicated that traffic has generally decreased in the past five years. Consistent with Florida Department of Transportation (FDOT) procedure, a 0.5% annual growth rate was used to project future background traffic conditions.


The committed development information is included in Appendix E. The following four projects within the study area were considered as committed developments:

- Sunset Palau
- 1901 Alton Road
- 17th Street Hotel
- 1614-1634 Alton
- 1750 Alton Road
- 1824 (1800) Alton Road

4.2 Future without Project Intersection Capacity Analysis

Future without project turning movement volumes were obtained by applying two year of background growth and committed development traffic to existing conditions. Exhibits 5 show the projected PM peak hour turning movements for weekday for future without project. Exhibit 6 shows the resulting LOS for weekday PM peak hour conditions for future without project. All analyzed intersections continue to operate within the city's LOS standards. Intersection capacity worksheets are included in Appendix D.

DAVID PLUMMER & ASSOCIATES | Project No. 14255 | May 2016

Exhibit 6
Future without Project Intersection Capacity Analysis
Weekday PM Peak Hour Conditions

Intersection	Signalized/ Unsignalized	Direction	PM Peak LOS
Island Avenue East / Venetian Way	S	NB SB EB WB Overall	C B D C D
Island Avenue West / Venetian Way	S	NB SB EB WB Overall	C C B C <i>B</i>
Purdy Avenue / Dade Boulevard	S	SB EB WB Overall	C B D C
17 th Street / Bay Road / Dade Boulevard	S	SB NEB SWB WB Overall	C D C C C

Source: David Plummer & Associates

4.3 **Project Trip Generation**

Trip generation for the proposed project was estimated using the Institute of Transportation Engineers (ITE) <u>Trip Generation Manual</u>, 9thEdition. This manual provides gross trip generation rates and/or equations by land use type. These rates and equations estimate vehicle trip ends at a free-standing site's driveways. Given the pedestrian friendly nature of the area, and available transit the study uses a 10% pedestrian/transit use for the project (see Section 5 of this report for additional pedestrian and transit information). The project trip generation summary is provided in Exhibit 7.

I Toject I Tip Generation Summary						
Proposed ITE Land Use Designation ¹	Size/Units	PM Peak Hour Vehicle Trips				
		In	Out	Total		
Apartments (Land Use 220)	172 DU	73	39	112		
Other Modes of Transportation	10%	-7	-4	-11		
Net External Trips (Propo	sed)	66	35	101		
Existing ITE Land Use Designation ¹ Size/		PM Peak Hour Vehicle Trips				
Designation		In	Out	Total		
Apartments (Land Use 220)	120 DU	54	30	84		
Other Modes of Transportation	10%	-5	-3	-8		
Net External Trips (Existing)			27	76		
Proposed Uses		66	35	101		
Proposed Uses Existing Uses		66 -49	35 -27	101 -76		

17

8

25

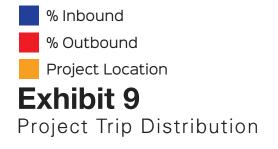
Exhibit 7 Project Trip Generation Summary

¹ Based on ITE Trip Generation Manual, Ninth Edition,

Net New External Trips

4.4 Project Trip Assignment


Project traffic was distributed and assigned to the study area using the Cardinal Distribution for TAZ 640 shown in Exhibit 8. The Cardinal Distribution gives a generalized distribution of trips from a TAZ to other parts of Miami-Dade County. For estimating trip distribution for the project traffic, consideration was given to conditions such as the roadway network accessed by the project traffic, roadways available to travel in the desired direction, and attractiveness of traveling on a specific roadway. Project trip distribution is shown in Exhibit 9 and the resulting assignment is graphically portrayed in Exhibit 10.

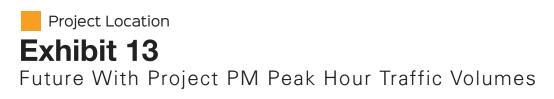

Exhibit 8 Cardinal Distribution (TAZ 640)						
DIRECTION	2010	2040	2017			
NNE	13.60%	12.60%	13.37%			
ENE	7.60%	7.50%	7.58%			
ESE	26.40%	20.00%	24.91%			
SSE	3.10%	4.40%	3.40%			
SSW	3.30%	2.10%	3.02%			
WSW	20.70%	27.30%	22.24%			
WNW	15.70%	15.10%	15.56%			
NNW	9.50%	10.90%	9.83%			

Source: Miami- Dade Long Range Transportation Plan


4.5 Future with Project Intersection Capacity Analysis

Future background traffic from the previous section and traffic projections for the project were combined to obtain future traffic with project at the analyzed intersections. The results of the analysis show that all intersections are projected to operate within the City's LOS standards. Exhibit 11 shows the resulting LOS for the weekday PM peak hour conditions for future with project, while Exhibit 12 shows the anticipated queues and available storage. Exhibit 13 shows the projected turning movement volumes. Capacity worksheets are included in Appendix D.

Exhibit 11
Future with Project Intersection Capacity Analysis
Weekday PM Peak Hour Conditions


Intersection	Signalized/ Unsignalized	Direction	PM Peak LOS
Island Avenue East / Venetian Way	S	NB SB EB WB Overall	C B D C D
Island Avenue West / Venetian Way	S	NB SB EB WB Overall	C C B C B
Purdy Avenue / Dade Boulevard	S	SB EB WB Overall	C C D C
17 th Street / Bay Road / Dade Boulevard	S	SB NEB SWB WB Overall	C C D C C

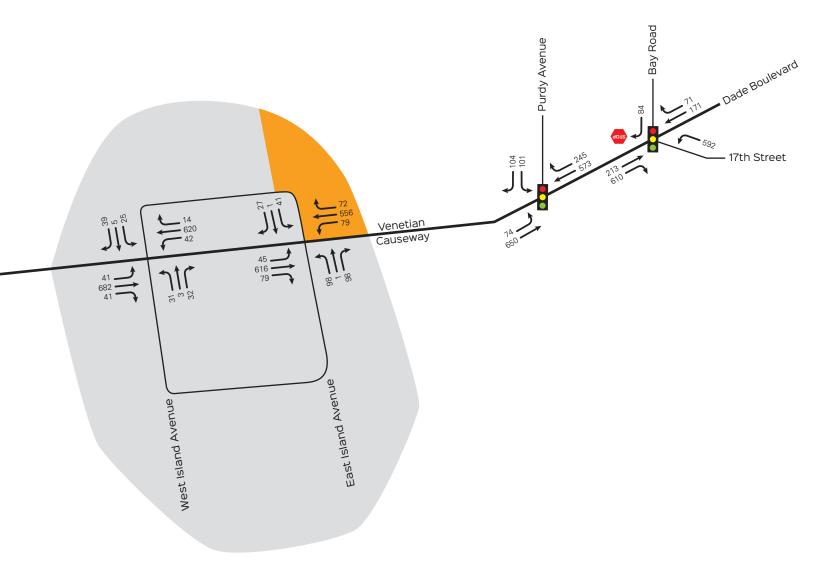
Source: David Plummer & Associates

Weekday PM Peak Hour Conditions						
Intersection	Storage (ft)					
Venetian Way/W Island	EBL	12	125			
Avenue	WBL	38	150			
Venetian Way/E Island	EBL	37	150			
Avenue	WBL	113	125			
Venetian Way/Purdy	EBL	57	50			
Avenue	SBL	74	500			
	NEBR	352	250			
Dade Boulevard/17	SWR	180	350			
Street/Bay Road	WBR	0	500			
	EBL	395	250			

Exhibit 12 Future with Project Queue Analysis Weekday PM Peak Hour Conditions

DAVID PLUMMER & ASSOCIATES | Project No. 14255 | May 2016

4.6 Future with Project Intersection Capacity Analysis with West Avenue Bridge


Improvements to the study area include the connection of West Avenue south of 17th Street with West Avenue north of Dade Boulevard with a bridge. This will be a three lane two-way roadway with a southbound through lane and exclusive left turn. This improvement will also add a northbound shared thru right turn lane. Analysis of all intersections in this study was done with the West Avenue Bridge addition.

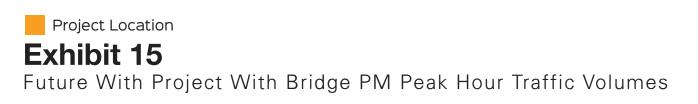
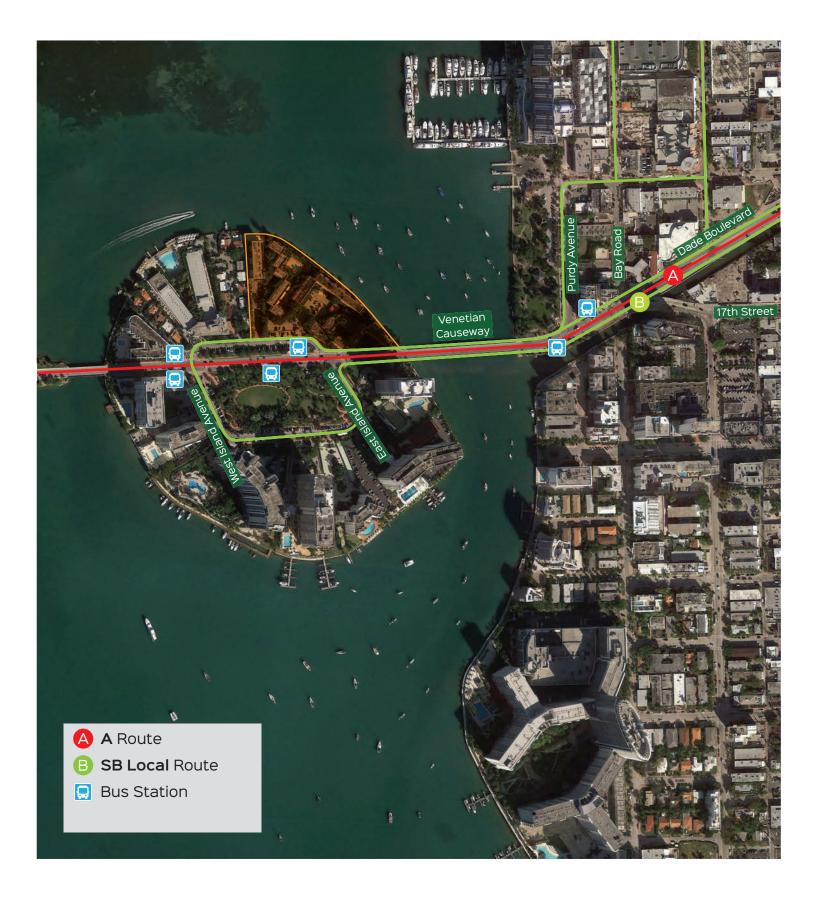

The traffic volumes at the intersections were obtained from the West Avenue Bridge PD&E Study (Peak Hour 2015 with Bridge) for the Dade Boulevard/ Bay Road/ 17th Street intersection and a growth factor was applied. Documentation of the PD&E Study is provided in Appendix F. These projected volumes were distributed to the study intersections in a similar way as previously described in Section 2.2. The Bella Island Apartments project traffic was distributed and added to the Peak Hour with Bridge volumes grown to project build-out year. Exhibit 14 shows the resulting LOS for the weekday PM peak hour conditions for future with project. Exhibit 15 shows the projected turning movement volumes. Capacity worksheets are included in Appendix D.

Exhibit 14 Future with Project with West Avenue Bridge Intersection Capacity Analysis Weekday PM Peak Hour Conditions

Intersection	Signalized/ Unsignalized	Direction	PM Peak LOS
Island Avenue East / Venetian Way	S	NB SB EB WB Overall	C C D C D
Island Avenue West / Venetian Way	S	NB SB EB WB Overall	C C B C C
Purdy Avenue / Dade Boulevard	S	SB EB WB Overall	D B C C
17 th Street / Bay Road / Dade Boulevard	S	SB NEB SWB WB Overall	C D C C C

Source: DPA and FDOT West Avenue Bridge PD&E Study

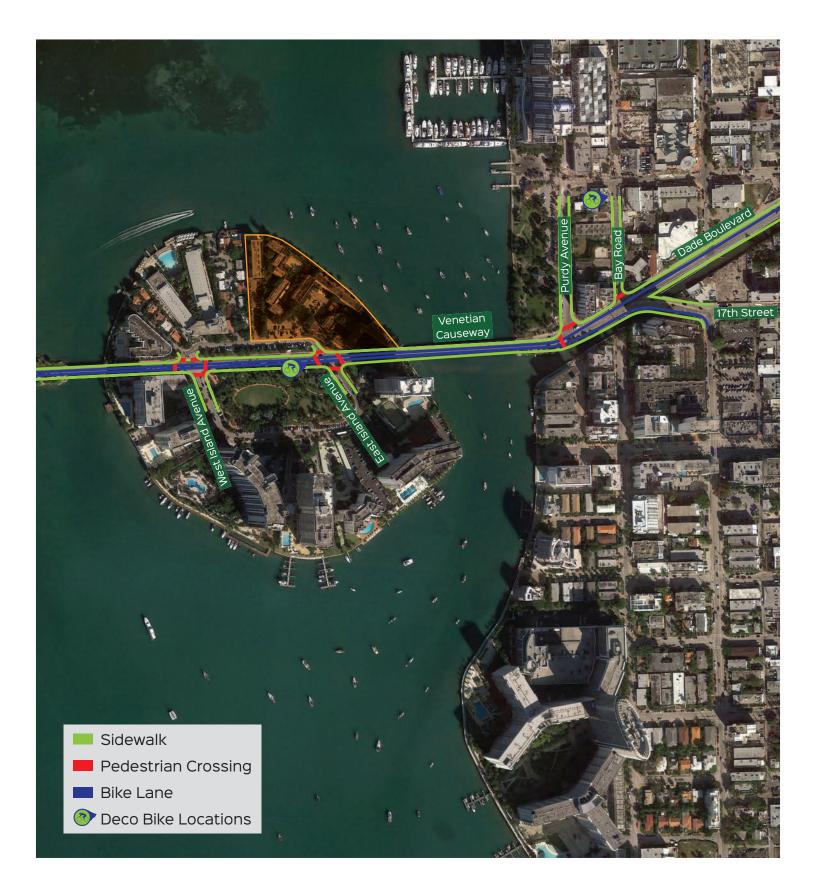
DAVID PLUMMER & ASSOCIATES | Project No. 14255 | May 2016


5.0 CIRCULATION PLAN

As mentioned before, access to the parking garage will be from a two-way driveway located on Island Avenue. This driveway will also provide access to the delivery truck load/off-load area. A second driveway also accessing Island Avenue will provide access to the drop-off / pick-up area. The project driveway sight distance analysis and auto turn analysis is included in Appendix G.

The project is located in an area that is conducive for pedestrian and bicycle activities. Venetian Way, Purdy Avenue, and Dade Boulevard provide sidewalks on both sides of the road. Signalized intersections adjacent to the site have clearly marked crosswalks and provide pedestrian signals. A bike lane is provided on Venetian Way and Dade Boulevard.

The area surrounding the project is served by transit. There are two bus routes that traverse this area of Miami Beach (Routes: 101-A and 123-SB Local). The closest bus stops to the project site are located on Venetian Way west of Island Avenue. Exhibit 16 shows the available bus routes and bus stops in the area. Appendix G shows the bus route maps and schedules.


A circulation and mobility plan was prepared for the site (see Exhibit 17). The plan shows the project driveways, location of street signals, delivery areas, sidewalk connections, and pedestrian crosswalks.

DAVID PLUMMER & ASSOCIATES | Project No. 14255 | May 2016

6.0 QUEUING ANALYSIS

6.1 Valet Drop-Off / Pick-Up Area

The queuing analysis was performed based on the methodology outlined in the *Institute of Transportation Engineers (ITE) Transportation and Land Development*. The analysis was performed to determine the number of valet parking attendants required during the peak period of a regular weekday so that the queue does not extend past the entrance (95% confidence level analysis). The potential queue at the drop-off area of the valet operations was calculated based on the peak hour traffic published by the Institute of Transportation Engineers (ITE) trip generation rates and/or equations for the proposed development plan. An overall 10% deduction was applied to account for transit/ pedestrian trips. The proposed valet will serve visitors and based on ULI's Shared Parking 2nd Edition, visitors represent 10% of the required parking for residential land uses. However for a conservative analysis, 15% of the project trip generation was used to calculate the demand at the valet drop-off area. Exhibit 18 provides the total project trip generation and calculated visitor trips for the drop-off / pick-up area during the weekday PM peak hour conditions (worst case scenario).

Proposed ITE Land Use Designation ¹	Size/Units		Peak H icle Tri	
		In	Out	Total
Apartments (Land Use 220)	172 DU	73	39	112
Other Modes of Transportation	10%	-7	-4	-11
Net External Trips (Propos	ed)	66	35	101
	Visitors (15%)	10	5	15

Exhibit 18 Bella Isla Trip Generation - PM Peak Hour

Source: ITE Trip Generation Manual, 9th Edition

The queuing analysis used the single-channel waiting line model with Poisson arrivals and exponential service times. The analysis is based on the coefficient of utilization (ρ) which is the ratio of the average arrival rate of vehicles to the average service rate.

$$\rho = \frac{Average \ Demand \ Rate}{Average \ Sevice \ Rate}$$

The average service rate corresponds to the time it will take a valet parking attendant to park or retrieve a vehicle. If the coefficient of utilization is greater than 1, then the calculation will yield an infinite queue length.

The required queue storage (M) is determined using the following equation:

$$M = \left[\frac{\ln P(x > M) - \ln Q_M}{\ln \rho}\right] - 1$$

In this equation, P(x > M) is set at 5% to yield a 95% confidence that the queue will not back-up onto the adjacent street.

Since the driving distance differs for valet for inbound/outbound access, a weighted average of the inbound and outbound driving time was used. The weighted average was based on the trip generation in/out distribution, which was 65% inbound and 35% outbound.

The processing rate was calculated by adding the time it will take a valet attendant to process the vehicles (**processing time**), the time it will take him to drive to the parking space (**driving time**) and the time it will take him to walk to/from the parking area (**walking time**). A processing time of 51 seconds per vehicle was used in the analysis. This information is based on data collected on a hotel in Miami Beach (see Appendix H). The driving time for the valet attendant was calculated on a conservative speed of 10 mph, and the walking time for the valet attendant was calculated on a jogging speed of 6ft/sec. For a conservative analysis, distances approximated are based on the most distant parking spaces. Parking garage levels showing circulation are also included in Appendix H. The calculations for the valet drop-off/ pick-up area are presented in Exhibit 19.

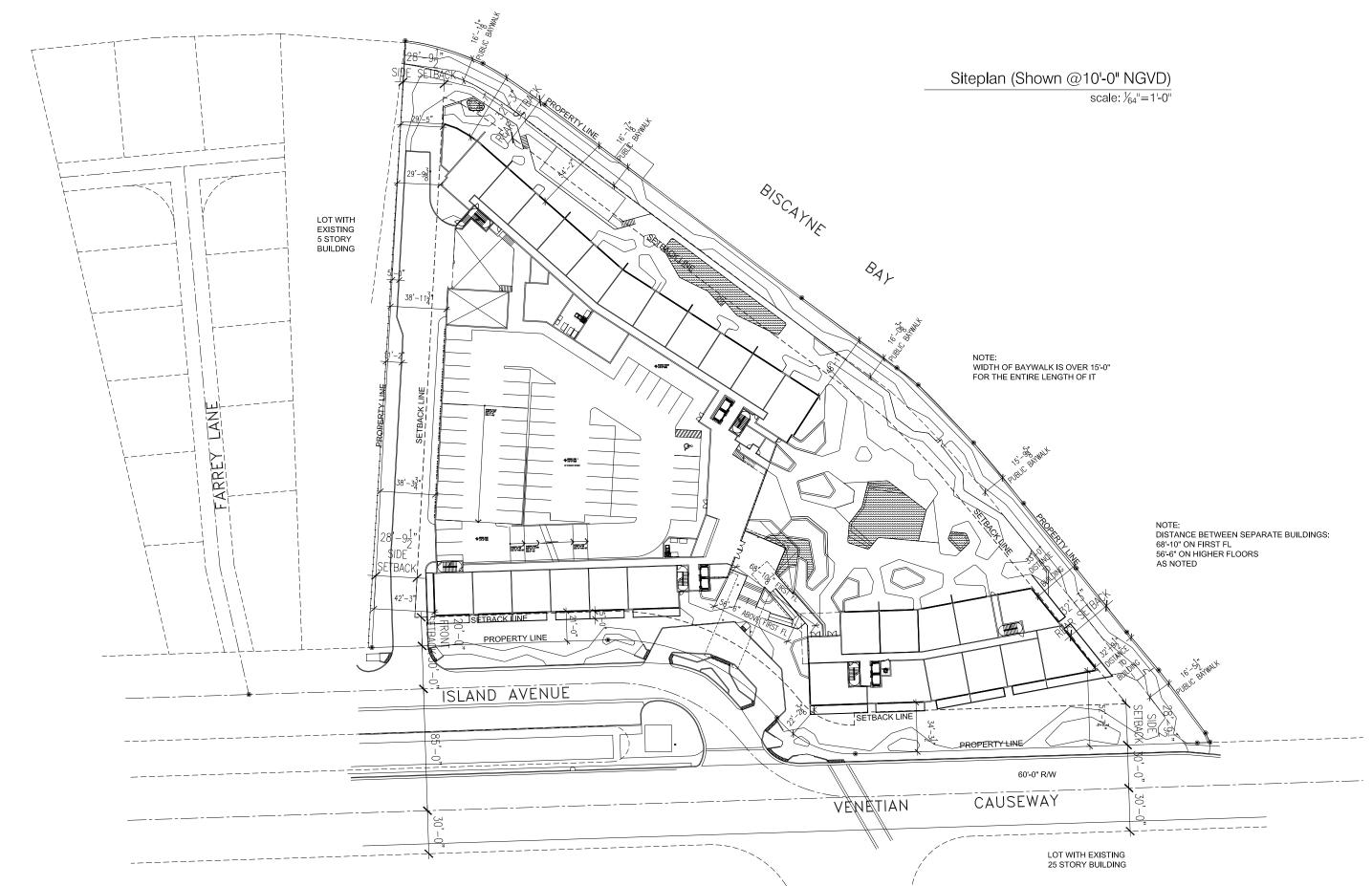
Vale	et Processing Rate
Inbound Valet Time	
Processing time:	51 sec / 60 sec / 1 min = 0.85 min
Driving time (most distant space):	1600 ft * 1 mile/5280 ft * 1hr/10 miles * 60 min/hr = 1.82 min
Walking time:	341ft/6 ft/sec / 60 sec/min = 0.95 min
Total	= <u>3.62 min</u>
Outbound Valet Time	
Processing time:	51 sec / 60 sec / 1 min = 0.85 min
Driving time (most distant space):	1700 ft * 1 mile/5280 ft * 1hr/10 miles * 60 min/hr = 1.93 min
Walking time:	341ft/6 ft/sec / 60 sec/min = 0.95 min
Total	= <u>3.73 min</u>
Weighted Valet Time	
65% Inbound Valet parking:	0.65 * 3.62 min = 2.35 min
35% Outbound Valet parking:	0.35 * 3.73 min = 1.31 min
Total	= <u>3.66 min</u>

Exhibit 19

An iterative approach was used to determine the minimum number of valet attendants required during the PM peak hour to serve the entering and exiting vehicles that will ensure that the average valet queue will not extend past the drop-off / pick-up area. Exhibit 20 shows the queuing calculations.

Exhibit 20 Bella Isla – Valet Drop-off / Pick-up Queue Calculations

 $Q = \text{Processing rate} = \frac{60 \text{ min/hr}}{3.66 \text{ min/process}} = 16.39 \text{ process/hr}$ $q = \text{Demand Rate} = 15 \frac{\text{veh}}{\text{hr}}$ N = Service Positions = 2 attendants $\rho = \text{Utilization factor} = \frac{q}{(NQ)} = \frac{15 \text{ veh/hr}}{2 \times 16.39 \text{ process/hr}} = 0.4575$ $Q_{\text{m}} = \text{Table Value} = 0.2888$ M = queue length which is exceeded 5% of the time [P(x>M)] $M = \frac{\ln P(x>M) - \ln(Q_m)}{\ln(\rho)} - 1 = \frac{\ln(0.05) - \ln(0.2888)}{\ln(0.4575)} - 1 = 1.24, \text{ say 2 vehicles}$


The results of the analysis show that 2 valet attendants would be able to handle the demand during PM peak hour with an average queue of approximately 2 vehicles or less. The proposed site dropoff / pick-up area can accommodate approximately 3 vehicles in queue. The site plan is included in Appendix H.

7.0 CONCLUSIONS

An assessment of the traffic impacts associated with the proposed Bella Isla Apartments was performed in accordance with the requirements of the city of Miami Beach. The analysis shows that all intersections analyzed currently operate and will continue to operate within the city's LOS standards.

In addition, a mobility and circulation plan was completed as part of the study. The plan shows that the project area is currently served by various Miami-Dade Transit bus routes. The project is located in an area that is conducive for pedestrian and bicycle activities providing bike lanes, ample sidewalks, and crosswalks. An assessment of circulation as it relates to the valet services during the PM peak hour was performed. The queuing analysis shows that the anticipated queue at the designated valet drop-off / pick-up area during the typical PM peak traffic conditions can be accommodated within the project site.

Appendix A Site Plan

studio r m a 0 -0 σ

Bella Isla Apartments - 31 Venetian Way - DRB Final Submittal

Appendix B: Methodology

1750 PONCE DE LEON BOULEVARD, CORAL GABLES, FLORIDA 33134 305 447-0900 • FAX: 305 444-4986 • EMAIL: DPA@DPLUMMER.COM

Bella Isla Apartments Transportation Impact Study Methodology

> November 19, 2015 Revised: November 24, 2015

PROJECT LOCATION

The project will be located at 31 Venetian Way in Miami Beach, Florida. The project proposes to replace an existing 120-unit apartment complex with a new 170-unit apartment building.

PURPOSE

This methodology will provide the details of the Transportation Impact Study and Queuing Analysis for this proposed increase in development. This methodology is based on discussions from a methodology meeting held with city staff on November 17, 2015. Confirmation of this methodology will be requested from the city and/or its traffic consultant prior to performing the study.

TRAFFIC STUDY

- Traffic Counts (Intersections) Because of construction activity in the area, traffic counts collected prior to the construction will be used. Counts will be projected to existing traffic conditions (2015) by applying a growth rate factor. The applicant traffic consultant and city staff will review the traffic counts for accuracy.
- Intersection Analysis The following intersections will be analyzed for the PM peak hour of a regular weekday:
 - Venetian Causeway / Island Avenue East (S)
 - Venetian Causeway / Island Avenue West (S)
 - Dade Boulevard / Sunset Harbour Drive (S)
 - 17th Street / Bay Road/ Dade Boulevard (S)

S= Signalized

Traffic counts used as part of this project will be included in the appendix of the Transportation Impact Study submitted to the city.

- Signal Location and Timing Existing signal phasing and timing for the signalized intersections will be obtained from Miami-Dade County. Signal data collected from the county will be included in the appendix of this study.
- Trip Generation Trip generation for the project will be estimated using trip generation information published by the Institute of Transportation Engineers (ITE) <u>Trip Generation Manual</u>, 9th edition. As agreed with city staff, a 10% reduction will be applied to account for other modes of transportation. Credit for vehicle trips generated by the existing uses will be based on ITE <u>Trip Generation Manual</u>, 9th edition.
- Trip Distribution / Trip Assignment Net new external project traffic will be assigned to the adjacent street network using the appropriate cardinal distribution from the <u>Miami-Dade</u> <u>Long Range Transportation Plan Update</u>, published by the <u>Metropolitan Planning</u> <u>Organization</u>. Normal area traffic patterns will also be considered when assigning project trips. A figure showing all of the assigned trips to the adjacent transportation network will be provided as part of the study.
- Background Traffic Available Florida Department of Transportation (FDOT) and Miami-Dade County (MDC) traffic counts will be consulted to determine a growth factor consistent with historical annual growth in the area. The growth factor will be applied to the existing traffic volumes to establish background traffic. This will be documented in the study.
- Committed Developments The following projects will be considered as committed developments: 1901 Alton Road (Whole Foods), 1614-1634 Alton Road, Sunset Palau and 17th Street Hotel. Evidence of the data collected as part of the committed developments will be included in the appendix of the study.
- Future Transportation Projects The 2015 TIP and the 2040 LRTP will be reviewed and considered in the analysis at project build-out. <u>The proposed West Avenue Bridge</u>

<u>(between 17th Street and Dade Boulevard) will be taken into consideration for future</u> <u>traffic analysis as well as its impact on the West Avenue/Dade Boulevard intersection.</u>

- Intersection Capacity Analysis The intersection capacity analyses will be conducted for the following conditions:
 - Existing conditions
 - Future conditions with Committed Developments
 - Future conditions with Project and Committed Development

The analysis will be done on a regular weekday during PM peak hour (4-6 PM). Intersection analysis will be done using Highway Capacity Software (HCS 2010) or the Synchro software both based on the 2010 <u>Highway Capacity Manual</u> (HCM). Figures depicting trip distribution for each of these scenarios will be provided as part of this study. If the results of the analysis show any intersection operating below the City's Level of Service standards, specific mitigation measures will be recommended.

CIRCULATION ANALYSIS/PLAN

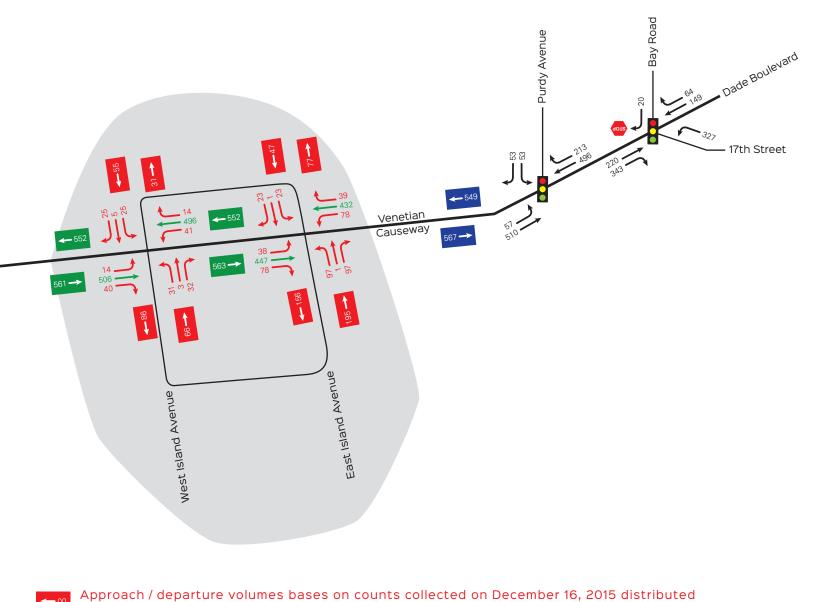
The study will provide a circulation plan depicting the parking garage circulation. The plan will also include a clear site plan defining all of the various land use categories assigned to the project site, driveways, delivery areas, location of street signs/signals, crosswalks, sidewalks, location of bus facilities, bike facilities, adjacent streets configuration (travel lanes, etc.) including names, on-street parking and any other pertinent transportation feature in the vicinity of this project.

As part of the study, any proposed/existing driveways will be analyzed. This analysis will include sight distance for vehicles entering/exiting the proposed driveway. An Auto-turn analysis will be conducted for the drop-off / pick-up area and the loading area. If deficiencies are determined, mitigation measures will be recommended.

Multimodal – Pedestrian, bicycle and transit facilities will be defined in the Circulation Plan. Existing bus routes including schedule and bus stop locations will be discussed as part of the

study. An effort will be made to include bicycle parking facilities within the project site to be utilized either by employees or tenants.

DOCUMENTATION


The applicant will submit one original, 13 hard copies and four CDs of the traffic study. The submittal will include a CD with the HCS 2010 or Synchro program output calculations for consideration/review by the consultant acting as the peer reviewer. Also included will be the latest version of the site plan, with an AutoCad version.

The City reserves the right to request additional analyses including but not limited to, additional traffic counts and level of service analysis for any intersection City staff feels is necessary in order to complete the review process.

w:\14\14255\bella isla apartment_methodology_rev.docx

Appendix C: Traffic Data

Approach / departure volumes bases on counts conected on December 10, 2015 distributed 50% Eastbound / 50% Westbound
 Segment volume based on FDOT counts collected at Venetian Causeway west of Purdy Avenue on December 16, 2014 - December 22, 2014 (Prior to the closure of Venetian Causeway)

Approach / departure volumes calculated from FDOT segment volume and distributed turning volumes

Exhibit A-1 Existing Intersection Volume Distribution / Assignment

HBC Engineering Company 13155 SW 134th Street, Suite 207

Miami, Florida, 33186

VENETIAN CAUSEWAY PD&E STUDY (FM: 422713-2)

Site Code: VEN 3 Station ID: 27638

7-DAY TRAFFIC COUNT ON VENETIAN CAUSEWAY WEST OF PURDY AVENUE PLAZA (NEAR EASTERN LIMITS OF THE STUDY)

Start	16-De	c-14	17-De	ec-14	18-De	ec-14	19-De	ec-14	20-De	ec-14	21-De	ec-14	22-De	ec-14	Week Av	/erage
Time	WB	EB	WB	ĒB												
12:00 AM	127	180	134	182	162	214	196	244	250	302	240	270	162	224	182	231
01:00	85	86	108	104	92	112	132	142	190	240	184	201	109	114	129	143
02:00	32	56	38	45	38	60	51	98	128	158	132	207	58	98	68	103
03:00	24	42	24	30	34	56	30	58	86	140	88	140	32	44	45	73
04:00	16	39	18	26	22	37	32	46	63	90	72	104	13	34	34	54
05:00	19	30	17	18	20	33	25	46	48	96	48	88	19	42	28	50
06:00	38	36	34	29	43	44	30	44	51	71	42	69	40	35	40	47
07:00	100	88	114	87	120	92	99	94	68	56	62	63	99	80	95	80
08:00	293	280	316	292	306	274	322	262	144	126	128	91	246	228	251	222
09:00	522	380	522	416	514	376	530	436	234	196	187	136	419	390	418	333
10:00	512	474	502	462	510	431	516	434	367	265	299	197	456	395	452	380
11:00	499	438	434	435	496	433	554	432	424	321	376	275	516	473	471	401
12:00 PM	437	440	490	448	497	478	531	506	492	432	399	328	472	513	474	449
01:00	525	518	514	489	526	496	740	550	496	459	404	408	546	558	536	497
02:00	464	474	530	469	495	536	654	555	469	474	442	408	509	554	509	496
03:00	504	468	510	502	536	488	536	658	475	470	400	417	574	567	505	510
04:00	498	535	532	530	585	550	605	654	550	507	473	458	522	590	538	546
05:00	564	514	586	578	598	587	616	688	488	577	414	447	576	576	549	567
06:00	584	668	564	646	610	654	668	754	470	540	436	514	622	598	565	625
07:00	526	587	585	672	606	618	608	689	530	536	400	496	512	561	538	594
08:00	373	436	448	462	478	536	476	531	410	482	322	364	398	454	415	466
09:00	277	343	332	362	348	380	344	362	336	352	284	319	311	422	319	363
10:00	204	290	248	276	280	314	301	342	276	366	249	304	214	352	253	321
11:00	184	262	250	288	242	290	332	296	281	325	180	257	204	268	239	284
Total	7407	7664	7850	7848	8158	8089	8928	8921	7326	7581	6261	6561	7629	8170	7653	7835
Day	1507	71	1569	98	162	47	178	49	1490	07	1282	22	1579		1548	-
AM Peak	09:00	10:00	09:00	10:00	09:00	11:00	11:00	09:00	11:00	11:00	11:00	11:00	11:00	11:00	11:00	11:00
Vol.	522	474	522	462	514	433	554	436	424	321	376	275	516	473	471	401
PM Peak	18:00	18:00	17:00	19:00	18:00	18:00	13:00	18:00	16:00	17:00	16:00	18:00	18:00	18:00	18:00	18:00
Vol.	584	668	586	672	610	654	740	754	550	577	473	514	622	598	565	625

DAVID PLUMMER & ASSOCIATES, INC.

Location			Veneti	sla Apartr an Way / I Survey S	sland A							Count	t Numl Date: Week:		Wed	14255 12/16/2015 nesday	
ſ			sland	Avenue V	/ Cen	tury La	ane					Venetia	an Way	/			
TIME		NORT	HBOUN	D		SOUT	HBOUN	D		EAST	BOUND)		WEST	FBOUNE)	GRAND
INTERVAL	L	Т	R	TOTAL	L	Т	R	TOTAL	L	Т	R	TOTAL	L	Т	R	TOTAL	TOTAL
04:00 PM 04:15 PM	1	2	12	15	11	3	2	16	5	97	1	103	14	55	7	76	210
4:15 PM 04:30 PM	1	1	18	20	15	1	3	19	0	71	1	72	22	61	5	88	199
4:30 PM 04:45 PM	4	0	12	16	10	0	0	10	0	72	1	73	22	64	6	92	191
4:45 PM 05:00 PM	0	0	12	12	6	1	0	7	1	90	2	93	16	71	3	90	202
5:00 PM 05:15 PM	2	1	7	10	14	2	1	17	1	65	0	66	16	61	2	79	172
5:15 PM 05:30 PM	1	1	9	11	14	1	0	15	2	58	0	60	8	51	10	69	155
05:30 PM 05:45 PM	0	0	8	8	9	1	0	10	0	63	0	63	13	50	2	65	146
05:45 PM 06:00 PM	0	0	6	6	12	1	1	14	0	58	1	59	20	59	4	83	162
ſ			sland	PM I	ANI	NUAL A	VERAG	NG MOVE				IMARY Venetia	an Way	/]
TIME		NORT	HBOUN	D		SOUT	HBOUN	D		EAST	BOUND)		WEST	BOUN)	GRAND
	NTERVAL L T R TOTAL L T R TO										R	TOTAL	L	T	R	TOTAL	TOTAL
INTERVAL			1		4.5	-	-	55	6	350	_	201	78	266	22		050
INTERVAL 04:00 PM 05:00 PM	6	3	57	67	45	5	5	55	0	350	5	361	10	200	22	367	850

DAVID PLUMMER & ASSOC	CIATES, IN	C.				TUF	RNING	6 MOVE	EMEN	тсо	UNTS	6						
Project I Locatior Observe	ו:		Venetia	sla Apartr an Way / I Survey S	sland A							Coun	ct Numk t Date: f Week:			Wed	14255 12/16/2015 nesday	
				Island A	venue	E						Ve	netian V	Vav]
TIME		NORT	HBOUN	D		SOUT	HBOUN	D		EAST	BOUND				/ESTBO	UND		GRAND
INTERVAL	L	Т	R	TOTAL	L	Т	R	TOTAL	L	Т	R	TOTAL	U-Turn	L	Т	R	TOTAL	TOTAL
04:00 PM 04:15 PM	2	0	30	32	16	0	0	16	0	126	0	126	2	29	80	15	126	300
04:15 PM 04:30 PM	1	0	47	48	13	0	3	16	0	92	0	92	10	31	88	20	149	305
04:30 PM 04:45 PM	0	0	49	49	10	0	0	10	0	102	2	104	11	31	98	20	160	323
04:45 PM 05:00 PM	1	1	39	41	8	0	0	8	1	115	0	116	7	34	93	10	144	309
05:00 PM 05:15 PM	1	0	45	46	10	1	0	11	0	92	0	92	7	49	86	22	164	313
05:15 PM 05:30 PM 05:30 PM 05:45 PM	1 1	0	29 12	31 13	18 11	1	0	19 11	0	77 75	1	78 78	10 10	39 43	75 79	18 9	142 141	270 243
05:45 PM 06:00 PM	2	2	21	25	14	0	0	14	1	75	3 1	78	5	43	96	9 13	141	243
ſ				Island A		ANNU		RNING M Rage Dail				IS	Y netian V	Vay]
TIME		NORT	HBOUN	D		SOUT	HBOUN	D		EAST	BOUND)		W	/ESTBO	UND		GRAND
INTERVAL											R	TOTAL	U-Turn	L	Т	R	TOTAL	TOTAL
04:15 PM 05:15 PM	3	1	191	195	43	1	3	48	1	425	2	428	37	154	387	76	654	1,325
PEAK HOUR FACTOR				0.94				0.70				0.87					0.94	0.97
Note: 2014	FDOT I	Peak Se	ason Cor	nversion Fa	ictor =	1.06	_											

DAVID PLUMMER & ASSOCIATES, INC.

IL

1

					Т	URNI	NG M	IOVEM	ENT	COUN	ITS						
Project I	Name:		Bella I	sla Apartr	nents							Projec	t Num	ber:		14255	
Location				Boulevard		v Aveni	le					Count				12/16/2015	
Observe	er:			Survey S								Day of	Week		Wed	nesday	
	Purdy Avenue TIME NORTHBOUND SOUTHBOUND TERVAL L T R TOT.											Dade Bo	ouleva				
TIME		NORT	HBOUN	D		SOUT	HBOUN	D		EAST	BOUND)		WEST	BOUND)	GRAN
INTERVAL	L	T	R	TOTAL	L	Т	R	TOTAL	L	Т	R	TOTAL	L	Т	R	TOTAL	ΤΟΤΑ
04:00 PM 04:15 PM				0	15	0	33	48	0	171	0	171	0	100	1	101	320
04:15 PM 04:30 PM				0	20	0	21	41	0	167	0	167	0	122	1	123	331
04:30 PM 04:45 PM				0	33	0	34	67	0	178	0	178	0	130	0	130	375
04:45 PM 05:00 PM				0	19	0	29	48	0	187	0	187	0	111	0	111	346
05:00 PM 05:15 PM		0 19 0 29 0 29 0 21							1	178	0	179	0	163	3	166	390
05:15 PM 05:30 PM				0	18	0	23	41	0	165	0	165	0	132	0	132	338
5:30 PM 05:45 PM				0	25	0	24	49	0	152	0	152	0	131	0	131	332
5:45 PM 06:00 PM				0	33	0	29	62	0	143	0	143	0	149	0	149	354
Ĩ				PM I Purdy /	AN	NUAL A		NG MOVE E daily ti				IMARY Dade Bo	ouleva	rd]
TIME	TIME NORTHBOUND SOUTHBOUND										BOUND)		WEST	BOUNE)	GRAN
INTERVAL	NTERVAL L T R TOTAL L T R TO									T	R	TOTAL	L	T	R	TOTAL	ΤΟΤΑ
04:30 PM 05:30 PM	0	0	0	0	100	0	113	213	1	750	0	752	0	568	3	571	1,536
	D PM 05:30 PM 0 0 0 0 100 0 113 K HOUR FACTOR #DIV/0! #DIV/0!											0.95		•			

VENETIAN WAY & ISLAND WAY W MIAMI BEACH, FLORIDA COUNTED BY: ISIDRO GONZALEZ SIGNALIZED

Traffic Survey Specialists, Inc. 85 SE 4th Avenue, Unit 109 Delray Beach, Florida 33483 Phone (561) 272-3255

Site Code : 00150249 Start Date: 12/16/15 File I.D. : WVENISLA Page : 1

ALL VEHICLES

	CENTURY From No:				VENETIAL From Eas				ISLAND From So				VENETIA				
Date 12/	UTurn 16/15	Left	Thru	Right	UTurn	Left	Thru	Right	 UTurn	Left	Thru	Right	UTurn	Left	Thru	Right	Tota
16:00	0	11	3	2	0	14	55	7	0	1	2	12	1	4	97	1	21
16:15	0	15	1	3	1	21	61	5	0	1	1	18	0	0	71	1	19
16:30	0	10	0	0	0	22	64	6	0	4	0	12	0	0	72	1	19
16:45	0	6	1	0	0	16	71	3	0	0	0	12	0	1	90	2	202
Hr Total	L O	42	5	5	1	73	251	21	0	6	3	54	1	5	330	5	803
17:00	0	14	2	1	0	16	61	2	0	2	1	7	0	1	65	0	17
17:15	0	14	1	0	0	8	51	10	0	1	1	9	0	2	58	0	15
17:30	0	9	1	0	0	13	50	2	0	0	0	8	0	0	63	0	14
17:45	0	12	1	1	0	20	59	4	0	0	0	6	0	0	58	1	16
Hr Total	L O	49	5	2	0	57	221	18	0	3	2	30	0	3	244	1	63
	0	 91	10		1	130	472	39	 0	9		84	1	8	574	6	143

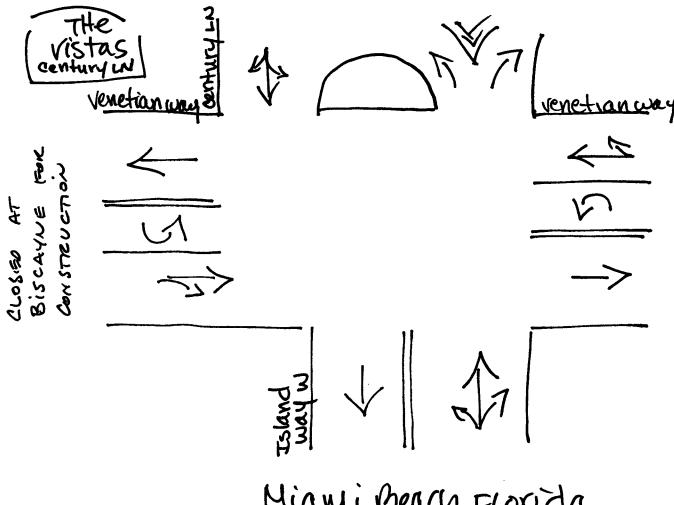
VENETIAN WAY & ISLAND WAY W MIAMI BEACH, FLORIDA COUNTED BY: ISIDRO GONZALEZ SIGNALIZED

Traffic Survey Specialists, Inc. 85 SE 4th Avenue, Unit 109 Delray Beach, Florida 33483 Phone (561) 272-3255

Site Code : 00150249 Start Date: 12/16/15 File I.D. : WVENISLA Page : 2

	NTURY				VENETIAN				ISLAND W From Sou				VENETIAN				
Fr	om Nor	tn			From Eas				1					C			
	Turn						Thru					Right	UTurn	Left	Thru	Right	Tota
					ction for												
ak Hour ak start			Encire	Incerse	16:00		er 100.	10.00 0	16:00		,,15		16:00			1	
lume	0	42	5	5	,	73	251	21		6	3	54	1	5	330	5	
rcent	0%	81%	10%	10%	0%	21%	738	6%	0%	10%	5%	86%	0%	1%	97%	1%	
total	52				346				63				341			1	
ghest	16:15				16:30				16:15				16:00				
lume	0	15	1	3	,	22	64	6	1	1	1	18		4	97	1	
total	19				92				20				103			1	
F	.68				.94				.79				.83			4	
							CENTU	IRY L	ANE 📗								
		•		ο ·	5	•	5		42		6						
											3 21						
											Z I 						0
				0	5		5	;	42		30				0		0
				Ŭ	0		0								-		
						•	52		'' ''								
		7 7 7			L			-	82 -				Г	,	51		21
ENETI	AN V	VAY												4	21		
	6			_			• AI	L VE	HICLE	S							
25	51		262											_		• 2	51
	5												346	25	51		
-	~												1				
	6		6	1	l							I				•	74
			0		6	03					77	2		-	74		/ 1
·					0							-	L		_		
33	80			1													
			330	34	1		Inte		tion	Tota	1						42
				1					802					42	26		30
	5			— i													54
	С		5	-									VEN	IETIZ	AN WA	ΔY	
			2					_	147				•				
_					I				<u> </u>	6	3 –	•					
	0		_						_				_		_		
			0				74		6	•	3	•	54 ·		0		
							ц) (Л	2									
							: 	?									
						_	84		6	_	3	-	54		0		
							01		Ĭ		Ĩ				-		
								11									
							ISLAN										

VENETIAN WAY & ISLAND WAY W MIAMI BEACH, FLORIDA COUNTED BY: ISIDRO GONZALEZ SIGNALIZED



Traffic Survey Specialists, Inc. 85 SE 4th Avenue, Unit 109 Delray Beach, Florida 33483 Phone (561) 272-3255

Site Code : 00150249 Start Date: 12/16/15 File I.D. : WVENISLA Page : 1

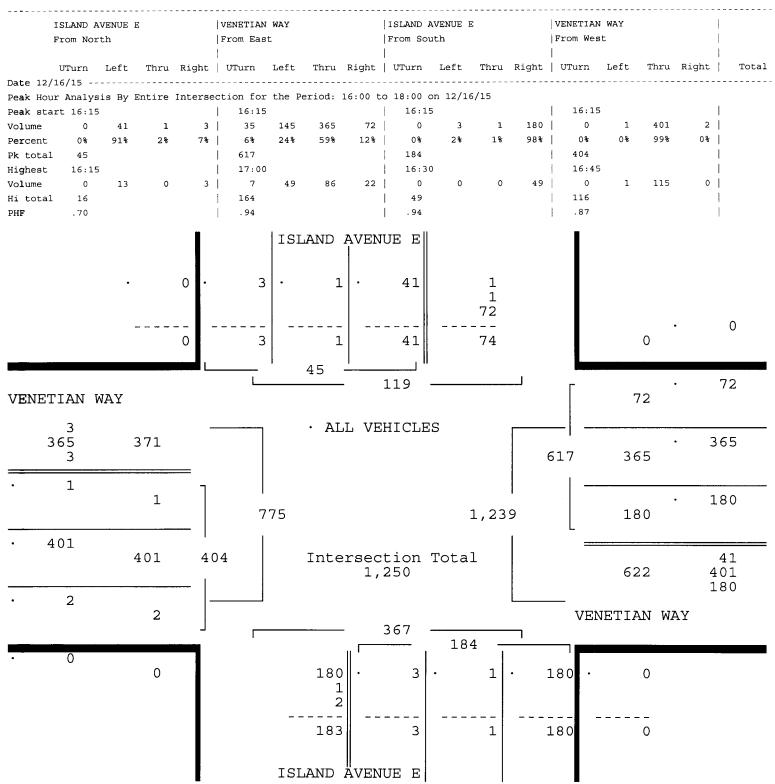
PEDESTRIANS & BIKES

	CENTURY From No				VENETIA From Ea			,	ISLAND From Sc			'	VENETIA From We				
			D (-1 +				Dicht	Peds		BIKES	Right	Peds		BIKES	Right	Peds	Tota
Date 12/		BIKES	Right	Peds	Leit	BIKES	Right		Leit	BIRES							
										_			0	0	0	0	1:
16:00	0	2	0	5	0	0	0	9	0	2	0	1	0	0	0	0	
16:15	0	0	0	0	0	0	0	4	0	3	0	2	0	0	0	7	10
16:30	0	5	0	5	0	0	0	4	0	3	0	3	0	0	0	1	2
16:45	0	0	0	2	0	0	0	12	0	3	0	0	0	1	0	1	1
Hr Total	L 0	7	0	12	0	0	0	29	0	11	0	6	0	1	0	9	7
17:00	0	1	0	4	0	0	0	6	0	2	0	6	0	0	0	2	2
17:15	0	2	0	9	0	0	0	7	0	3	0	3	0	0	0	0	2.
17:30	0	3	0	9	0	0	0	7	0	2	0	5	0	0	0	0	2
17:45	0	1	0	4	0	0	0	7	0	2	0	5	0	0	0	0	1
Hr Total	L O	7	0	26	0	0	0	27	0	9	0	19	0	0	0	2	9
TOTAL	0	14	0	38	0	0	0	56	0	20	0	25	0	1	0	11	165

Miami Beach, Florida December 15, 2015 drawn by: Luis Palomino signalized VENETIAN WAY & ISLAND AVENUE E MIAMI BEACH, FLORIDA COUNTED BY: ANDREW GONZALEZ SIGNALIZED

Traffic Survey Specialists, Inc. 85 SE 4th Avenue, Unit 109 Delray Beach, Florida 33483 Phone (561) 272-3255

Site Code : 00150249 Start Date: 12/16/15 File I.D. : EVENISLA Page : 1


ALL VEHICLES

	ISLAND A		Ξ		VENETIA				ISLAND From So		E		VENETIA				
Date 12/	UTurn /16/15	Left	Thru	Right	UTurn	Left	Thru	Right	 UTurn	Left	Thru	Right	 UTurn	Left	Thru 	Right	Tota
16:00	0	16	0	0	2	29	80	15	0	2	0	30	0	0	126	0	30
16:15	0	13	0	3	10	31	88	20	0	1	0	47	0	0	92	0	30
16:30	0	10	0	0	11	31	98	20	0	0	0	49	0	0	102	2	32
16:45	0	8	0	0	7	34	93	10	0	1	1	39	0	1	115	0	30
Hr Total	1 0	47	0	3	30	125	359	65	0	4	1	165	0	1	435	2	123
17:00	0	10	1	0	7	49	86	22	0	1	0	45	O	0	92	0	31
17:15	0	18	1	0	10	39	75	18	0	1	1	29	0	0	77	1	27
17:30	0	11	0	0	10	43	79	9	0	1	0	12	0	0	75	3	24
17:45	0	14	0	0	5	45	. 96	13	0	2	2	21	0	1	76	1	27
Hr Total	1 0	53	2	0	32	176	336	62	0	5	3	107	0	1	320	5	110
TOTAL	0	100	2		62	301	695	127	0	 9		272	0	2	755	7	233

VENETIAN WAY & ISLAND AVENUE E MIAMI BEACH, FLORIDA COUNTED BY: ANDREW GONZALEZ SIGNALIZED Traffic Survey Specialists, Inc. 85 SE 4th Avenue, Unit 109 Delray Beach, Florida 33483 Phone (561) 272-3255

Site Code : 00150249 Start Date: 12/16/15 File I.D. : EVENISLA Page : 2

ALL VEHICLES


VENETIAN WAY & ISLAND AVENUE E MIAMI BEACH, FLORIDA COUNTED BY: ANDREW GONZALEZ SIGNALIZED

Traffic Survey Specialists, Inc. 85 SE 4th Avenue, Unit 109 Delray Beach, Florida 33483 Phone (561) 272-3255

Site Code : 00150249 Start Date: 12/16/15 File I.D. : EVENISLA Page : 1

PEDESTRIANS & BIKES

	ISLAND From No		Е		VENETIA From Ea				ISLAND From Sc		Е		VENETIA				
Date 12/		BIKES	-	Peds	Left	BIKES	Right	Peds	 Left	BIKES	Right	Peds	 Left	BIKES	Right	Peds	Tota
16:00	0	0	0	1	0	0	0	1	0	3	0	4	0	0	0	0	
16:15	0	0	0	0		0	0	-		1	0	6	•	0	0	0	
16:30	0	5	0	4	0	0	0	4	0	3	0	4	0	0	0	0	2
16:45	0	0	0	2	0	0	0	2	0	5	0	2	0	0	0	1	1
Hr Total	. 0	5	0	7	0	0	0	7	0	12	0	16	0	0	0	1	4
17:00	0	1	0	2	0	0	0	1	0	0	0	5	0	0	0	0	
17:15	0	0	0	1	0	0	0	3	0	0	0	10	0	0	0	0	1
17:30	0	0	0	1	0	0	0	1	0	2	0	8	0	0	0	0	1
17:45	0	1	0	3	0	1	0	1	0	5	0	7	0	0	0	0	1
Hr Total	0	2	0	7	0	1	0	6	0	7	0	30	0	0	0	0	5
TOTAL			0	14		1	0	13		19	0	46	 0	0	0	1	101

DADE BOULEVARD & PURDY AVENUE MIAMI BEACH, FLORIDA COUNTED BY: SEBASTIAN SALVO SIGNALIZED

Traffic Survey Specialists, Inc. 85 SE 4th Avenue, Unit 109 Delray Beach, Florida 33483 Phone (561) 272-3255

Site Code : 00150249 Start Date: 12/16/15 File I.D. : DADEPURD Page : 1

ALL VEHICLES

	PURDY AV				DADE BOU From Eas				 From So	uth			DADE BO				
	UTurn	Left	Thru	Right	 UTurn	Left	Thru	Right	 UTurn	Left	Thru	Right	UTurn	Left	Thru	 Right	Tota
Date 12,	/16/15																
16:00	0	15	0	33	2	0	100	1	0	0	0	0	0	0	171	0	32
16:15	0	20	0	21	0	0	122	1	0	0	0	0	0	0	167	0	33
16:30	0	33	0	34	0	0	130	0	0	0	0	0	0	0	178	0	37
16:45	0	19	0	29	4	0	111	0	0	0	0	0	0	0	187	0	35
Hr Total	1 0	87	0	117	6	0	463	2	0	0	0	0	0	0	703	0	137
17:00	0	24	0	21	0	0	163	3	0	0	0	0	1	0	178	0	39
17:15	0	18	0	23	2	0	132	0	0	0	0	0	0	0	165	0	34
17:30	0	25	0	24	1	0	131	0	0	0	0	0	0	0	152	0	33
17:45	0	33	0	29	1	0	149	0	0	0	0	0	0	0	143	0	35
Hr Tota	1 0	100	0	97	4	0	575	3	0	0	0	0	1	0	638	0	141
	0	187		214	10		1038	5	0	 0		0	1		1341	0	279

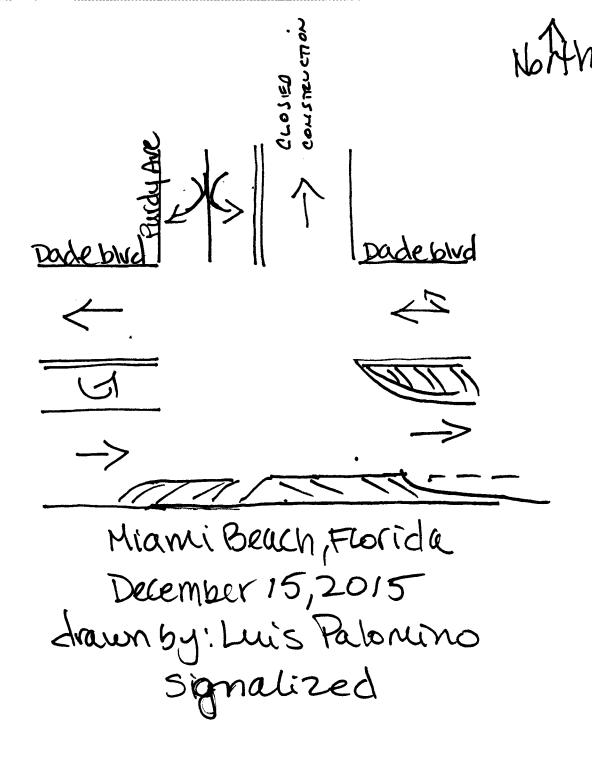
DADE BOULEVARD & PURDY AVENUE MIAMI BEACH, FLORIDA COUNTED BY: SEBASTIAN SALVO SIGNALIZED

Traffic Survey Specialists, Inc. 85 SE 4th Avenue, Unit 109 Delray Beach, Florida 33483 Phone (561) 272-3255

Site Code : 00150249 Start Date: 12/16/15 File I.D. : DADEPURD Page : 2

ALL VEHICLES

PURDY AV	ENUE			DADE BOU	LEVARD							DADE BOU	LEVARD		1	
From Nor	th			From Eas	t			From Sou	ith			From Wes	t			
UTurn 2e 12/16/15	Left		Right	 UTurn	Left	Thru	Right	 UTurn	Left	Thru	Right	UTurn	Left	Thru	Right	Tota
ak Hour Analys			Inters	section for	the P	eriod:	16:00 t	o 18:00 c	n 12/16	6/15						
ak start 16:30				16:30				16:30				16:30			1	
Lume 0	94	0	107	7 6	0	536	3	0	0	0	0	1	0	708	0	
cent 0%	47%	0%	539	8 18	08	98%	1%	0%	0%	0%	0%	0%	0%	100%	0%	
total 201				545				0				709				
nhest 16:30				17:00				16:00				16:45			ļ	
ume 0	33	0	34	4 0	0	163	3	0	0	0	0		0	187	0	
total 67				166				0				187				
.75				. 82				.0				.95				
					F	VURDY	AVE	NUE								
			ο.	107	-	C) .	94		1						
			Ŭ	10,						ō						
										3						
															•	0
			0	107		C)	94		4				0		
								.								
_					2	01										~
	רד אד די די						-	205 -				Γ		3	•	3
ADE BOULE	SVAR.	D												3		
0						• AT	J. VE	HICLE	5			_				
536		643				1 11			Ļ			1			• 53	36
107		010										545	53	36		
1			٦											<u> </u>		
		1													•	6
				1	,352					1,34	7			6		
			—	1								L				
708		700	-	,		T			7 ¹	7						~ 4
		708	,	709		Inte		tion '	rota.	<u></u>			<u> </u>	<u>.</u>		94
			1				⊥,	455					8(02	70	0 18
0																0
0		0											E BO	JULEV		
		Ũ	J				_	6 -				0110			VIIICE	
				I						o —	I					
0							1					' Г				
		0				6	5 ·	0	•	0	•	Ο •		0		
						C	2									
						C	2									
							:									
						e	`	0		0		0		0		


DADE BOULEVARD & PURDY AVENUE MIAMI BEACH, FLORIDA COUNTED BY: SEBASTIAN SALVO SIGNALIZED

Traffic Survey Specialists, Inc. 85 SE 4th Avenue, Unit 109 Delray Beach, Florida 33483 Phone (561) 272-3255

Site Code : 00150249 Start Date: 12/16/15 File I.D. : DADEPURD Page : 1

PEDESTRIANS & BIKES

	PURDY A	VENUE			DADE BC	ULEVARE)						DADE BC	ULEVARE)	1	
	From No	rth			From Ea	.st			From Sc	outh			From We	est			
	Left	BIKES	Right	Peds	Left	BIKES	Right	Peds	Left	BIKES	Right	Peds	 Left	BIKES	Right	Peds	Tota
ate 12,	/16/15 -																
.6:00	0	2	0	5	0	0	0	0	0	0	0	0	0	0	0	2	
16:15	0	1	0	4	0	0	0	0	0	0	0	0	0	0	0	4	
6:30	0	6	0	0	0	0	0	0	0	0	0	0	0	0	0	7	1
6:45	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	5	
Ir Total	1 0	12	0	9	0	0	0	0	0	0	0	0	0	0	0	18	3
7:00	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	4	
7:15	0	3	0	2	0	0	0	0	0	0	0	0	0	0	0	5	1
7:30	0	8	0	1	0	0	0	0	0	0	0	0	0	0	0	6	1
7:45	0	3	0	1	0	0	0	0	0	0	0	0	0	2	0	6	1
Ir Total	1 0	18	0	4	0	0	0	0	0	0	0	0	0	2	0	21	4
TOTAL*		30	0	13			0	 0			0	0	 I 0	2	0	 39	

Bella Isla Apartments- PM Intersection Assignment

		EXISTI		Venetian	2015 with	BACKGROUND	1901	1750	1824	1614-1634	Sunset	17th Str	COMMITTED	FUTURE W/O		EXISTING USE			PROJECT		FUTURE
INTERSECTION	MOVEMENT	NG	(Peak Hour)	Cswy	Diversions	Growth rate: 0.5%	Alton	Alton	Alton	Alton	Palau	Hotel	DEVELOPMENTS	PROJECT	Out	In	Total	Out	In	Total	WITH
		2012	2015	Diversions		No. of years: 2			(12	12 Lincoln Ro	oad)				27	49	76	35	66	101	PROJECT
	NBL		6	25	31	31							0	31	0%	0%	0	0%	0%	0	31
	NBT		3		3	3							0	3	0%	0%	0	0%	0%	0	3
	NBR		57	-25	32	32							0	32	0%	0%	0	0%	0%	0	32
1. Venetian	SBL		45	-20	25	25							0	25	0%	0%	0	0%	0%	0	25
Causeway /	SBT		5		5	5							0	5	0%	0%	0	0%	0%	0	5
Island Avenue	SBR		5	20	25	25							0	25	40%	0%	11	40%	0%	14	28
West (S)	EBL		6	8	14	14		_		_			0	14	0%	40%	20	0%	40%	26	21
	EBT		350	156	506	511	58	5	12	5	12	12	87	598	0%	10%	5	0%	10%	7	600
	EBR		5	35	40	40							0	40	0%	0%	0	0%	0%	0	40
	WBL		78	-37	41	41							0	41	0%	0%	0	0%	0%	0	41
PHF = 0.95	WBT		266	230	496	501		3	11	6		11	17	518	0%	0%	0	0%	0%	0	518
	WBR		22	-8	14	14							0	14	0%	0%	0	0%	0%	0	14
TOTA						1244							104	1348	40%	50%	35	40%	50%	47	1360
	NBL*		3	94	97	98							0	98	0%	0%	0	0%	0%	0	98
	NBT		1		1	1							0	1	0%	0%	0	0%	0%	0	1
	NBR		191	-94	97	98							0	98	0%	0%	0	0%	0%	0	98
2. Venetian	SBL*		43	-20	23	23							0	23	50%	0%	14	50%	0%	18	27
Causeway /	SBT		1		1	1							0	1	0%	0%	0	0%	0%	0	1
Island Avenue	SBR		3	20	23	23							0	23	10%	0%	3	10%	0%	4	24
East (S)	EBL		1	37	38	38		_		_	10	10	0	38	0%	10%	5	0%	10%	7	40
	EBT		425	22	447	451	58	5	12	5	12	12	87	538	0%	0%	0	0%	0%	0	538
	EBR		2	76	78	79							0	79	0%	0%	0	0%	0%	0	79
	WB UTurn		37		37	37							0	37	0%	0%	0	0%	0%	0	37
	WBL		154	-76	78	79							0	79	0%	0%	0	0%	0%	0	79
PHF = 0.97	WBT		387	45	432	436		3	11	6		11	17	453	0%	0%	0	0%	0%	0	453
	WBR*		76	-37	39	39							0	39	0%	50%	25	0%	50%	33	48
TOTA						1405							104	1509	60%	60%	46	60%	60%	61	1524
	NBL		0		0	0							0	0	0%	0%	0	0%	0%	0	0
	NBT		0		0	0							0	0	0%	0%	0	0%	0%	0	0
	NBR		0		0	0							0	0	0%	0%	0	0%	0%	0	0
3. Dade	SBL		100	-47	53	54							0	54	0%	0%	0	0%	0%	0	54
Boulevard /	SBT		0		0	0							0	0	0%	0%	0	0%	0%	0	0
Purdy Avenue	SBR		113	-60	53	54							0	54	0%	5%	2	0%	5%	3	55
(S)	EBL		1	56	57	58		_		_		10	0	58	10%	0%	3	10%	0%	4	59
	EBT		750	-240	510	515	58	5	12	5	12	12	87	602	40%	0%	11	40%	0%	14	605
	EBR		0		0	0							0	0	0%	0%	0	0%	0%	0	0
	WBL		0		0	0							0	0	0%	0%	0	0%	0%	0	0
PHF = 0.93	WBT		568	-72	496	501		3	11	6		11	17	518	0%	0%	0	0%	45%	30	548
	WBR		3	210	213	215							0	215	0%	0%	0	0%	0%	0	215
TOTA		-	<u> </u>			1396							104	1500	50%	5%	16	50%	50%	51	1536
	NEBL	0	0	110	0	0	50	-	40		10	10	0	0	0%	0%	0	0%	0%	0	0
	NEBT	325	330	-110	220	222	58	5	13	-	12	12	82	304	30%	0%	8	30%	0%	11	307
1.0.1	NEBR	516	524	-181	343	346		1		5			5	351	10%	0%	3	10%	0%	4	352
4. Dade	SBL	0	0		0	0							0	0	0%	0%	0	0%	0%	0	0
Boulevard / Bay	SBT	0	0		0	0							0	0	0%	0%	0	0%	0%	0	0
Road / 17th	SBR	23	23	-3	20	21							0	21	0%	5%	2	0%	5%	3	22
Street (U)	SWBL	0	0		0	0							0	0	0%	0%	0	0%	0%	0	0
	SWBT	165	167	-15	152	154			10				0	154	0%	30%	15	0%	30%	20	159
	SWBR	70	71	-7	64	65			12				0	65	0%	0%	0	0%	0%	0	65
	WBL	364	369	-42	327	331		3	2	6		11	17	348	0%	10%	5	0%	10%	7	350
PHF = 0.90	WBT	0	0		0	0							0	0	0%	0%	0	0%	0%	0	0
	WBR	0	0		0	0							0	0	0%	0%	0	0%	0%	0	0
TOTA	L.					1138		1	1				104	1242	40%	45%	33	40%	45%	44	1254

TOD Schedule Report

for 2786: Island Av E&Venetian Way

Print Time:

Print Date: 11/13/2015

11/13/2015												9:48 AM
<u>Asset</u>		Intersection	<u>L</u>	Š	<u>TOD</u> Schedule	<u>Op Mode</u>	<u>Plai</u>	<u>n #</u>	<u>Cycle</u>	<u>Offset</u>	<u>TOD</u> <u>Setting</u>	<u>Active</u> <u>Active</u> <u>PhaseBank</u> <u>Maximum</u>
2786	Island A	Av E&Venet	tian Way	D	OW-6			N/A	0	0	N/A	0 Max 0
				<u>Splits</u>								
<u>PH 1</u>	<u>PH 2</u>	<u>PH 3</u>	<u>PH 4</u>	<u>PH 5</u>	<u>PH 6</u>	<u>PH 7</u>	<u>PH 8</u>					
-	WBT	-	NBT	-	EBT	-	SBT					
0	0	0	0	0	0	0	0					
	+		↑		→	•	¥					

Active Phase Bank: Phase Bank 1

<u>Phase</u>	<u>Walk</u>	Don't Walk	<u>Min Initial</u>	<u>Veh Ext</u>	Max Limit	<u>Max 2</u>	<u>Yellow</u>	<u>Red</u>	Last In Service Date:	unknown
	Phase Bank								Last III Service Date.	UIRIOWII
	1 2 3	1 2 3	1 2 3	1 2 3	1 2 3	1 2 3			Permitted Phases	
1 -	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0		0	rennilleu rhases	
2 WBT	0 - 0 - 0	0 - 0 - 0	16 - 16 - 16	1 - 1 - 1	35 - 35 - 35	0 - 35 - 3	5 4	2		<u>12345678</u>
3 -	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - () 0	0	Default	-2-4-6-8
4 NBT	6 - 6 - 6	20 - 20 - 20	7 - 7 - 7	2.5 - 2.5 - 2.5	14 - 12 - 14	27 - 20 - 2	0 4	2	External Permit 0	
5 -	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - () 0	0	External Permit 1	
6 EBT	0 - 0 - 0	0 - 0 - 0	16 - 16 - 16	1 - 1 - 1	35 - 35 - 35	0 - 35 - 3	5 4	2.5	External Permit 2	
7 -	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - (0	0		
8 SBT	6 - 6 - 6	20 - 20 - 20	7 - 7 - 7	2.5 - 2.5 - 2.5	14 - 12 - 14	27 - 20 - 2	0 4	2		

TOD Schedule Report

for 2786: Island Av E&Venetian Way

Print Date: 11/13/2015

Print	Т	ime:
9:4	8	AM

						Green	<u> Time</u>					
<u>Current</u>			1	2	3	4	5	6	7	8		
TOD Schedule	<u>Plan</u>	<u>Cycle</u>	-	WBT	-	NBT	-	EBT	-	SBT	Ring Offset	<u>Offset</u>
	1	100	0	61	0	27	0	61	0	27	0	77
	2	90	0	51	0	27	0	51	0	27	0	79
	3	100	0	61	0	27	0	61	0	27	0	77
	5	80	0	41	0	27	0	41	0	27	0	67
	6	100	0	61	0	27	0	61	0	27	0	77
	7	100	0	61	0	27	0	61	0	27	0	77
	8	140	0	101	0	27	0	101	0	27	0	0
	9	180	0	141	0	27	0	141	0	27	0	143
	10	140	0	101	0	27	0	101	0	27	0	90
	25	140	0	101	0	27	0	101	0	27	0	6
	26	180	0	141	0	27	0	141	0	27	0	4
	27	140	0	101	0	27	0	101	0	27	0	90
	28	140	0	101	0	27	0	101	0	27	0	60

Local TOD	Schedule	
<u>Time</u>	<u>Plan</u>	DOW
0000	Free	SuMTWThF S
0530	5	M T W Th F
0700	2	M T W Th F
0930	5	Su M T W Th F
1000	5	S
1530	3	M T W Th F
1800	Free	Su
1830	5	M T W Th F
1830	Free	S
2200	Free	M T W Th F

Current Time of Day Function

Function	<u>Settings *</u>	Day of Week
TOD OUTPUTS	1	SuM T W ThF S
TOD OUTPUTS		M T W ThF
TOD OUTPUTS		SuM T W ThF
TOD OUTPUTS	1	M T W ThF
	TOD OUTPUTS TOD OUTPUTS TOD OUTPUTS	TOD OUTPUTS 1 TOD OUTPUTS 1 TOD OUTPUTS TOD OUTPUTS

Local	Local Time of Day Function							
<u>Time</u>	Function							
0000	TOD OUTPUTS							
0530	TOD OUTPUTS							
0930	TOD OUTPUTS							
1000	TOD OUTPUTS							
1800	TOD OUTPUTS							
1830	TOD OUTPUTS							

TOD OUTPUTS

2200

<u>Settings *</u>	Day of Week
1	SuM T W ThF S
	M T W ThF
	SuM T W ThF
	S
1	Su
1	S
1	M T W ThF

	* Settings
	Blank - FREE - Phase Bank 1, Max 1
	Blank - Plan - Phase Bank 1, Max 2
	1 - Phase Bank 2, Max 1
	2 - Phase Bank 2, Max 2
;	3 - Phase Bank 3, Max 1
-	4 - Phase Bank 3, Max 2
	5 - EXTERNAL PERMIT 1
	6 - EXTERNAL PERMIT 2
	7 - X-PED OMIT
	8 - TBA

No Calendar Defined/Enabled	

TOD Schedule Report

for 3478: Island Av W&Venetian Way

Print Time:

Print Date: 11/13/2015

11/13/2015													10:58 AM
<u>Asset</u>	Intersection			<u>TOD</u> <u>Schedule</u> <u>Op Mode</u>			<u>Plan #</u> <u>Cycle</u>			<u>Offset</u>	<u>TOD</u> Setting	<u>Active</u> PhaseBank	<u>Active</u> Maximum
3478	3478 Island Av W&Venetian Way				DOW-6			N/A	0	0	N/A	0	Max 0
			<u>s</u>	<u>Splits</u>									
<u>PH 1</u>	<u>PH 2</u>	<u>PH 3</u>	<u>PH 4</u>	<u>PH 5</u>	<u>PH 6</u>	<u>PH 7</u>	<u>PH 8</u>						
-	WBT	SBT	NBT	-	EBT	-	-						
0	0	0	0	0	0	0	0						
	←	↓	↑		\rightarrow	•							

Active Phase Bank: Phase Bank 1

Phase	<u>Walk</u>	Don't Walk	<u>Min Initial</u>	<u>Veh Ext</u>	Max Limit	<u>Max 2</u>	<u>Yellow</u>	<u>Red</u>	Last In Service Date:	unknown
	Phase Bank								Last III Service Date.	UTIKITOWIT
	1 2 3	1 2 3	1 2 3	1 2 3	1 2 3	1 2 3			Permitted Phases	
1 -	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 -	0 0	0	I ennited i nases	
2 WBT	0 - 0 - 0	0 - 0 - 0	16 - 16 - 16	1 - 1 - 1	28 - 30 - 35	0 - 0 -	0 4	2.5		<u>12345678</u>
3 SBT	4 - 4 - 4	17 - 17 - 17	10 - 7 - 7	2.5 - 2.5 - 2.5	14 - 12 - 10	20 - 0 -	0 4	2	Default	-234-6
4 NBT	4 - 4 - 4	14 - 14 - 14	7 - 7 - 7	2.5 - 2.5 - 2.5	10 - 12 - 10	18 - 0 -	0 4	2	External Permit 0	
5 -	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 -	0 0	0	External Permit 1	
6 EBT	0 - 0 - 0	0 - 0 - 0	16 - 16 - 16	1 - 1 - 1	28 - 30 - 35	0 - 0 -	0 4	2.5	External Permit 2	
7 -	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 -	0 0	0		
8 -	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 -	0 0	0		

TOD Schedule Report

for 3478: Island Av W&Venetian Way

Print Date: 11/13/2015

Print Time: 10:58 AM

<u>Green Time</u>												
Current TOD Schedule	<u>Plan</u>	<u>Cycle</u>	1 -	2 WBT	3 SBT	4 NBT	5	6 EBT	7 -	8 -	Ring Offset	<u>Offset</u>
	1	100	0	67	0	21	0	67	0	0	0	93
	2	90	0	57	0	21	0	57	0	0	0	80
	3	100	0	67	0	21	0	67	0	0	0	90
Ę	5	80	0	47	0	21	0	47	0	0	0	70
l	6	100	0	67	0	21	0	67	0	0	0	80
-	7	100	0	67	0	21	0	67	0	0	0	80
8	8	140	0	107	0	21	0	107	0	0	0	16
(9	180	0	147	0	21	0	147	0	0	0	162
	10	140	0	107	0	21	0	107	0	0	0	83
	25	140	0	107	0	21	0	107	0	0	0	137
	26	180	0	147	0	21	0	147	0	0	0	6
	27	140	0	107	0	21	0	107	0	0	0	101
	28	140	0	107	0	21	0	107	0	0	0	70

Local TOD Schedule									
<u>Time</u>	<u>Plan</u>	DOW							
0000	Free	SuMTWThF S							
0530	5	M T W Th F							
0700	2	M T W Th F							
0930	5	Su M T W Th F							
1000	5	S							
1530	3	M T W Th F							
1800	Free	Su							
1830	5	M T W Th F							
1830	Free	S							
2200	Free	M T W Th F							

Currer	nt Time of Day Function			Local	Time of Day Function			* Settings
<u>Time</u>	Function	<u>Settings *</u>	Day of Week	<u>Time</u>	Function	<u>Settings *</u>	Day of Week	Blank - FREE - Phase Bank 1, Max 1
0000	TOD OUTPUTS		SuM T W ThF S	0000	TOD OUTPUTS		SuM T W ThF S	Blank - Plan - Phase Bank 1, Max 2
								1 - Phase Bank 2 Max 1

Blank - FREE - Phase Bank 1, Max 1 Blank - Plan - Phase Bank 1, Max 2
1 - Phase Bank 2, Max 1
2 - Phase Bank 2, Max 2
3 - Phase Bank 3, Max 1
4 - Phase Bank 3, Max 2
5 - EXTERNAL PERMIT 1
6 - EXTERNAL PERMIT 2
7 - X-PED OMIT
8 - TBA

No Calendar Defined/Enabled	

						то	D Schedule Report	t				
Print Date: 11/13/2015						for 4131:	Bay Rd&Dade Blvd	&17 St				Print Time: 12:10 PM
Asset		Intersection	<u>_</u>	1	<u>TOD</u> Schedule	<u>Op Mode</u>	<u>Plan #</u>	<u>Cycle</u>	<u>Offset</u>	<u>TOD</u> <u>Setting</u>	<u>Active</u> <u>PhaseBank</u>	<u>Active</u> <u>Maximum</u>
4131	Bay R	d&Dade Blv	d&17 St	D	OW-6		N/A	0	0	N/A	0	Max 0
			<u> </u>	<u>Splits</u>								
<u>PH 1</u>	<u>PH 2</u>	<u>PH 3</u>	<u>PH 4</u>	<u>PH 5</u>	<u>PH 6</u>	<u>PH 7</u>	<u>PH 8</u>					
-	SWT	-	WBT	-	NET	-	-					
0	0	0	0	0	0	0	0					
	Ł		+	l	↑							

- -

-

Active Phase Bank: Phase Bank 1

<u>Walk</u>	Don't Walk	Min Initial	<u>Veh Ext</u>	Max Limit	<u>Max 2</u>	Yellow	Red	Last In Service Date:	unknown
Phase Bank								Lust in ocr vice Date.	dilitiowit
1 2 3	1 2 3	1 2 3	1 2 3	1 2 3	1 2 3			Permitted Phases	
0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0	0		
0 - 0 - 0	0 - 0 - 0	14 - 14 - 14	2.5 - 2.5 - 2.5	5 12 - 12 - 30	80 - 30 - 60	4	2.9		<u>12345678</u>
0 - 0 - 0	0 - 0 - 0	0 - 0 - 0			0 - 0 - 0	0	0	Default	-2-4-6
0 - 0 - 0	0 - 0 - 0	14 - 14 - 14	3.5 - 3.5 - 3.5	5 10 - 10 - 30	80 - 88 - 60	4	3.7	External Permit 0	
0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0	0	External Permit 1	
0 - 0 - 0	0 - 0 - 0	14 - 14 - 14	2.5 - 2.5 - 2.5	5 12 - 12 - 30	80 - 30 - 60	4	2.9	External Permit 2	
0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0	0		
0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0	0		
	Phase Bark 1 2 3 0 - 0 - 0 0 - 0 - 0 0 - 0 - 0 0 - 0 - 0 0 - 0 - 0 0 - 0 - 0 0 - 0 - 0 0 - 0 - 0 0 - 0 - 0 0 - 0 - 0 0 - 0 - 0 0 - 0 - 0 0 - 0 - 0 0 - 0 - 0	Phase Bank 1 2 3 1 2 3 0 - 0 0 0 - 0 - 0 0 - 0 - 0 0 - 0 - 0 0 - 0 - 0 0 - 0 - 0 0 - 0 - 0 0 - 0 - 0 0 - 0 0 0 - 0 - 0 0 - 0 0 0 - 0 - 0 0 - 0 0 0 - 0 - 0 0 - 0 - 0 0 - 0 - 0 0 - 0 0 - 0 - 0 - 0 0 -	Phase Bank 1 2 3 1 2 3 1 2 3 0 - 0	Phase Bank 1 2 3 3 3 3	Phase Bank 1 2 3 1 2	Phase Bank 1 2 3 1 1 2 3 1 1 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </td <td>Phase Bank 1 2 3 1 2<!--</td--><td>Phase Bank 1 2 3 1 2<!--</td--><td>Phase Bank 1 2 3 1 2<!--</td--></td></td></td>	Phase Bank 1 2 3 1 2 </td <td>Phase Bank 1 2 3 1 2<!--</td--><td>Phase Bank 1 2 3 1 2<!--</td--></td></td>	Phase Bank 1 2 3 1 2 </td <td>Phase Bank 1 2 3 1 2<!--</td--></td>	Phase Bank 1 2 3 1 2 </td

						Green T	<u>ime</u>					
Current			1	2	3	4	5	6	7	8		
TOD Schedule F	<u>Plan</u>	<u>Cycle</u>	-	SWT	-	WBT	-	NET	-	-	Ring Offset	<u>Offset</u>
1	1	65	0	24	0	26	0	24	0	0	0	64
2	2	65	0	24	0	26	0	24	0	0	0	19
3	3	130	0	58	0	57	0	58	0	0	0	5
	4	75	0	37	0	23	0	37	0	0	0	0
5	5	80	0	42	0	23	0	42	0	0	0	0
6	6	90	0	52	0	23	0	52	0	0	0	68
1	13	90	0	32	0	43	0	32	0	0	0	0
2	25	140	0	62	0	63	0	62	0	0	0	122
2	26	180	0	82	0	83	0	82	0	0	0	58
2	27	140	0	62	0	63	0	62	0	0	0	64
2	28	140	0	62	0	63	0	62	0	0	0	113

Local TOD Schedule								
<u>Time</u>	<u>Plan</u>	DOW						
0000	Free	Su M T W Th F	S					
0530	2	M T W Th F						
0700	6	M T W Th F						
0930	5	Su M T W Th F	S					
1030	2	Su	S					
1515	Free	M T W Th F						
1830	2	M T W Th F						
2030	Free	Su	S					
2330	Free	M T W Th F						

TOD Schedule Report

for 4131: Bay Rd&Dade Blvd&17 St

TOD OUTPUTS

Print	Time:
12:1	0 PM

Currer	nt Time of Day Functio	n		Local	Time of Day Function			
<u>Time</u>	Function	<u>Settings *</u>	Day of Week	<u>Time</u>	Function	<u>Settings *</u>	Day of	<u>Week</u>
0000	TOD OUTPUTS		SuM T W ThF S	0000	TOD OUTPUTS		SuM T W	/ ThF S
)530	TOD OUTPUTS	3	M T W ThF	0530	TOD OUTPUTS	3	МΤИ	V ThF
2330	TOD OUTPUTS		M T W ThF	0930	TOD OUTPUTS	2-	Su	S
				2030	TOD OUTPUTS		Su	S

2330

* Settings
Blank - FREE - Phase Bank 1, Max 1
Blank - Plan - Phase Bank 1, Max 2
1 - Phase Bank 2, Max 1
2 - Phase Bank 2, Max 2
3 - Phase Bank 3, Max 1
4 - Phase Bank 3, Max 2
5 - EXTERNAL PERMIT 1
6 - EXTERNAL PERMIT 2
7 - X-PED OMIT
8 - TBA

M T W ThF

No Calendar Defined/Enabled											

TOD Schedule Report for 6593: Dade Blvd&Purdy Av

Print Date
11/13/2015

SBT

8

7 - 7 - 7

17 - 17 - 17

Print Date: 11/13/2015	for 6593: Dade Blvd&Purdy Av											
<u>Asset</u> 6593	Dac	Intersection	_		<u>TOD</u> Schedule OW-6	<u>Op Mode</u>	<u>Plan #</u> N/A	<u>Cycle</u> 0	<u>Offset</u> 0	<u>TOD</u> <u>Setting</u> N/A	<u>Active</u> <u>PhaseBank</u> 0	<u>Active</u> <u>Maximum</u> Max 0
0000	Dut			Splits			1071	0	U	IN/A	C C	maxe
<u>PH 1</u> -	<u>PH 2</u> WBT	<u>PH 3</u>	<u>PH 4</u> -	<u>PH 5</u> -	<u>PH 6</u> EBT	<u>PH 7</u> -	<u>РН 8</u> SBT					
0	0	0	0	0	0	0	0					
	←				\rightarrow		T					

Phase Bank 1 Active Phase Bank: **Phase** <u>Walk</u> Don't Walk Min Initial Veh Ext Max Limit <u>Max 2</u> <u>Yellow</u> <u>Red</u> Phase Bank 2 2 3 2 3 2 3 2 3 2 3 3 1 1 1 1 0 0 - 0 0 - 0 - 0 0 - 0 - 0 0 - 0 - 0 0 - 0 -0 0 - 0 - 0 0 -1 -2 WBT 0 - 0 0 - 0 - 0 14 - 14 - 14 1 - 1 - 1 35 - 55 - 55 0 0 - 0 - 0 2.1 -4 3 -0 0 - 0 0 - 0 - 0 0 - 0 -0 0 - 0 - 0 0 - 0 -0 0 - 0 - 0 0 -- 0 - 0 0 - 0 -4 -0 0 - 0 0 - 0 - 0 0 - 0 -0 0 0 0 - 0 - 0 0 -0 - 0 -0 - 0 - 0 0 - 0 - 0 0 - 0 - 0 0 - 0 -0 5 -0 0 - 0 - 0 0 EBT 35 - 55 - 55 2.1 6 0 - 0 - 0 0 - 0 - 0 14 - 14 - 14 1 - 1 - 1 0 - 0 - 0 4 0 - 0 -7 -0 0 - 0 0 - 0 - 0 0 - 0 -0 0 - 0 - 0 0 0 - 0 - 0 0 -

7

2.5 - 2.5 - 2.5

7 - 7 -

Last In Service Date: unknown **Permitted Phases**

12343078
-26-8

10045670

External Permit 0	
External Permit 1	
External Permit 2	

Default

0

0

0

0

0

2

OD Schedule	
nal Permit 2	
nal Permit 1	

		<u>Green Time</u>											
Current			1	2	3	4	5	6	7	8			
TOD Schedule	<u>Plan</u>	<u>Cycle</u>	-	WBT	-	-	-	EBT	-	SBT	Ring Offset	<u>Offset</u>	
	2	80	0	43	0	0	0	43	0	25	0	0	
	3	130	0	83	0	0	0	83	0	35	0	86	
	4	90	0	52	0	0	0	52	0	26	0	32	
	13	90	0	53	0	0	0	53	0	25	0	61	
	20	110	0	73	0	0	0	73	0	25	0	24	
	25	140	0	103	0	0	0	103	0	25	0	19	
	26	180	0	143	0	0	0	143	0	25	0	28	
	27	140	0	103	0	0	0	103	0	25	0	66	
	28	140	0	103	0	0	0	103	0	25	0	12	

Local TOD Schedule												
<u>Time</u>	<u>Plan</u>	DOW										
0000	Free	Su M T W Th F	S									
0530	2	M T W Th F										
0700	13	M T W Th F										
0930	2	Su M T W Th F	S									
1515	3	M T W Th F										
1830	2	M T W Th F										
2030	Free	Su	S									
2330	Free	M T W Th F										

12 - 14 - 22

36 - 0 -

0

4

TOD Schedule Report

for 6593: Dade Blvd&Purdy Av

Print Date: 11/13/2015

5 - EXTERNAL PERMIT 1 6 - EXTERNAL PERMIT 2

7 - X-PED OMIT

8 - TBA

Cu	rent Time of Day Function			Local	Time of Day Function	* Settings			
Tin	e <u>Function</u>	<u>Settings *</u>	Day of Week	<u>Time</u>	Function	<u>Settings *</u>	Day of Week	Blank - FREE - Phase Bank 1. Max 1	
000	0 TOD OUTPUTS		SuM T W ThF S	0000	TOD OUTPUTS		SuM T W ThF S	Blank - Plan - Phase Bank 1, Max 2	
003	0 TOD OUTPUTS	1	SuM T W ThF S	0030	TOD OUTPUTS	1	SuM T W ThF S	1 - Phase Bank 2, Max 1	
060	0 TOD OUTPUTS		SuM T W ThF S	0600	TOD OUTPUTS		SuM T W ThF S	2 - Phase Bank 2, Max 2	
233	0 TOD OUTPUTS	1	M T W ThF	2000	TOD OUTPUTS	1	Su S	3 - Phase Bank 3, Max 1	
				2330	TOD OUTPUTS	1	M T W ThF	4 - Phase Bank 3, Max 2	

No Calendar Defined/Enabled

14255 Bella Isla Apartments

Station	Location	2009	2010	2011	2012	2013	2014
0012	SR 907/Alton RD 200' N of 20 St	47,000	46,000	47,000	48,500	47,500	47,500
2542	SR 907/Alton RD 200' S of Venetion cswy	38,500	39,000	39,500	37,000	30,500	30,500
2528	SR A1A/Macarthur cswy 150' E of Meridian ave	35,500	35,000	35,000	32,500	34,000	33,000
	Total	121,000	120,000	121,500	118,000	112,000	111,000
	Yearly Growth		-0.8%	1.3%	-2.9%	-5.1%	-0.9%
	Growth Trend						-1.7%

FLORIDA DEPARTMENT OF TRANSPORTATION TRANSPORTATION STATISTICS OFFICE 2014 HISTORICAL AADT REPORT

COUNTY: 87 - MIAMI-DADE

SITE: 0012 - SR 907/ALTON RD, 200' N OF 20 ST (MIAMI BEACH)

T FACTOR		2.50	2.50	2.50	3.50	3.50	3.90	2.10	2.20	3.00	5.30	5.30	4.80	1.70	5.00	1.70	1.90
D FACTOR		54.50	52.40	55.70	55.10	54.08	53.24	55.75	54.34	54.22	53.80	53.30	53.40	52.30	53.50	53.10	52.70
*K FACTOR		9.00	9.00	9.00	9.00	8.98	8.99	9.09	8.01	7.97	8.80	9.00	8.80	9.80	8.20	8.20	9.10
DIRECTION 2		S 25500	S 25500	S 26000	S 24500	S 23000	S 23500	s 23500	S 24500	s 23500	S 24000	S 24000	S 22000	s 22500	S 23000	S 21500	S 17000
DIRECTION 1		N 22000	N 22000	N 22500	N 22500	N 23000	N 23500	N 23000	N 23000	N 23000	N 22500	N 22500	N 20500	N 21500	N 22500	N 20000	N 18500
AADT		47500 S	47500 F	48500 C	47000 C	46000 C	47000 C	46500 C	47500 C	46500 C	46500 F	46500 C	42500 C	44000 C	45500 C	41500 C	35500 C
YEAR	 	2014	2013	2012	2011	2010	2009	2008	2007	2006	2005	2004	2003	2002	2001	2000	1999

AADT FLAGS: C = COMPUTED; E = MANUAL ESTIMATE; F = FIRST YEAR ESTIMATE S = SECOND YEAR ESTIMATE; T = THIRD YEAR ESTIMATE; F = FOURTH YEAR ESTIMATE V = FIFTH YEAR ESTIMATE; 6 = SIXTH YEAR ESTIMATE; X = UNKNOWN 'K FACTOR: STARTING WITH YEAR 2011 IS STANDARDK, PRIOR YEARS ARE K30 VALUES *K FACTOR:

FLORIDA DEPARTMENT OF TRANSPORTATION TRANSPORTATION STATISTICS OFFICE 2014 HISTORICAL AADT REPORT

COUNTY: 87 - MIAMI-DADE

SITE: 2542 - SR 907/ALTON RD, 200' S OF VENETIAN CSWY

T FACTOR	7.	7.60	7.50	1.50	1.50	6.20	4.80	5.20	1.60	9.30	9.30	10.60	5.80	ъ.	5.90	5.90
D FACTOR	54.	52.40	55.70	55.10	54.08		55.75	4.	54.22	53.80	53.30	53.40	52.30	•	53.10	•
*K FACTOR	6	9.00	9.00	9.00	8.98	•	9.09	•		8.80		8.80		8.20	8.20	9.10
DIRECTION 2	16500	Ч			S 19000			S 21000		S 17000		S 16500	S 17000	Ч	S 17000	S 15500
DIRECTION 1	14000	N 14000	N 19000	Ч	N 20000	N 19000		18	N 17500		N 18500		Ч	N 16500	15	N 13500
AADT 	30500	-	-	-	-	-	-	-	-	-	-	-	-	-	32000 C	-
YEAR 	2014	2013	2012	2011	2010	2009	2008	2007	2006	2005	2004	2003	2002	2001	2000	1999

AADT FLAGS: C = COMPUTED; E = MANUAL ESTIMATE; F = FIRST YEAR ESTIMATE S = SECOND YEAR ESTIMATE; T = THIRD YEAR ESTIMATE; F = FOURTH YEAR ESTIMATE V = FIFTH YEAR ESTIMATE; 6 = SIXTH YEAR ESTIMATE; X = UNKNOWN *K FACTOR: STARTING WITH YEAR 2011 IS STANDARDK, PRIOR YEARS ARE K30 VALUES *K FACTOR:

FLORIDA DEPARTMENT OF TRANSPORTATION TRANSPORTATION STATISTICS OFFICE 2014 HISTORICAL AADT REPORT

COUNTY: 87 - MIAMI-DADE

SITE: 2528 - SR AlA/MACARTHUR CSWY, 150' N OF MERIDIAN AVE

YEAR	AADT	ΠU	DIRECTION 1	DIRECTION 2	*K FACTOR	D FACTOR	T FACTOR
2014	33000 C	더	Η	W 16000	9.00	54.30	5.10
2013	34000 C	더	17500	W 16500	00.6	54.10	6.10
2012	32500 C	ы	14500	W 18000	00.6	53.40	8.40
2011	35000 C	더	16500	W 18500	00.6	51.90	7.50
2010	35000 C	ы	16500	W 18500	7.16	52.27	8.80
2009	35500 C	더	16500	W 19000	9.21	57.60	8.40
2008	34500 C	ы	16000	W 18500	7.42	52.15	5.30
2007	34000 C	더	16500	W 17500	7.11	53.51	4.90
2006	40500 C	더	19500	W 21000	7.18	52.50	2.20
2005	35000 C	더	16000	W 19000	7.30	52.50	5.50
2004	41500 C	ы	20500	W 21000	7.40	52.00	8.20
2003	40500 C	ы	18500	W 22000	7.30	54.00	4.90
2002	43500 C	ы	21000	W 22500	9.20	68.00	2.60
2001	45500 C	더	22000	W 23500	8.20	53.50	3.00
2000	37000 C	더	18500	W 18500	8.20	53.10	3.50
1999	46000 C	더	24500	W 21500	9.10	52.70	3.20

AADT FLAGS: C = COMPUTED; E = MANUAL ESTIMATE; F = FIRST YEAR ESTIMATE S = SECOND YEAR ESTIMATE; T = THIRD YEAR ESTIMATE; F = FOURTH YEAR ESTIMATE V = FIFTH YEAR ESTIMATE; 6 = SIXTH YEAR ESTIMATE; X = UNKNOWN 'K FACTOR: STARTING WITH YEAR 2011 IS STANDARDK, PRIOR YEARS ARE K30 VALUES *K FACTOR:

Project: Bella Isla Apartments
Phase:

Open Date: Analysis Date:

Description: 14255 Existing

	24 Hour	AM Pk	Hour	PM Pk	Hour
ITE:Land Use	Two-Way Volume	Enter	Exit	Enter	Exit
220: Apartments 120 Dwelling Units [E]	851	13	50	54	30
Total Driveway Volume	851	13	50	54	30
Total Peak Hour Pass-By Trips		0	0	0	0
Total Peak Hour Vol. Added to Adjacent	Streets	13	50	54	30

Note: A zero indicates no data available. Source: Institute of Transportation Engineers Trip Generation Manual, 9th Edition, 2012

TRIP GENERATION 2013, TRAFFICWARE, LLC

Project: Bella Isla Apartments
Phase:

Open Date: Analysis Date:

Description: 14255 Proposed

	24 Hour	AM Pk	Hour	PM Pk	Hour
ITE:Land Use	Two-Way Volume	Enter	Exit	Enter	Exit
220: Apartments 172 Dwelling Units [E]	1166	18	70	73	39
Total Driveway Volume	1166	18	70	73	39
Total Peak Hour Pass-By Trips		0	0	0	0
Total Peak Hour Vol. Added to Adjacent	t Streets	18	70	73	39

Note: A zero indicates no data available. Source: Institute of Transportation Engineers Trip Generation Manual, 9th Edition, 2012

TRIP GENERATION 2013, TRAFFICWARE, LLC

Appendix D: Intersection Capacity Analysis Worksheets **Existing Conditions**

	۶	-	\mathbf{r}	4	-	•	1	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u>۲</u>	↑		ሻ	↑			4			4 Þ	
Traffic Volume (veh/h)	14	506	40	41	496	14	31	3	32	25	5	25
Future Volume (veh/h)	14	506	40	41	496	14	31	3	32	25	5	25
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.90	1.00	1.00	0.90
Adj Sat Flow, veh/h/ln	1863	1863	1900	1863	1863	1900	1900	1863	1900	1900	1863	1900
Adj Flow Rate, veh/h	15	533	42	43	522	15	33	3	34	26	5	26
Adj No. of Lanes	1	1	0	1	1	0	0	1	0	0	2	0
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	435	1142	90	506	1207	35	171	29	139	324	57	272
Arrive On Green	0.67	0.67	0.67	0.22	0.22	0.22	0.21	0.21	0.21	0.21	0.21	0.21
Sat Flow, veh/h	864	1705	134	835	1802	52	563	136	660	1227	270	1297
Grp Volume(v), veh/h	15	0	575	43	0	537	70	0	0	31	0	26
Grp Sat Flow(s),veh/h/ln	864	0	1839	835	0	1854	1359	0	0	1497	0	1297
Q Serve(g_s), s	1.0	0.0	15.0	4.3	0.0	25.0	1.8	0.0	0.0	0.0	0.0	1.6
Cycle Q Clear(g_c), s	26.0	0.0	15.0	19.4	0.0	25.0	4.0	0.0	0.0	1.4	0.0	1.6
Prop In Lane	1.00		0.07	1.00		0.03	0.47		0.49	0.84		1.00
Lane Grp Cap(c), veh/h	435	0	1232	506	0	1242	338	0	0	381	0	272
V/C Ratio(X)	0.03	0.00	0.47	0.09	0.00	0.43	0.21	0.00	0.00	0.08	0.00	0.10
Avail Cap(c_a), veh/h	435	0	1232	506	0	1242	338	0	0	381	0	272
HCM Platoon Ratio	1.00	1.00	1.00	0.33	0.33	0.33	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	0.68	0.00	0.68	1.00	0.00	0.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	17.1	0.0	7.9	26.7	0.0	22.6	32.7	0.0	0.0	31.7	0.0	31.8
Incr Delay (d2), s/veh	0.1	0.0	1.3	0.2	0.0	0.8	1.4	0.0	0.0	0.4	0.0	0.7
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	0.3	0.0	7.9	1.0	0.0	13.1	1.7	0.0	0.0	0.7	0.0	0.6
LnGrp Delay(d),s/veh	17.2	0.0	9.2	26.9	0.0	23.3	34.1	0.0	0.0	32.2	0.0	32.5
LnGrp LOS	В		А	С		С	С			С		С
Approach Vol, veh/h		590			580			70			57	
Approach Delay, s/veh		9.4			23.6			34.1			32.3	
Approach LOS		А			С			С			С	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		27.0		73.0		27.0		73.0				
Change Period (Y+Rc), s		6.0		6.0		6.0		6.0				
Max Green Setting (Gmax), s		21.0		67.0		21.0		67.0				
Max Q Clear Time (g_c+I1) , s		6.0		28.0		3.6		27.0				
Green Ext Time (p_c), s		0.5		10.0		0.6		10.1				
Intersection Summary												
HCM 2010 Ctrl Delay			18.1									
HCM 2010 LOS			B									

Timing Report, Sorted By Phase 1: W Island Avenue/West Island Avenue & Venetian Way

		4	-4	¥
Phase Number	2	4	6	8
Movement	NBTL	EBTL	SBTL	WBTL
Lead/Lag				
Lead-Lag Optimize				
Recall Mode	Max	C-Max	Max	C-Max
Maximum Split (s)	27	73	27	73
Maximum Split (%)	27.0%	73.0%	27.0%	73.0%
Minimum Split (s)	13	22	16	22
Yellow Time (s)	4	4	4	4
All-Red Time (s)	2	2	2	2
Minimum Initial (s)	7	16	10	16
Vehicle Extension (s)	3	3	3	3
Minimum Gap (s)	3	3	3	3
Time Before Reduce (s)	0	0	0	0
Time To Reduce (s)	0	0	0	0
Walk Time (s)	4	0	4	0
Flash Dont Walk (s)	14	0	17	0
Dual Entry	Yes	Yes	Yes	Yes
Inhibit Max	Yes	Yes	Yes	Yes
Start Time (s)	96	23	96	23
End Time (s)	23	96	23	96
Yield/Force Off (s)	17	90	17	90
Yield/Force Off 170(s)	3	90	0	90
Local Start Time (s)	6	33	6	33
Local Yield (s)	27	0	27	0
Local Yield 170(s)	13	0	10	0
Intersection Summary				
Cycle Length			100	
Control Type	Actu	ated-Cool		
Natural Cycle			40	
Offset: 90 (90%), Referenced	d to phase	e 4:EBTL	and 8:WE	BTL, Start
Splits and Phases: 1: W Is	sland Aver	nue/West	Island Av	venue & V

₫ Ø2	Ø4 (R)	•
27 s	73 s	
Ø6	₩ Ø8 (R)	
27 s	73 s	

HCM Signalized Intersection Capacity Analysis
2: E Island Avenue/East Island Avenue & Venetian Way

5/12/2016	
-----------	--

	٦	-	$\mathbf{\hat{z}}$	F	4	+	•	1	Ť	1	5	Ļ
Movement	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT
Lane Configurations	٦	↑			ĽV.	↑			4			4
Traffic Volume (vph)	38	447	78	37	78	432	39	97	1	97	23	1
Future Volume (vph)	38	447	78	37	78	432	39	97	1	97	23	1
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0			6.0	6.0			6.0			6.0
Lane Util. Factor	1.00	1.00			1.00	1.00			1.00			1.00
Frt	1.00	0.98			1.00	0.99			0.93			0.93
Flt Protected	0.95	1.00			0.95	1.00			0.98			0.98
Satd. Flow (prot)	1770	1821			1770	1840			1526			1528
Flt Permitted	0.28	1.00			0.22	1.00			0.83			0.84
Satd. Flow (perm)	521	1821			413	1840			1299			1322
Peak-hour factor, PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	39	461	80	38	80	445	40	100	1	100	24	1
RTOR Reduction (vph)	0	10	0	0	0	5	0	0	25	0	0	12
Lane Group Flow (vph)	39	531	0	0	118	480	0	0	176	0	0	37
Parking (#/hr)								0	0	0	0	0
Turn Type	Perm	NA		Perm	Perm	NA		Perm	NA		Perm	NA
Protected Phases		4				8			2			6
Permitted Phases	4			8	8			2			6	
Actuated Green, G (s)	38.9	38.9			38.9	38.9			49.1			49.1
Effective Green, g (s)	38.9	38.9			38.9	38.9			49.1			49.1
Actuated g/C Ratio	0.39	0.39			0.39	0.39			0.49			0.49
Clearance Time (s)	6.0	6.0			6.0	6.0			6.0			6.0
Vehicle Extension (s)	3.0	3.0			3.0	3.0			3.0			3.0
Lane Grp Cap (vph)	202	708			160	715			637			649
v/s Ratio Prot	0.07	c0.29				0.26						
v/s Ratio Perm	0.07	0.75			0.29	0 (7			c0.14			0.03
v/c Ratio	0.19	0.75			0.74	0.67			0.28			0.06
Uniform Delay, d1	20.2	26.4			26.2	25.3			15.0			13.3
Progression Factor	1.50	1.37			1.00	1.00			1.00			1.00
Incremental Delay, d2	0.4	4.1			16.2	2.5			1.1			0.2
Delay (s) Level of Service	30.6	40.3			42.4	27.8			16.1			13.5
	С	D			D	C			B			В 12 г
Approach Delay (s)		39.6				30.6			16.1			13.5
Approach LOS		D				С			В			В
Intersection Summary												
HCM 2000 Control Delay			31.6	Н	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capac	ity ratio		0.49									
Actuated Cycle Length (s)			100.0		um of lost				12.0			
Intersection Capacity Utilizat	ion		71.0%	IC	CU Level o	of Service	2		С			
Analysis Period (min)			15									
c Critical Lane Group												

∢_

Movement	SBR
Lane Configurations	
Traffic Volume (vph)	23
Future Volume (vph)	23
Ideal Flow (vphpl)	1900
Total Lost time (s)	
Lane Util. Factor	
Frt	
Flt Protected	
Satd. Flow (prot)	
Flt Permitted	
Satd. Flow (perm)	
Peak-hour factor, PHF	0.97
Adj. Flow (vph)	24
RTOR Reduction (vph)	0
Lane Group Flow (vph)	0
Parking (#/hr)	0
Turn Type	
Protected Phases	
Permitted Phases	
Actuated Green, G (s)	
Effective Green, g (s)	
Actuated g/C Ratio	
Clearance Time (s)	
Vehicle Extension (s)	
Lane Grp Cap (vph)	
v/s Ratio Prot	
v/s Ratio Prot	
v/s Ratio Perm	
Uniform Delay, d1	
Progression Factor	
Incremental Delay, d2	
Delay (s)	
Level of Service	
Approach Delay (s)	
Approach LOS	
Intersection Summary	

Timing Report, Sorted By Phase 2: E Island Avenue/East Island Avenue & Venetian Way

		4	-↓-	-
Phase Number	2	4	6	8
Movement	NBTL	EBTL	SBTL	WBTL
Lead/Lag	_			_
Lead-Lag Optimize				
Recall Mode	C-Max	None	C-Max	None
Maximum Split (s)	33	67	33	67
Maximum Split (%)	33.0%	67.0%	33.0%	67.0%
Minimum Split (s)	24	24	24	24
Yellow Time (s)	4	4	4	4
All-Red Time (s)	2	2	2	2
Minimum Initial (s)	7	16	7	16
Vehicle Extension (s)	3	3	3	3
Minimum Gap (s)	3	3	3	3
Time Before Reduce (s)	0	0	0	0
Time To Reduce (s)	0	0	0	0
Walk Time (s)	7	7	7	7
Flash Dont Walk (s)	11	11	11	11
Dual Entry	Yes	Yes	Yes	Yes
Inhibit Max	Yes	Yes	Yes	Yes
Start Time (s)	50	83	50	83
End Time (s)	83	50	83	50
Yield/Force Off (s)	77	44	77	44
Yield/Force Off 170(s)	66	33	66	33
Local Start Time (s)	73	6	73	6
Local Yield (s)	0	67	0	67
Local Yield 170(s)	89	56	89	56
Intersection Summary				
Cycle Length			100	
Control Type	Actu	ated-Coo	rdinated	
Natural Cycle			50	
Offset: 77 (77%), Reference	ed to phase	2:NBTL	and 6:SB	TL, Start

Splits and Phases: 2: E Island Avenue/East Island Avenue & Venetian Way

Ø2 (R)	<u></u> 04
33 s	67 s
Ø6 (R)	
33 s	67 s

	≯	-	+	•	1	1		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations	ň	↑	4		۲	1		
Traffic Volume (veh/h)	57	510	496	213	53	53		
Future Volume (veh/h)	57	510	496	213	53	53		
Number	7	4	8	18	1	16		
nitial Q (Qb), veh	0	0	0	0	0	0		
Ped-Bike Adj(A_pbT)	1.00			1.00	1.00	1.00		
Parking Bus, Adj	1.00	1.00	1.00	1.00	0.90	0.90		
Adj Sat Flow, veh/h/ln	1863	1863	1863	1900	1863	1863		
Adj Flow Rate, veh/h	61	548	533	229	57	57		
Adj No. of Lanes	1	1	1	0	1	1		
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93		
Percent Heavy Veh, %	2	2	2	2	2	2		
Cap, veh/h	173	1069	710	305	533	475		
Arrive On Green	0.57	0.57	0.19	0.19	0.33	0.33		
Sat Flow, veh/h	701	1863	1237	532	1597	1425		
Grp Volume(v), veh/h	61	548	0	762	57	57		
Grp Sat Flow(s),veh/h/ln	701	1863	0	1769	1597	1425		
Q Serve(g_s), s	10.3	23.1	0.0	52.9	3.2	3.6		
Cycle Q Clear(g_c), s	63.2	23.1	0.0	52.9	3.2	3.6		
Prop In Lane	1.00			0.30	1.00	1.00		
_ane Grp Cap(c), veh/h	173	1069	0	1016	533	475		
//C Ratio(X)	0.35	0.51	0.00	0.75	0.11	0.12		
Avail Cap(c_a), veh/h	218	1189	0	1129	533	475		
HCM Platoon Ratio	1.00	1.00	0.33	0.33	1.00	1.00		
Jpstream Filter(I)	0.57	0.57	0.00	0.90	1.00	1.00		
Jniform Delay (d), s/veh	49.4	16.7	0.0	43.9	29.9	30.1		
ncr Delay (d2), s/veh	0.7	0.2	0.0	2.3	0.4	0.5		
nitial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0		
%ile BackOfQ(50%),veh/In	2.0	11.9	0.0	26.6	1.5	1.5		
LnGrp Delay(d),s/veh	50.1	16.9	0.0	46.2	30.3	30.6		
nGrp LOS	D	В		D	С	С		
Approach Vol, veh/h		609	762		114			
Approach Delay, s/veh		20.2	46.2		30.5			
Approach LOS		С	D		С			
imer	1	2	3	4	5	6	7 8	
Assigned Phs				4		6	8	
Phs Duration (G+Y+Rc), s				80.6		49.4	80.6	
Change Period (Y+Rc), s				6.0		6.0	6.0	
Max Green Setting (Gmax), s				83.0		35.0	83.0	
Max Q Clear Time (g_c+I1), s				65.2		5.6	54.9	
Green Ext Time (p_c), s				9.4		0.3	12.0	
ntersection Summary								
ICM 2010 Ctrl Delay			34.3					
HCM 2010 LOS			С					

5/11/	2016

	4		+
Phase Number	4	6	8
Movement	EBTL	SBL	WBT
Lead/Lag			
Lead-Lag Optimize			
Recall Mode	None	C-Max	None
Maximum Split (s)	89	41	89
Maximum Split (%)	68.5%	31.5%	68.5%
Minimum Split (s)	24	30	24
Yellow Time (s)	4	4	4
All-Red Time (s)	2	2	2
Minimum Initial (s)	14	14	7
Vehicle Extension (s)	3	3	3
Minimum Gap (s)	3	3	3
Time Before Reduce (s)	0	0	0
Time To Reduce (s)	0	0	0
Walk Time (s)	0	7	0
Flash Dont Walk (s)	0	17	0
Dual Entry	Yes	Yes	Yes
Inhibit Max	Yes	Yes	Yes
Start Time (s)	92	51	92
End Time (s)	51	92	51
Yield/Force Off (s)	45	86	45
Yield/Force Off 170(s)	45	69	45
Local Start Time (s)	6	95	6
Local Yield (s)	89	0	89
Local Yield 170(s)	89	113	89
Intersection Summary			
Cycle Length			130
Control Type	Actu	ated-Coo	
Natural Cycle			65
Offset: 86 (66%), Reference	ed to phase	e 2: and 6	
			. ,

Splits and Phases: 3: Venetian Way/Dade Boulevard & Purdy Avenue

		89 s
A		←
*Ø6 (R)	•	Ø8
41 s		89 s

Movement Lane Configurations	EBL									
Lane Configurations	EDL	EBT	WBT	WBR	SBL	SBR	SWL	SWR	SWR2	
	۲	1	1		001	1	0	1	1	
Traffic Volume (vph)	220	343	327	0	0	20	0	152	64	
Future Volume (vph)	220	343	327	0	0	20	0	152	64	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	5.6	5.6	6.4			5.6		5.6	5.6	
Lane Util. Factor	1.00	1.00	1.00			1.00		1.00	1.00	
Frt	1.00	1.00	1.00			0.86		0.85	0.85	
Flt Protected	0.95	1.00	1.00			1.00		1.00	1.00	
Satd. Flow (prot)	1770	1863	1863			1450		1583	1583	
Flt Permitted	0.36	1.00	1.00			1.00		1.00	1.00	
Satd. Flow (perm)	664	1863	1863			1450		1583	1583	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	239	373	355	0	0	22	0	165	70	
RTOR Reduction (vph)	0	0	0	0	0	9	0	0	29	
Lane Group Flow (vph)	239	373	355	0	0	13	0	165	41	
Parking (#/hr)		-		-	0	0				
Turn Type	Perm	NA	NA			Perm		Perm	Perm	
Protected Phases		4	8							
Permitted Phases	4		-			6		6	6	
Actuated Green, G (s)	43.2	43.2	42.4			75.6		75.6	75.6	
Effective Green, g (s)	43.2	43.2	42.4			75.6		75.6	75.6	
Actuated g/C Ratio	0.33	0.33	0.33			0.58		0.58	0.58	
Clearance Time (s)	5.6	5.6	6.4			5.6		5.6	5.6	
Vehicle Extension (s)	3.0	3.0	3.0			3.0		3.0	3.0	
Lane Grp Cap (vph)	220	619	607			843		920	920	
v/s Ratio Prot		0.20	0.19							
v/s Ratio Perm	c0.36					0.01		c0.10	0.03	
v/c Ratio	1.09	0.60	0.58			0.02		0.18	0.04	
Uniform Delay, d1	43.4	36.2	36.5			11.5		12.7	11.7	
Progression Factor	0.92	0.86	1.00			1.00		1.00	1.00	
Incremental Delay, d2	83.2	1.5	1.4			0.0		0.4	0.1	
Delay (s)	123.1	32.5	37.9			11.5		13.1	11.8	
Level of Service	F	С	D			В		В	В	
Approach Delay (s)		67.9	37.9		11.5		12.7			
Approach LOS		E	D		В		В			
Intersection Summary										
HCM 2000 Control Delay			47.6	H	CM 2000	Level of S	Service		D	
HCM 2000 Volume to Capacit	ty ratio		0.51							
Actuated Cycle Length (s)			130.0	Su	im of lost	time (s)			12.0	
Intersection Capacity Utilization	on		55.2%			of Service			В	
Analysis Period (min)			15							
c Critical Lane Group										

		₩.	+
Phase Number	4	6	8
Movement	EBTL	SWR	WBT
Lead/Lag			
Lead-Lag Optimize			
Recall Mode	None	C-Max	None
Maximum Split (s)	94	36	94
Maximum Split (%)	72.3%	27.7%	72.3%
Minimum Split (s)	23.6	23.6	24.4
Yellow Time (s)	4	4	4
All-Red Time (s)	1.6	1.6	2.4
Minimum Initial (s)	14	14	14
Vehicle Extension (s)	3	3	3
Minimum Gap (s)	3	3	3
Time Before Reduce (s)	0	0	0
Time To Reduce (s)	0	0	0
Walk Time (s)	7	7	7
Flash Dont Walk (s)	11	11	11
Dual Entry	Yes	Yes	Yes
Inhibit Max	Yes	Yes	Yes
Start Time (s)	10.6	104.6	10.6
End Time (s)	104.6	10.6	104.6
Yield/Force Off (s)	99	5	98.2
Yield/Force Off 170(s)	88	124	87.2
Local Start Time (s)	5.6	99.6	5.6
Local Yield (s)	94	0	93.2
Local Yield 170(s)	83	119	82.2
Intersection Summary			
Cycle Length			130

Cycle Length	130	
Control Type	Actuated-Coordinated	
Natural Cycle	55	
Offset 5 (4%) Refe	renced to phase 2: and 6:SWR_Start of Yellow	

Splits and Phases: 4: Dade Boulevard & 17th Street & Bay Road

	→ _{Ø4}	
	94 s	
N.	←	
Ø6 (R)	Ø8	
36 s	94 s	

Future without Project

	۶	-	\mathbf{F}	4	+	•	1	1	1	1	ţ	∢
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u>۲</u>	↑		٦.	↑			4			4î b	
Traffic Volume (veh/h)	14	598	40	41	518	14	31	3	32	25	5	25
Future Volume (veh/h)	14	598	40	41	518	14	31	3	32	25	5	25
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.90	1.00	1.00	0.90
Adj Sat Flow, veh/h/ln	1863	1863	1900	1863	1863	1900	1900	1863	1900	1900	1863	1900
Adj Flow Rate, veh/h	15	629	42	43	545	15	33	3	34	26	5	26
Adj No. of Lanes	1	1	0	1	1	0	0	1	0	0	2	0
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	418	1157	77	439	1209	33	171	29	139	324	57	272
Arrive On Green	0.67	0.67	0.67	0.22	0.22	0.22	0.21	0.21	0.21	0.21	0.21	0.21
Sat Flow, veh/h	846	1727	115	763	1804	50	563	136	660	1227	270	1297
Grp Volume(v), veh/h	15	0	671	43	0	560	70	0	0	31	0	26
Grp Sat Flow(s), veh/h/ln	846	0	1842	763	0	1854	1359	0	0	1497	0	1297
Q Serve(g_s), s	1.1	0.0	18.9	4.8	0.0	26.1	1.8	0.0	0.0	0.0	0.0	1.6
Cycle Q Clear(g_c), s	27.2	0.0	18.9	23.7	0.0	26.1	4.0	0.0	0.0	1.4	0.0	1.6
Prop In Lane	1.00	0.0	0.06	1.00	0.0	0.03	0.47	0.0	0.49	0.84	0.0	1.00
Lane Grp Cap(c), veh/h	418	0	1234	439	0	1242	338	0	0	381	0	272
V/C Ratio(X)	0.04	0.00	0.54	0.10	0.00	0.45	0.21	0.00	0.00	0.08	0.00	0.10
Avail Cap(c_a), veh/h	418	0.00	1234	439	0	1242	338	0	0.00	381	0.00	272
HCM Platoon Ratio	1.00	1.00	1.00	0.33	0.33	0.33	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	0.76	0.00	0.76	1.00	0.00	0.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	17.8	0.0	8.6	30.2	0.0	23.0	32.7	0.0	0.0	31.7	0.0	31.8
Incr Delay (d2), s/veh	0.2	0.0	1.7	0.3	0.0	0.9	1.4	0.0	0.0	0.4	0.0	0.7
Initial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.3	0.0	10.1	1.1	0.0	13.8	1.7	0.0	0.0	0.7	0.0	0.6
LnGrp Delay(d),s/veh	18.0	0.0	10.3	30.5	0.0	23.9	34.1	0.0	0.0	32.2	0.0	32.5
LnGrp LOS	B	0.0	B	C	0.0	C	C	0.0	0.0	C	0.0	C
Approach Vol, veh/h	D	686	U	0	603	<u> </u>	<u> </u>	70			57	
Approach Delay, s/veh		10.5			24.4			34.1			32.3	
Approach LOS		10.5 B			24.4 C			С С			52.5 C	
					C						C	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		27.0		73.0		27.0		73.0				
Change Period (Y+Rc), s		6.0		6.0		6.0		6.0				
Max Green Setting (Gmax), s		21.0		67.0		21.0		67.0				
Max Q Clear Time (g_c+I1), s		6.0		29.2		3.6		28.1				
Green Ext Time (p_c), s		0.5		11.7		0.6		11.8				
Intersection Summary												
HCM 2010 Ctrl Delay			18.4									
HCM 2010 LOS			В									

Timing Report, Sorted By Phase 1: W Island Avenue/West Island Avenue & Venetian Way

		4	4	¥	
Phase Number	2	4	6	8	
Movement	NBTL	EBTL	SBTL	WBTL	
Lead/Lag					
Lead-Lag Optimize					
Recall Mode	Max	C-Max	Max	C-Max	
Maximum Split (s)	27	73	27	73	
Maximum Split (%)	27.0%	73.0%	27.0%	73.0%	
Minimum Split (s)	13	22	16	22	
Yellow Time (s)	4	4	4	4	
All-Red Time (s)	2	2	2	2	
Minimum Initial (s)	7	16	10	16	
Vehicle Extension (s)	3	3	3	3	
Minimum Gap (s)	3	3	3	3	
Time Before Reduce (s)	0	0	0	0	
Time To Reduce (s)	0	0	0	0	
Walk Time (s)	4	0	4	0	
Flash Dont Walk (s)	14	0	17	0	
Dual Entry	Yes	Yes	Yes	Yes	
Inhibit Max	Yes	Yes	Yes	Yes	
Start Time (s)	96	23	96	23	
End Time (s)	23	96	23	96	
Yield/Force Off (s)	17	90	17	90	
Yield/Force Off 170(s)	3	90	0	90	
Local Start Time (s)	6	33	6	33	
Local Yield (s)	27	0	27	0	
Local Yield 170(s)	13	0	10	0	
Intersection Summary					
Cycle Length			100		
Control Type	Actu	ated-Coo			
Natural Cycle			45		
Offset: 90 (90%), Reference	d to phase	e 4:EBTL	and 8:WE	BTL, Start	of Yellow
Splits and Phases: 1: W Is	sland Aver	nue/West	Island Av	renue & V	/enetian Way

₫ Ø2	Ø4 (R)	•
27 s	73 s	
Ø6	₩ Ø8 (R)	
27 s	73 s	

HCM Signalized Intersection Capacity Analysis
2: E Island Avenue/East Island Avenue & Venetian Way

5/12/2016	
-----------	--

	۶	-	\mathbf{F}	F	4	←	•	1	Ť	1	5	Ļ
Movement	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT
Lane Configurations	<u>۲</u>	↑			3	↑			- ↔			4
Traffic Volume (vph)	38	538	79	37	79	453	39	98	1	98	23	1
Future Volume (vph)	38	538	79	37	79	453	39	98	1	98	23	1
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0			6.0	6.0			6.0			6.0
Lane Util. Factor	1.00	1.00			1.00	1.00			1.00			1.00
Frt	1.00	0.98			1.00	0.99			0.93			0.93
Flt Protected	0.95	1.00			0.95	1.00			0.98			0.98
Satd. Flow (prot)	1770	1827			1770	1841			1526			1528
Flt Permitted	0.31	1.00			0.20	1.00			0.83			0.84
Satd. Flow (perm)	586	1827			373	1841			1293			1314
Peak-hour factor, PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	39	555	81	38	81	467	40	101	1	101	24	1
RTOR Reduction (vph)	0	7	0	0	0	4	0	0	28	0	0	14
Lane Group Flow (vph)	39	629	0	0	119	503	0	0	175	0	0	35
Parking (#/hr)								0	0	0	0	0
Turn Type	Perm	NA		Perm	Perm	NA		Perm	NA		Perm	NA
Protected Phases		4				8			2			6
Permitted Phases	4			8	8			2			6	
Actuated Green, G (s)	45.3	45.3			45.3	45.3			42.7			42.7
Effective Green, g (s)	45.3	45.3			45.3	45.3			42.7			42.7
Actuated g/C Ratio	0.45	0.45			0.45	0.45			0.43			0.43
Clearance Time (s)	6.0	6.0			6.0	6.0			6.0			6.0
Vehicle Extension (s)	3.0	3.0			3.0	3.0			3.0			3.0
Lane Grp Cap (vph)	265	827			168	833			552			561
v/s Ratio Prot		c0.34				0.27						
v/s Ratio Perm	0.07				0.32				c0.14			0.03
v/c Ratio	0.15	0.76			0.71	0.60			0.32			0.06
Uniform Delay, d1	16.0	22.8			22.0	20.6			19.0			16.9
Progression Factor	1.71	1.58			1.00	1.00			1.00			1.00
Incremental Delay, d2	0.2	3.6			12.8	1.2			1.5			0.2
Delay (s)	27.6	39.7			34.8	21.8			20.5			17.1
Level of Service	С	D			С	С			С			В
Approach Delay (s)		39.0				24.3			20.5			17.1
Approach LOS		D				С			С			В
Intersection Summary												
HCM 2000 Control Delay			29.9	Н	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capac	city ratio		0.54									
Actuated Cycle Length (s)			100.0		um of lost				12.0			
Intersection Capacity Utilizat	ion		75. 9 %	IC	CU Level o	of Service	9		D			
Analysis Period (min)			15									
c Critical Lane Group												

∡_

	000
Movement	SBR
Traffic Volume (vph)	23
Future Volume (vph)	23
Ideal Flow (vphpl)	1900
Total Lost time (s)	
Lane Util. Factor	
Frt	
Flt Protected	
Satd. Flow (prot)	
Flt Permitted	
Satd. Flow (perm)	
Peak-hour factor, PHF	0.97
Adj. Flow (vph)	24
RTOR Reduction (vph)	0
Lane Group Flow (vph)	0
Parking (#/hr)	0
Turn Type	
Protected Phases	
Permitted Phases	
Actuated Green, G (s)	
Effective Green, g (s)	
Actuated g/C Ratio	
Clearance Time (s)	
Vehicle Extension (s)	
Lane Grp Cap (vph)	
v/s Ratio Prot	
v/s Ratio Perm	
v/c Ratio	
Uniform Delay, d1	
Progression Factor	
Incremental Delay, d2	
Delay (s)	
Level of Service	
Approach Delay (s)	
Approach LOS	
Intersection Summary	

Timing Report, Sorted By Phase 2: E Island Avenue/East Island Avenue & Venetian Way

		4	-↓⊳	-
Phase Number	2	4	6	8
Movement	NBTL	EBTL	SBTL	WBTL
Lead/Lag				
Lead-Lag Optimize				
Recall Mode	C-Max	None	C-Max	None
Maximum Split (s)	33	67	33	67
Maximum Split (%)	33.0%	67.0%	33.0%	67.0%
Minimum Split (s)	24	24	24	24
Yellow Time (s)	4	4	4	4
All-Red Time (s)	2	2	2	2
Minimum Initial (s)	7	16	7	16
Vehicle Extension (s)	3	3	3	3
Minimum Gap (s)	3	3	3	3
Time Before Reduce (s)	0	0	0	0
Time To Reduce (s)	0	0	0	0
Walk Time (s)	7	7	7	7
Flash Dont Walk (s)	11	11	11	11
Dual Entry	Yes	Yes	Yes	Yes
Inhibit Max	Yes	Yes	Yes	Yes
Start Time (s)	50	83	50	83
End Time (s)	83	50	83	50
Yield/Force Off (s)	77	44	77	44
Yield/Force Off 170(s)	66	33	66	33
Local Start Time (s)	73	6	73	6
Local Yield (s)	0	67	0	67
Local Yield 170(s)	89	56	89	56
Intersection Summary				
Cycle Length			100	
Control Type	Actu	ated-Coo		
Natural Cycle			60	
Offset: 77 (77%), Reference	d to phood			TI Ctort

Splits and Phases: 2: E Island Avenue/East Island Avenue & Venetian Way

Ø2 (R)	<u>→</u> ₀₄
33 s	67 s
Ø6 (R)	₩ Ø8
33 s	67 s

	≯	+	+	*	1	1		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations	<u> </u>	1	4	WB R	<u> </u>	1		
Traffic Volume (veh/h)	58	602	518	215	54	54		
Future Volume (veh/h)	58	602	518	215	54	54		
Number	7	4	8	18	1	16		
nitial Q (Qb), veh	0	0	0	0	0	0		
Ped-Bike Adj(A_pbT)	1.00			1.00	1.00	1.00		
Parking Bus, Adj	1.00	1.00	1.00	1.00	0.90	0.90		
Adj Sat Flow, veh/h/ln	1863	1863	1863	1900	1863	1863		
Adj Flow Rate, veh/h	62	647	557	231	58	58		
Adj No. of Lanes	1	1	1	0	1	1		
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93		
ercent Heavy Veh, %	2	2	2	2	2	2		
Cap, veh/h	173	1101	740	307	506	451		
Arrive On Green	0.59	0.59	0.20	0.20	0.32	0.32		
Sat Flow, veh/h	685	1863	1252	519	1597	1425		
Grp Volume(v), veh/h	62	647	0	788	58	58		
Grp Sat Flow(s),veh/h/ln	685	1863	0	1771	1597	1425		
2 Serve(g_s), s	10.7	28.3	0.0	54.6	3.3	3.8		
Cycle Q Clear(g_c), s	65.3	28.3	0.0	54.6	3.3	3.8		
Prop In Lane	1.00			0.29	1.00	1.00		
ane Grp Cap(c), veh/h	173	1101	0	1047	506	451		
//C Ratio(X)	0.36	0.59	0.00	0.75	0.11	0.13		
Avail Cap(c_a), veh/h	205	1189	0	1131	506	451		
ICM Platoon Ratio	1.00	1.00	0.33	0.33	1.00	1.00		
Jpstream Filter(I)	0.56	0.56	0.00	0.94	1.00	1.00		
Jniform Delay (d), s/veh	49.1	16.7	0.0	43.4	31.5	31.6		
ncr Delay (d2), s/veh	0.7	0.4	0.0	2.5	0.5	0.6		
nitial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0		
6ile BackOfQ(50%),veh/In	2.1	14.5	0.0	27.5	1.5	1.6		
_nGrp Delay(d),s/veh	49.8	17.0	0.0	45.9	32.0	32.2		
nGrp LOS	D	В		D	С	С		
Approach Vol, veh/h		709	788		116			
Approach Delay, s/veh		19.9	45.9		32.1			
Approach LOS		В	D		С			
imer	1	2	3	4	5	6	7 8	
Assigned Phs				4		6	8	
Phs Duration (G+Y+Rc), s				82.8		47.2	82.8	
Change Period (Y+Rc), s				6.0		6.0	6.0	
Nax Green Setting (Gmax), s				83.0		35.0	83.0	
Max Q Clear Time (g_c+I1), s				67.3		5.8	56.6	
Green Ext Time (p_c), s				9.5		0.3	13.1	
tersection Summary								
ICM 2010 Ctrl Delay			33.5					
HCM 2010 LOS			С					

	- 🙏	- ^►	-
Phase Number	4	6	8
Movement	EBTL	SBL	WBT
Lead/Lag			
Lead-Lag Optimize			
Recall Mode	None	C-Max	None
Maximum Split (s)	89	41	89
Maximum Split (%)	68.5%	31.5%	68.5%
Minimum Split (s)	24	30	24
Yellow Time (s)	4	4	4
All-Red Time (s)	2	2	2
Minimum Initial (s)	14	14	7
Vehicle Extension (s)	3	3	3
Minimum Gap (s)	3	3	3
Time Before Reduce (s)	0	0	0
Time To Reduce (s)	0	0	0
Walk Time (s)	0	7	0
Flash Dont Walk (s)	0	17	0
Dual Entry	Yes	Yes	Yes
Inhibit Max	Yes	Yes	Yes
Start Time (s)	92	51	92
End Time (s)	51	92	51
Yield/Force Off (s)	45	86	45
Yield/Force Off 170(s)	45	69	45
Local Start Time (s)	6	95	6
Local Yield (s)	89	0	89
Local Yield 170(s)	89	113	89
Intersection Summary			
Cycle Length			130
Control Type	Actu	ated-Coo	rdinated
Natural Cycle			65
Offset: 86 (66%), Reference	d to phase	e 2: and 6	:SBL, Star

Splits and Phases: 3: Venetian Way/Dade Boulevard & Purdy Avenue

		89 s
A		←
*Ø6 (R)	•	Ø8
41 s		89 s

Incremental Delay, d2 16.4 0.3 0.3 0.0 0.8 0.1 Delay (s) 59.4 29.1 23.5 20.6 23.6 20.9 Level of Service E C C C C Approach Delay (s) 43.1 23.5 20.6 22.8 Approach LOS D C C C Intersection Summary D C C C HCM 2000 Control Delay 33.7 HCM 2000 Level of Service C HCM 2000 Volume to Capacity ratio 0.57		_#	-	+	•	1	<	6	~	ŧ٧	
Lane Configurations A A A A A A A A F F F Traffic Volume (vph) 304 351 348 0 0 21 0 154 65 Ideal Flow (vphp) 1900 100 1.00	Movement	EBL	EBT	WBT	WBR	SBL	SBR	SWL	SWR	SWR2	
Traffic Volume (vph) 304 351 348 0 0 21 0 154 65 Future Volume (vph) 304 351 348 0 0 21 0 154 65 Future Volume (vph) 300 1900 1900 1900 1900 1900 1900 Total Losti time (s) 5.6 5.6 6.4 5.6 5.6 5.6 5.6 Fit 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Statl Flow (prot) 1770 1863 1863 1450 1583 1583 Fite Permitted 0.43 1.00 1.00 1.00 1.00 1.00 1.00 Statl Flow (perm) 806 1863 1863 1450 1583 1583 Peak-hour factor, PHF 0.92						002		0.112			
Future Volume (vph) 304 351 348 0 0 21 0 1900 <t< td=""><td></td><td></td><td></td><td></td><td>0</td><td>0</td><td></td><td>0</td><td></td><td></td><td></td></t<>					0	0		0			
Ideal Flow (vphp) 1900 100 1.00											
Total Lost time (s) 5.6 5.6 6.4 5.6 5.6 5.6 Lane Ulti, Factor 1.00 1.00 1.00 1.00 1.00 1.00 Fit 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Satd. Flow (prot) 1770 1863 1863 1450 1583 1583 Fit Protected 0.43 1.00 1.00 1.00 1.00 1.00 Satd. Flow (prot) 1770 1863 1863 1450 1583 1583 Peak-hour factor, PHF 0.92 <td>· · · · ·</td> <td></td>	· · · · ·										
Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Frt 1.00 1.00 1.00 0.86 0.85 0.85 Fl Protected 0.95 1.00 1.00 1.00 1.00 1.00 1.00 Satd. Flow (prot) 1770 1863 1863 1450 1583 1583 Satd. Flow (perm) 806 1863 1663 1663 1667 71 Reduction (vph) 030 382 378 0 0 23 0 167 71 RTOR Reduction (vph) 0 0 0 0 10 167 31 Parking (#Im) 0 0 0 0 13 0 40 Lane Group Flow (vph) 330 382 378 0 0 167 31 Parking (#Im) 0 0 0 168 57.2 57.2 57.2 57.2 Floctive Green, G (s) 61.6											
Frt 1.00 1.00 1.00 1.00 1.00 1.00 FIL Protected 0.95 1.00 1.00 1.00 1.00 1.00 Stald. Flow (port) 1770 1863 1863 1450 1583 1583 FIL Permitted 0.43 1.00 1.00 1.00 1.00 1.00 Sald. Flow (perm) 806 1863 1863 1450 1583 1583 Peak-hour factor, PHF 0.92											
Fit Protected 0.95 1.00 1.00 1.00 1.00 1.00 Satd. Flow (pcrt) 1770 1863 1863 1450 1583 1583 Fith Permitted 0.43 1.00 1.00 1.00 1.00 1.00 Satd. Flow (pcrt) 806 1863 1863 1450 1583 1583 Peak-hour factor, PHF 0.92 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
Satd. Flow (prot) 1770 1863 1863 1450 1583 1583 FIL Permitted 0.43 1.00 1.00 1.00 1.00 1.00 Satd. Flow (perm) 806 1863 1863 1450 1583 1583 Peak-hour factor, PHF 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 Adj. Flow (vph) 330 382 378 0 0 10 0 67 71 RTOR Reduction (vph) 0 0 0 0 10 0 167 31 Parking (#/hr) 330 382 378 0 0 10 0 167 31 Protected Phases 4 8 0 0 0 0 6 6 6 Actuated Green, G (s) 61.6 61.6 60.8 57.2 57.2 57.2 57.2 Effective Green, g (s) 5.6 5.6 6.4 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6											
Fit Permitted 0.43 1.00 1.00 1.00 1.00 1.00 1.00 Satd. Flow (perm) 806 1863 1863 1450 1583 1583 Peak-hour factor, PHF 0.92 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>											
Satd. Flow (perm) 806 1863 1863 1450 1583 1583 Peak-hour factor, PHF 0.92											
Peak-hour factor, PHF 0.92 0.40 Lane Group Flow (vph) 33 382 378 0 0 10 0 10 0 10 10 10 10 10 10 10 10 10 10 10 10											
Adj. Flow (vph) 330 382 378 0 0 23 0 167 71 RTOR Reduction (vph) 0 0 0 0 0 0 0 40 Lane Group Flow (vph) 330 382 378 0 0 13 0 0 40 Lane Group Flow (vph) 330 382 378 0 0 10 0 40 Parking (#/hr) 0 0 10 0 167 71 Protected Phases 4 8 6 6 6 Actuated Green, G (s) 61.6 61.6 60.8 57.2 57.2 57.2 Effective Green, g (s) 61.6 61.6 60.8 57.2 57.2 57.2 Actuated g/C Ratio 0.47 0.47 0.44 0.44 0.44 0.44 Clearance Time (s) 5.6 5.6 6.6 4 5.6 5.6 5.6 Lane Gro Cp (ph) 381 882 871 638 696 696 696 696 696					0.92	0.92		0.92			
RTOR Reduction (vph) 0 0 0 0 13 0 0 40 Lane Group Flow (vph) 330 382 378 0 0 10 0 167 31 Parking (#/hr) 0 0 0 0 0 167 31 Turn Type Perm NA NA Perm Perm Perm Protected Phases 4 8 6 6 6 Actuated Green, G (s) 61.6 61.6 60.8 57.2 57.2 57.2 Effective Green, g (s) 51.6 65.6 6.4 5.6 5.6 5.6 Actuated QC Ratio 0.47 0.47 0.44 0.44 0.44 Clearance Time (s) 5.6 5.6 6.4 5.6 5.6 5.6 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 Vis Ratio Perm c0.41 0.01 c0.11 0.02 v/s Ratio Perm c0.41 0.02 0.44 Vis Ratio Perm c0.41 0.20 </td <td></td>											
Lane Group Flow (vph) 330 382 378 0 0 10 0 167 31 Parking (#/hr) 0 0 0 0 0 0 0 Turn Type Perm NA NA Perm Perm Perm Perm Protected Phases 4 8											
Parking (#hr) 0 0 Turn Type Perm NA NA Perm Perm Perm Protected Phases 4 8 6 6 6 Actuated Green, G (s) 61.6 61.6 60.8 57.2 57.2 57.2 Actuated Green, g (s) 61.6 61.6 60.8 57.2 57.2 57.2 Actuated g/C Ratio 0.47 0.47 0.47 0.44 0.44 0.44 Clearance Time (s) 5.6 5.6 6.4 5.6 5.6 5.6 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 381 882 871 638 696 696 v/s Ratio Perm C0.41 0.20 0.01 c0.11 0.02 v/c Ratio 0.87 0.43 0.43 0.02 0.24 0.04 Uniform Delay, d1 30.5 22.6 23.1 20.5											
Turn Type Perm NA NA Perm Perm Perm Protected Phases 4 8 6		330	302	370	U			U	107	31	
Protected Phases 4 8 Permitted Phases 4 6 6 6 Actuated Green, G (s) 61.6 60.8 57.2 57.2 57.2 Effective Green, g (s) 61.6 60.8 57.2 57.2 57.2 Actuated g/C Ratio 0.47 0.47 0.44 0.44 0.44 Clearance Time (s) 5.6 5.6 6.4 5.6 5.6 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 381 882 871 638 696 696 v/s Ratio Perm 0.21 0.20 0.02 0.44 0.04 0.04 Uniform Delay, d1 30.5 22.6 23.1 20.5 22.8 20.8 Progression Factor 1.41 1.27 1.00 1.00 1.00 1.00 Incremental Delay, d2 16.4 0.3 0.3 0.0 0.8 0.1 Delay (s) 59.4 <td></td> <td>Dorm</td> <td>NIA</td> <td>NIA</td> <td></td> <td>0</td> <td></td> <td></td> <td>Dorm</td> <td>Dorm</td> <td></td>		Dorm	NIA	NIA		0			Dorm	Dorm	
Permitted Phases 4 6 6 6 Actuated Green, G (s) 61.6 61.6 60.8 57.2 57.2 57.2 Effective Green, g (s) 61.6 61.6 60.8 57.2 57.2 57.2 Actuated g/C Ratio 0.47 0.47 0.47 0.44 0.44 0.44 Clearance Time (s) 5.6 5.6 6.4 5.6 5.6 5.6 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 381 882 871 638 696 696 v/s Ratio Port 0.21 0.20 0.01 c0.11 0.02 v/s Ratio Perm c0.41 0.20 0.24 0.04 Uniform Delay, d1 30.5 22.6 23.1 20.5 22.8 20.8 Progression Factor 1.41 1.27 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 16.4 0.3 0.3 0.0 0.8 0.1 Delay (s) 59.4<		Pelilli					Perm		Perm	Pelm	
Actuated Green, G (s) 61.6 61.6 60.8 57.2 57.2 57.2 Effective Green, g (s) 61.6 61.6 60.8 57.2 57.2 57.2 Actuated g/C Ratio 0.47 0.47 0.47 0.44 0.44 0.44 Clearance Time (s) 5.6 5.6 6.4 5.6 5.6 5.6 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 381 882 871 638 696 696 v/s Ratio Prot 0.21 0.20		4	4	ð			4		L	4	
Effective Green, g (s) 61.6 61.6 60.8 57.2 57.2 57.2 Actuated g/C Ratio 0.47 0.47 0.44 0.44 0.44 Clearance Time (s) 5.6 5.6 6.4 5.6 5.6 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 381 882 871 638 696 696 v/s Ratio Prot 0.21 0.20 0.01 c0.11 0.02 v/c Ratio 0.87 0.43 0.43 0.02 0.24 0.04 Uniform Delay, d1 30.5 22.6 23.1 20.5 22.8 20.8 Progression Factor 1.41 1.27 1.00 1.00 1.00 1.00 Incremental Delay, d2 16.4 0.3 0.3 0.0 0.8 0.1 Delay (s) 59.4 29.1 23.5 20.6 23.6 20.9 Level of Service E C C C C C HCM 2000 Control Delay 33.7 HCM 2000 Level			/1/	(0.0							
Actuated g/C Ratio 0.47 0.47 0.47 0.44 0.44 0.44 Clearance Time (s) 5.6 5.6 6.4 5.6 5.6 5.6 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 381 882 871 638 696 696 v/s Ratio Port 0.21 0.20 0.01 c0.11 0.02 v/c Ratio 0.87 0.43 0.43 0.02 0.24 0.04 Uniform Delay, d1 30.5 22.6 23.1 20.5 22.8 20.8 Progression Factor 1.41 1.27 1.00 1.00 1.00 1.00 Incremental Delay, d2 16.4 0.3 0.3 0.0 0.8 0.1 Delay (s) 59.4 29.1 23.5 20.6 23.6 20.9 Level of Service E C C C C Approach LOS D C C C C HCM 2000 Control Delay 33.7 HCM 2000 Level of	. ,										
Clearance Time (s) 5.6 5.6 5.6 5.6 5.6 5.6 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 381 882 871 638 696 696 v/s Ratio Prot 0.21 0.20 0.01 c0.11 0.02 v/s Ratio Perm c0.41 0.01 c0.11 0.02 v/c Ratio 0.87 0.43 0.43 0.02 0.24 0.04 Uniform Delay, d1 30.5 22.6 23.1 20.5 22.8 20.8 Progression Factor 1.41 1.27 1.00 1.00 1.00 1.00 Incremental Delay, d2 16.4 0.3 0.3 0.0 0.8 0.1 Delay (s) 59.4 29.1 23.5 20.6 22.8 20.9 Level of Service E C C C C C Approach LOS D C C C C C HCM 2000 Control Delay 33.7 HCM 2000 Level of Service<											
Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 381 882 871 638 696 696 v/s Ratio Prot 0.21 0.20 0.01 c0.11 0.02 v/s Ratio Perm c0.41 0.02 0.24 0.04 Uniform Delay, d1 30.5 22.6 23.1 20.5 22.8 20.8 Progression Factor 1.41 1.27 1.00 1.00 1.00 1.00 Incremental Delay, d2 16.4 0.3 0.3 0.0 0.8 0.1 Delay (s) 59.4 29.1 23.5 20.6 23.6 20.9 Level of Service E C C C C C Approach LOS D C C C C C HCM 2000 Control Delay 33.7 HCM 2000 Level of Service C C HCM 2000 Volume to Capacity ratio 0.57 0.57 C											
Lane Grp Cap (vph) 381 882 871 638 696 696 v/s Ratio Prot 0.21 0.20 0.01 c0.11 0.02 v/s Ratio Perm c0.41 0.01 c0.11 0.02 v/s Ratio 0.87 0.43 0.43 0.02 0.24 0.04 Uniform Delay, d1 30.5 22.6 23.1 20.5 22.8 20.8 Progression Factor 1.41 1.27 1.00 1.00 1.00 1.00 Incremental Delay, d2 16.4 0.3 0.3 0.0 0.8 0.1 Delay (s) 59.4 29.1 23.5 20.6 23.6 20.9 Level of Service E C C C C Approach Delay (s) 43.1 23.5 20.6 22.8 Approach LOS D C C C C HCM 2000 Control Delay 33.7 HCM 2000 Level of Service C HCM 2000 Volume to Capacity ratio 0.57 12.0 Intersection Capacity Utilization 56.3%	• •										
w/s Ratio Prot 0.21 0.20 v/s Ratio Perm c0.41 0.01 c0.11 0.02 v/c Ratio 0.87 0.43 0.43 0.02 0.24 0.04 Uniform Delay, d1 30.5 22.6 23.1 20.5 22.8 20.8 Progression Factor 1.41 1.27 1.00 1.00 1.00 1.00 Incremental Delay, d2 16.4 0.3 0.3 0.0 0.8 0.1 Delay (s) 59.4 29.1 23.5 20.6 23.6 20.9 Level of Service E C C C C Approach Delay (s) 43.1 23.5 20.6 22.8 Approach LOS D C C C Intersection Summary D C C C HCM 2000 Control Delay 33.7 HCM 2000 Level of Service C HCM 2000 Volume to Capacity ratio 0.57 0.57 12.0 Intersection Capacity Utilization 56.3% ICU Level of Service B Analysis Period (min) 15											
v/s Ratio Perm c0.41 0.01 c0.11 0.02 v/c Ratio 0.87 0.43 0.43 0.02 0.24 0.04 Uniform Delay, d1 30.5 22.6 23.1 20.5 22.8 20.8 Progression Factor 1.41 1.27 1.00 1.00 1.00 1.00 Incremental Delay, d2 16.4 0.3 0.3 0.0 0.8 0.1 Delay (s) 59.4 29.1 23.5 20.6 23.6 20.9 Level of Service E C C C C Approach Delay (s) 43.1 23.5 20.6 22.8 Approach LOS D C C C Intersection Summary D C C C HCM 2000 Control Delay 33.7 HCM 2000 Level of Service C HCM 2000 Volume to Capacity ratio 0.57 C C C Actuated Cycle Length (s) 130.0 Sum of lost time (s) 12.0 Intersection Capacity Utilization 56.3% ICU Level of Service B <td< td=""><td></td><td>381</td><td></td><td></td><td></td><td></td><td>638</td><td></td><td>696</td><td>696</td><td></td></td<>		381					638		696	696	
v/c Ratio 0.87 0.43 0.43 0.02 0.24 0.04 Uniform Delay, d1 30.5 22.6 23.1 20.5 22.8 20.8 Progression Factor 1.41 1.27 1.00 1.00 1.00 1.00 Incremental Delay, d2 16.4 0.3 0.3 0.0 0.8 0.1 Delay (s) 59.4 29.1 23.5 20.6 23.6 20.9 Level of Service E C C C C Approach Delay (s) 43.1 23.5 20.6 22.8 Approach LOS D C C C Intersection Summary D C C C HCM 2000 Control Delay 33.7 HCM 2000 Level of Service C HCM 2000 Volume to Capacity ratio 0.57 C C C Actuated Cycle Length (s) 130.0 Sum of lost time (s) 12.0 12.0 Intersection Capacity Utilization 56.3% ICU Level of Service B B			0.21	0.20							
Uniform Delay, d1 30.5 22.6 23.1 20.5 22.8 20.8 Progression Factor 1.41 1.27 1.00 1.00 1.00 1.00 Incremental Delay, d2 16.4 0.3 0.3 0.0 0.8 0.1 Delay (s) 59.4 29.1 23.5 20.6 23.6 20.9 Level of Service E C C C C Approach Delay (s) 43.1 23.5 20.6 22.8 Approach LOS D C C C Intersection Summary D C C C HCM 2000 Control Delay 33.7 HCM 2000 Level of Service C Actuated Cycle Length (s) 130.0 Sum of lost time (s) 12.0 Intersection Capacity Utilization 56.3% ICU Level of Service B Analysis Period (min) 15 15 12.0											
Progression Factor 1.41 1.27 1.00 1.00 1.00 1.00 Incremental Delay, d2 16.4 0.3 0.3 0.0 0.8 0.1 Delay (s) 59.4 29.1 23.5 20.6 23.6 20.9 Level of Service E C C C C Approach Delay (s) 43.1 23.5 20.6 22.8 Approach LOS D C C C Intersection Summary D C C C HCM 2000 Control Delay 33.7 HCM 2000 Level of Service C Actuated Cycle Length (s) 130.0 Sum of lost time (s) 12.0 Intersection Capacity Utilization 56.3% ICU Level of Service B Analysis Period (min) 15 15 ICU Level of Service ICU Level of Service											
Incremental Delay, d2 16.4 0.3 0.3 0.0 0.8 0.1 Delay (s) 59.4 29.1 23.5 20.6 23.6 20.9 Level of Service E C C C C C Approach Delay (s) 43.1 23.5 20.6 22.8 C											
Delay (s) 59.4 29.1 23.5 20.6 23.6 20.9 Level of Service E C C C C C Approach Delay (s) 43.1 23.5 20.6 22.8 C	Progression Factor										
Level of ServiceECCCCCApproach Delay (s)43.123.520.622.8Approach LOSDCCCIntersection SummaryHCM 2000 Control Delay33.7HCM 2000 Level of ServiceCHCM 2000 Volume to Capacity ratio0.57CCActuated Cycle Length (s)130.0Sum of lost time (s)12.0Intersection Capacity Utilization56.3%ICU Level of ServiceBAnalysis Period (min)1515C											
Approach Delay (s)43.123.520.622.8Approach LOSDCCCIntersection SummaryHCM 2000 Control Delay33.7HCM 2000 Level of ServiceCHCM 2000 Volume to Capacity ratio0.57CActuated Cycle Length (s)130.0Sum of lost time (s)12.0Intersection Capacity Utilization56.3%ICU Level of ServiceBAnalysis Period (min)1515Intersection ServiceB	Delay (s)										
Approach LOSDCCCIntersection SummaryHCM 2000 Control Delay33.7HCM 2000 Level of ServiceCHCM 2000 Volume to Capacity ratio0.57	Level of Service	E					С		С	С	
Intersection Summary HCM 2000 Control Delay 33.7 HCM 2000 Level of Service C HCM 2000 Volume to Capacity ratio 0.57 Actuated Cycle Length (s) 130.0 Sum of lost time (s) 12.0 Intersection Capacity Utilization 56.3% ICU Level of Service B Analysis Period (min) 15	Approach Delay (s)		43.1			20.6					
HCM 2000 Control Delay33.7HCM 2000 Level of ServiceCHCM 2000 Volume to Capacity ratio0.57Actuated Cycle Length (s)130.0Sum of lost time (s)12.0Intersection Capacity Utilization56.3%ICU Level of ServiceBAnalysis Period (min)151515	Approach LOS		D	С		С		С			
HCM 2000 Volume to Capacity ratio0.57Actuated Cycle Length (s)130.0Sum of lost time (s)12.0Intersection Capacity Utilization56.3%ICU Level of ServiceBAnalysis Period (min)151515	Intersection Summary										
Actuated Cycle Length (s)130.0Sum of lost time (s)12.0Intersection Capacity Utilization56.3%ICU Level of ServiceBAnalysis Period (min)1515	HCM 2000 Control Delay				H	CM 2000	Level of S	Service		С	
Intersection Capacity Utilization56.3%ICU Level of ServiceBAnalysis Period (min)15	HCM 2000 Volume to Capa	city ratio		0.57							
Analysis Period (min) 15	Actuated Cycle Length (s)			130.0	Su	um of lost	time (s)			12.0	
Analysis Period (min) 15	Intersection Capacity Utiliza	ition		56.3%	IC	U Level o	of Service			В	
c Critical Lane Group	Analysis Period (min)			15							
	c Critical Lane Group										

		# -	+
Phase Number	4	6	8
Movement	EBTL	SWR	WBT
Lead/Lag			
Lead-Lag Optimize			
Recall Mode	None	C-Max	None
Maximum Split (s)	94	36	94
Maximum Split (%)	72.3%	27.7%	72.3%
Minimum Split (s)	23.6	23.6	24.4
Yellow Time (s)	4	4	4
All-Red Time (s)	1.6	1.6	2.4
Minimum Initial (s)	14	14	14
Vehicle Extension (s)	3	3	3
Minimum Gap (s)	3	3	3
Time Before Reduce (s)	0	0	0
Time To Reduce (s)	0	0	0
Walk Time (s)	7	7	7
Flash Dont Walk (s)	11	11	11
Dual Entry	Yes	Yes	Yes
Inhibit Max	Yes	Yes	Yes
Start Time (s)	10.6	104.6	10.6
End Time (s)	104.6	10.6	104.6
Yield/Force Off (s)	99	5	98.2
Yield/Force Off 170(s)	88	124	87.2
Local Start Time (s)	5.6	99.6	5.6
Local Yield (s)	94	0	93.2
Local Yield 170(s)	83	119	82.2
Intersection Summary			
Cycle Length			130
Control Tuno	A otu	atad Caa	rdinatad

Cycle Length	130	
Control Type	Actuated-Coordinated	
Natural Cycle	60	
Offset: 5 (4%), Refere	enced to phase 2: and 6:SWR, Start of Yel	OW

Splits and Phases: 4: Dade Boulevard & 17th Street & Bay Road

Future with Project Without West Avenue Bridge

	≯	-	\mathbf{F}	∢	+	•	1	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	↑		ሻ	↑			4			ፋጉ	
Traffic Volume (veh/h)	21	600	40	41	518	14	31	3	32	25	5	28
Future Volume (veh/h)	21	600	40	41	518	14	31	3	32	25	5	28
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.90	1.00	1.00	0.90
Adj Sat Flow, veh/h/ln	1863	1863	1900	1863	1863	1900	1900	1863	1900	1900	1863	1900
Adj Flow Rate, veh/h	22	632	42	43	545	15	33	3	34	26	5	29
Adj No. of Lanes	1	1	0	1	1	0	0	1	0	0	2	0
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	418	1158	77	437	1209	33	171	29	138	324	57	272
Arrive On Green	0.67	0.67	0.67	0.22	0.22	0.22	0.21	0.21	0.21	0.21	0.21	0.21
Sat Flow, veh/h	846	1728	115	761	1804	50	562	136	659	1227	270	1297
Grp Volume(v), veh/h	22	0	674	43	0	560	70	0	0	31	0	29
Grp Sat Flow(s), veh/h/ln	846	0	1842	761	0	1854	1357	0	0	1497	0	1297
Q Serve(g_s), s	1.6	0.0	19.0	4.8	0.0	26.1	1.8	0.0	0.0	0.0	0.0	1.8
Cycle Q Clear(g_c), s	27.7	0.0	19.0	23.9	0.0	26.1	4.0	0.0	0.0	1.4	0.0	1.8
Prop In Lane	1.00	0.0	0.06	1.00	0.0	0.03	0.47	0.0	0.49	0.84	0.0	1.00
Lane Grp Cap(c), veh/h	418	0	1234	437	0	1242	338	0	0	381	0	272
V/C Ratio(X)	0.05	0.00	0.55	0.10	0.00	0.45	0.21	0.00	0.00	0.08	0.00	0.11
Avail Cap(c_a), veh/h	418	0	1234	437	0	1242	338	0	0	381	0	272
HCM Platoon Ratio	1.00	1.00	1.00	0.33	0.33	0.33	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	0.75	0.00	0.75	1.00	0.00	0.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	17.9	0.0	8.6	30.3	0.0	23.0	32.7	0.0	0.0	31.7	0.0	31.9
Incr Delay (d2), s/veh	0.2	0.0	1.7	0.3	0.0	0.9	1.4	0.0	0.0	0.4	0.0	0.8
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.4	0.0	10.1	1.1	0.0	13.8	1.7	0.0	0.0	0.7	0.0	0.0
LnGrp Delay(d),s/veh	18.2	0.0	10.3	30.7	0.0	23.9	34.1	0.0	0.0	32.2	0.0	32.7
LnGrp LOS	B	0.0	B	C	0.0	C	C	0.0	0.0	C	0.0	C
Approach Vol, veh/h	D	696	<u> </u>	0	603	0	0	70		0	60	
Approach Delay, s/veh		10.6			24.4			34.1			32.4	
Approach LOS		-			24.4 C			54.1 C			52.4 C	
		В									C	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		27.0		73.0		27.0		73.0				
Change Period (Y+Rc), s		6.0		6.0		6.0		6.0				
Max Green Setting (Gmax), s		21.0		67.0		21.0		67.0				
Max Q Clear Time (g_c+I1), s		6.0		29.7		3.8		28.1				
Green Ext Time (p_c), s		0.6		11.8		0.6		11.9				
Intersection Summary												
HCM 2010 Ctrl Delay			18.5									
HCM 2010 LOS			В									

Timing Report, Sorted By Phase 1: W Island Avenue/West Island Avenue & Venetian Way

		4	-4	¥	
Phase Number	2	4	6	8	
Movement	NBTL	EBTL	SBTL	WBTL	
Lead/Lag					
Lead-Lag Optimize					
Recall Mode	Max	C-Max	Max	C-Max	
Maximum Split (s)	27	73	27	73	
Maximum Split (%)	27.0%	73.0%	27.0%	73.0%	
Minimum Split (s)	13	22	16	22	
Yellow Time (s)	4	4	4	4	
All-Red Time (s)	2	2	2	2	
Minimum Initial (s)	7	16	10	16	
Vehicle Extension (s)	3	3	3	3	
Minimum Gap (s)	3	3	3	3	
Time Before Reduce (s)	0	0	0	0	
Time To Reduce (s)	0	0	0	0	
Walk Time (s)	4	0	4	0	
Flash Dont Walk (s)	14	0	17	0	
Dual Entry	Yes	Yes	Yes	Yes	
Inhibit Max	Yes	Yes	Yes	Yes	
Start Time (s)	96	23	96	23	
End Time (s)	23	96	23	96	
Yield/Force Off (s)	17	90	17	90	
Yield/Force Off 170(s)	3	90	0	90	
Local Start Time (s)	6	33	6	33	
Local Yield (s)	27	0	27	0	
Local Yield 170(s)	13	0	10	0	
Intersection Summary					
Cycle Length			100		
Control Type	Actu	ated-Coo			
Natural Cycle			45		
Offset: 90 (90%), Reference	d to phase	e 4:EBTL	and 8:WE	BTL, Start	of Yellow
Splits and Phases: 1: W Is	sland Aver	nue/West	Island Av	venue & V	/enetian Way

₫ Ø2	Ø4 (R)	•
27 s	73 s	
	₩ Ø8 (R)	•
27 s	73 s	

	≯	-	∢	-	1	Ļ
Lane Group	EBL	EBT	WBL	WBT	NBT	SBT
Lane Group Flow (vph)	22	674	43	560	70	60
v/c Ratio	0.04	0.54	0.11	0.45	0.23	0.11
Control Delay	6.0	10.5	11.6	19.3	21.4	20.0
Queue Delay	0.0	0.0	0.0	0.8	0.3	0.0
Total Delay	6.0	10.5	11.6	20.2	21.7	20.0
Queue Length 50th (ft)	4	197	19	311	19	8
Queue Length 95th (ft)	12	285	m38	364	57	25
Internal Link Dist (ft)		421		492	175	123
Turn Bay Length (ft)	150		175			
Base Capacity (vph)	491	1239	405	1243	305	570
Starvation Cap Reductn	0	0	0	388	0	0
Spillback Cap Reductn	0	1	0	0	51	49
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.04	0.54	0.11	0.65	0.28	0.12
Intersection Summary						

m Volume for 95th percentile queue is metered by upstream signal.

HCM Signalized Intersection Capacity Analysis
2: E Island Avenue/East Island Avenue & Venetian Way

5/12/2016	
-----------	--

	۶	-	$\mathbf{\hat{z}}$	F	4	+	•	•	Ť	1	5	Ŧ
Movement	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT
Lane Configurations	٦	↑			Ľ.	↑			4			4
Traffic Volume (vph)	40	538	79	37	79	453	48	98	1	98	27	1
Future Volume (vph)	40	538	79	37	79	453	48	98	1	98	27	1
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0			6.0	6.0			6.0			6.0
Lane Util. Factor	1.00	1.00			1.00	1.00			1.00			1.00
Frt	1.00	0.98			1.00	0.99			0.93			0.94
Flt Protected	0.95	1.00			0.95	1.00			0.98			0.97
Satd. Flow (prot)	1770	1827			1770	1836			1526			1532
Flt Permitted	0.31	1.00			0.20	1.00			0.82			0.82
Satd. Flow (perm)	570	1827			373	1836			1289			1294
Peak-hour factor, PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	41	555	81	38	81	467	49	101	1	101	28	1
RTOR Reduction (vph)	0	7	0	0	0	5	0	0	28	0	0	14
Lane Group Flow (vph)	41	629	0	0	119	511	0	0	175	0	0	40
Parking (#/hr)								0	0	0	0	0
Turn Type	Perm	NA		Perm	Perm	NA		Perm	NA		Perm	NA
Protected Phases		4				8			2			6
Permitted Phases	4			8	8			2			6	
Actuated Green, G (s)	45.3	45.3			45.3	45.3			42.7			42.7
Effective Green, g (s)	45.3	45.3			45.3	45.3			42.7			42.7
Actuated g/C Ratio	0.45	0.45			0.45	0.45			0.43			0.43
Clearance Time (s)	6.0	6.0			6.0	6.0			6.0			6.0
Vehicle Extension (s)	3.0	3.0			3.0	3.0			3.0			3.0
Lane Grp Cap (vph)	258	827			168	831			550			552
v/s Ratio Prot		c0.34				0.28						
v/s Ratio Perm	0.07	0.74			0.32	0 (1			c0.14			0.03
v/c Ratio	0.16	0.76			0.71	0.61			0.32			0.07
Uniform Delay, d1	16.1	22.8			22.0	20.7			19.0			16.9
Progression Factor	1.71	1.58			1.00	1.00			1.00			1.00
Incremental Delay, d2	0.3	3.6			12.8	1.4			1.5			0.3
Delay (s) Level of Service	27.8	39.6			34.8	22.1			20.5			17.2
	С	D			С	С			С			B
Approach Delay (s)		38.9				24.5			20.5			17.2
Approach LOS		D				С			С			В
Intersection Summary												
HCM 2000 Control Delay			29.9	Н	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capac	city ratio		0.55									
Actuated Cycle Length (s)			100.0		um of lost				12.0			
Intersection Capacity Utilizat	ion		75.5%	IC	CU Level o	of Service			D			
Analysis Period (min)			15									
c Critical Lane Group												

∡_

	0.5.5
Movement	SBR
Traffic Volume (vph)	24
Future Volume (vph)	24
Ideal Flow (vphpl)	1900
Total Lost time (s)	
Lane Util. Factor	
Frt	
Flt Protected	
Satd. Flow (prot)	
Flt Permitted	
Satd. Flow (perm)	
Peak-hour factor, PHF	0.97
Adj. Flow (vph)	25
RTOR Reduction (vph)	0
Lane Group Flow (vph)	0
Parking (#/hr)	0
Turn Type	
Protected Phases	
Permitted Phases	
Actuated Green, G (s)	
Effective Green, g (s)	
Actuated g/C Ratio	
Clearance Time (s)	
Vehicle Extension (s)	
Lane Grp Cap (vph)	
v/s Ratio Prot	
v/s Ratio Perm	
v/c Ratio	
Uniform Delay, d1	
Progression Factor	
Incremental Delay, d2	
Delay (s)	
Level of Service	
Approach Delay (s)	
Approach LOS	
Intersection Summary	

Timing Report, Sorted By Phase 2: E Island Avenue/East Island Avenue & Venetian Way

	†	4	4	-
Phase Number	2	4	6	8
Movement	NBTL	EBTL	SBTL	WBTL
Lead/Lag				
Lead-Lag Optimize				
Recall Mode	C-Max	None	C-Max	None
Maximum Split (s)	33	67	33	67
Maximum Split (%)	33.0%	67.0%	33.0%	67.0%
Minimum Split (s)	24	24	24	24
Yellow Time (s)	4	4	4	4
All-Red Time (s)	2	2	2	2
Minimum Initial (s)	7	16	7	16
Vehicle Extension (s)	3	3	3	3
Minimum Gap (s)	3	3	3	3
Time Before Reduce (s)	0	0	0	0
Time To Reduce (s)	0	0	0	0
Walk Time (s)	7	7	7	7
Flash Dont Walk (s)	11	11	11	11
Dual Entry	Yes	Yes	Yes	Yes
Inhibit Max	Yes	Yes	Yes	Yes
Start Time (s)	50	83	50	83
End Time (s)	83	50	83	50
Yield/Force Off (s)	77	44	77	44
Yield/Force Off 170(s)	66	33	66	33
Local Start Time (s)	73	6	73	6
Local Yield (s)	0	67	0	67
Local Yield 170(s)	89	56	89	56
Intersection Summary				
Cycle Length			100	
Control Type	Actu	ated-Coo	rdinated	
Natural Cycle			60	
Offset: 77 (77%), Reference	d to phase			TI Stort

Splits and Phases: 2: E Island Avenue/East Island Avenue & Venetian Way

Ø2 (R)		
33 s	67 s	
Ø6 (R)		
33 s	67 s	

Queues
2: E Island Avenue/East Island Avenue & Venetian Way

5/12/2016	
-----------	--

	≯	-	4	-	1	Ŧ
Lane Group	EBL	EBT	WBL	WBT	NBT	SBT
Lane Group Flow (vph)	41	636	119	516	203	54
v/c Ratio	0.16	0.76	0.71	0.62	0.35	0.10
Control Delay	23.6	39.4	43.0	22.6	19.3	14.7
Queue Delay	0.0	0.5	0.0	0.0	0.0	0.0
Total Delay	23.6	39.9	43.0	22.6	19.3	14.7
Queue Length 50th (ft)	21	427	58	235	63	11
Queue Length 95th (ft)	m37	490	113	258	150	42
Internal Link Dist (ft)		492		953	161	158
Turn Bay Length (ft)	175		150			
Base Capacity (vph)	347	1119	227	1124	578	566
Starvation Cap Reductn	0	162	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.12	0.66	0.52	0.46	0.35	0.10
Intersection Summary						

m Volume for 95th percentile queue is metered by upstream signal.

	≯	-	+	•	1	1		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
ane Configurations	<u> </u>	1	1 211	WDR	<u> </u>	1		
Fraffic Volume (veh/h)	59	605	548	215	54	55		
Future Volume (veh/h)	59	605	548	215	54	55		
Number	7	4	8	18	1	16		
nitial Q (Qb), veh	0	0	0	0	0	0		
Ped-Bike Adj(A_pbT)	1.00			1.00	1.00	1.00		
Parking Bus, Adj	1.00	1.00	1.00	1.00	0.90	0.90		
Adj Sat Flow, veh/h/ln	1863	1863	1863	1900	1863	1863		
Adj Flow Rate, veh/h	63	651	589	231	58	59		
Adj No. of Lanes	1	1	1	0	1	1		
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93		
Percent Heavy Veh, %	2	2	2	2	2	2		
Cap, veh/h	176	1094	748	293	512	457		
Arrive On Green	0.59	0.59	0.39	0.39	0.32	0.32		
Sat Flow, veh/h	664	1863	1275	500	1597	1425		
Grp Volume(v), veh/h	63	651	0	820	58	59		
Grp Sat Flow(s), veh/h/ln	664	1863	0	1775	1597	1425		
Q Serve(g_s), s	11.2	28.8	0.0	52.8	3.3	3.8		
Cycle Q Clear(g_c), s	63.9	28.8	0.0	52.8	3.3	3.8		
Prop In Lane	1.00			0.28	1.00	1.00		
Lane Grp Cap(c), veh/h	176	1094	0	1042	512	457		
V/C Ratio(X)	0.36	0.60	0.00	0.79	0.11	0.13		
Avail Cap(c_a), veh/h	210	1189	0	1133	512	457		
HCM Platoon Ratio	1.00	1.00	0.67	0.67	1.00	1.00		
Jpstream Filter(I)	0.56	0.56	0.00	0.94	1.00	1.00		
Uniform Delay (d), s/veh	48.2	17.0	0.0	32.3	31.1	31.3		
Incr Delay (d2), s/veh	0.7	0.4	0.0	3.3	0.4	0.6		
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0		
%ile BackOfQ(50%),veh/In	2.1	14.9	0.0	26.9	1.5	1.6		
LnGrp Delay(d),s/veh	48.8	17.4	0.0	35.6	31.6	31.9		
_nGrp LOS	D	В		D	С	С		
Approach Vol, veh/h		714	820		117			
Approach Delay, s/veh		20.2	35.6		31.7			
Approach LOS		С	D		С			
Timer	1	2	3	4	5	6	7	3
Assigned Phs				4		6		3
Phs Duration (G+Y+Rc), s				82.3		47.7	82.	3
Change Period (Y+Rc), s				6.0		6.0	6.)
Max Green Setting (Gmax), s				83.0		35.0	83.)
Max Q Clear Time (g_c+I1), s				65.9		5.8	54.	3
Green Ext Time (p_c), s				10.4		0.3	14.	C
ntersection Summary								
ICM 2010 Ctrl Delay			28.7					
HCM 2010 LOS			С					

	4	- ^►	-
Phase Number	4	6	8
Movement	EBTL	SBL	WBT
Lead/Lag			
Lead-Lag Optimize			
Recall Mode	None	C-Max	None
Maximum Split (s)	89	41	89
Maximum Split (%)	68.5%	31.5%	68.5%
Minimum Split (s)	24	30	24
Yellow Time (s)	4	4	4
All-Red Time (s)	2	2	2
Minimum Initial (s)	14	14	7
Vehicle Extension (s)	3	3	3
Minimum Gap (s)	3	3	3
Time Before Reduce (s)	0	0	0
Time To Reduce (s)	0	0	0
Walk Time (s)	0	7	0
Flash Dont Walk (s)	0	17	0
Dual Entry	Yes	Yes	Yes
Inhibit Max	Yes	Yes	Yes
Start Time (s)	92	51	92
End Time (s)	51	92	51
Yield/Force Off (s)	45	86	45
Yield/Force Off 170(s)	45	69	45
Local Start Time (s)	6	95	6
Local Yield (s)	89	0	89
Local Yield 170(s)	89	113	89
Intersection Summary			
Cycle Length			130
Control Type	Actu	ated-Coo	rdinated
Natural Cycle			65
Offset: 86 (66%), Referenced	d to phase	$2 \cdot \text{and } 6$	SRI Star

Splits and Phases: 3: Venetian Way/Dade Boulevard & Purdy Avenue

	<i>▲</i> _{Ø4}
	89 s
1 A .	←
Ø6 (R)	Ø8
41 s	89 s

5/12/2016

	٦	-	-	1	1
Lane Group	EBL	EBT	WBT	SBL	SBR
Lane Group Flow (vph)	63	651	820	58	59
v/c Ratio	0.38	0.62	0.80	0.11	0.11
Control Delay	20.3	20.6	26.9	34.2	9.3
Queue Delay	0.0	1.4	4.7	0.0	0.0
Total Delay	20.3	22.0	31.6	34.2	9.3
Queue Length 50th (ft)	26	329	360	35	0
Queue Length 95th (ft)	57	387	489	74	35
Internal Link Dist (ft)		953	158	553	
Turn Bay Length (ft)	100			100	
Base Capacity (vph)	188	1189	1154	540	522
Starvation Cap Reductn	0	0	261	0	0
Spillback Cap Reductn	0	330	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.34	0.76	0.92	0.11	0.11
Intersection Summary					

	_#	-	-	•	1	<	6	~	ŧ٧	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	SWL	SWR	SWR2	
Lane Configurations	٢	↑	↑			1		1	1	
Traffic Volume (vph)	307	352	350	0	0	22	0	159	65	
Future Volume (vph)	307	352	350	0	0	22	0	159	65	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	5.6	5.6	6.4			5.6		5.6	5.6	
Lane Util. Factor	1.00	1.00	1.00			1.00		1.00	1.00	
Frt	1.00	1.00	1.00			0.86		0.85	0.85	
Flt Protected	0.95	1.00	1.00			1.00		1.00	1.00	
Satd. Flow (prot)	1770	1863	1863			1450		1583	1583	
Flt Permitted	0.43	1.00	1.00			1.00		1.00	1.00	
Satd. Flow (perm)	810	1863	1863			1450		1583	1583	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	334	383	380	0.72	0.72	24	0.72	173	71	
RTOR Reduction (vph)	0	0	0	0	0	14	0	0	40	
Lane Group Flow (vph)	334	383	380	0	0	14	0	173	31	
Parking (#/hr)	557	505	300	U	0	0	U	175	51	
Turn Type	Perm	NA	NA		U	Perm		Perm	Perm	
Protected Phases	L CIIII	4	8			FEIIII		FCIIII	FCIIII	
Permitted Phases	4	4	0			6		6	6	
Actuated Green, G (s)	62.6	62.6	61.8			56.2		56.2	56.2	
Effective Green, g (s)	62.6	62.6	61.8			56.2		56.2	56.2	
Actuated g/C Ratio	02.0	02.0	01.8			0.43		0.43	0.43	
Clearance Time (s)	5.6	5.6	6.4			5.6		5.6	5.6	
	3.0	3.0	3.0			3.0		3.0	3.0	
Vehicle Extension (s)										
Lane Grp Cap (vph)	390	897	885			626		684	684	
v/s Ratio Prot	-0.41	0.21	0.20			0.01		-0.11	0.00	
v/s Ratio Perm	c0.41	0.40	0.40			0.01		c0.11	0.02	
v/c Ratio	0.86	0.43	0.43			0.02		0.25	0.04	
Uniform Delay, d1	29.7	22.0	22.5			21.1		23.5	21.4	
Progression Factor	1.44	1.30	1.00			1.00		1.00	1.00	
Incremental Delay, d2	14.9	0.3	0.3			0.0		0.9	0.1	
Delay (s)	57.8	29.0	22.8			21.1		24.4	21.5	
Level of Service	E	C	C		01.1	С	00 (С	С	
Approach Delay (s)		42.4	22.8		21.1		23.6			
Approach LOS		D	С		С		С			
Intersection Summary										
HCM 2000 Control Delay			33.2	H	CM 2000	Level of S	Service		С	
HCM 2000 Volume to Capac	city ratio		0.57							
Actuated Cycle Length (s)			130.0		um of lost				12.0	
Intersection Capacity Utilizat	ion		56.4%	IC	U Level o	of Service			В	
Analysia Dariad (min)			4 -							
Analysis Period (min) c Critical Lane Group			15							

		1	-
	-		
Phase Number	4	6	8
Movement	EBTL	SWR	WBT
Lead/Lag			
Lead-Lag Optimize			
Recall Mode	None	C-Max	None
Maximum Split (s)	94	36	94
Maximum Split (%)	72.3%	27.7%	72.3%
Minimum Split (s)	23.6	23.6	24.4
Yellow Time (s)	4	4	4
All-Red Time (s)	1.6	1.6	2.4
Minimum Initial (s)	14	14	14
Vehicle Extension (s)	3	3	3
Minimum Gap (s)	3	3	3
Time Before Reduce (s)	0	0	0
Time To Reduce (s)	0	0	0
Walk Time (s)	7	7	7
Flash Dont Walk (s)	11	11	11
Dual Entry	Yes	Yes	Yes
Inhibit Max	Yes	Yes	Yes
Start Time (s)	10.6	104.6	10.6
End Time (s)	104.6	10.6	104.6
Yield/Force Off (s)	99	5	98.2
Yield/Force Off 170(s)	88	124	87.2
Local Start Time (s)	5.6	99.6	5.6
Local Yield (s)	94	0	93.2
Local Yield 170(s)	83	119	82.2
Intersection Summary			
Cycle Length			130
Control Turno	Actu	atad Caa	rdinatad

Cycle Length	130	
Control Type	Actuated-Coordinated	
Natural Cycle	60	
Offset: 5 (4%), Refe	erenced to phase 2: and 6:SWR, Start of Yellow	

Splits and Phases: 4: Dade Boulevard & 17th Street & Bay Road

	→ Ø4	
	94 s	
# 1 C	←	
🛛 Ø6 (R) 💗	Ø8	
36 s	94 s	

Queues 4: Dade Boulevard & 17th Street & Bay Road

	_#	-	-	-	~	ŧ⁄.
Lane Group	EBL	EBT	WBT	SBR	SWR	SWR2
Lane Group Flow (vph)	334	383	380	24	173	71
v/c Ratio	0.86	0.43	0.43	0.03	0.25	0.10
Control Delay	57.9	27.6	22.5	0.0	30.1	8.1
Queue Delay	10.1	1.0	0.4	0.0	0.2	0.0
Total Delay	67.9	28.6	22.8	0.0	30.3	8.1
Queue Length 50th (ft)	299	277	206	0	92	0
Queue Length 95th (ft)	395	352	180	0	196	39
Internal Link Dist (ft)		158	317			
Turn Bay Length (ft)						
Base Capacity (vph)	550	1266	1255	927	684	724
Starvation Cap Reductn	183	617	0	0	0	0
Spillback Cap Reductn	0	0	419	212	158	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.91	0.59	0.45	0.03	0.33	0.10
Intersection Summary						

Future with Project With West Avenue Bridge

	≯	→	$\mathbf{\hat{z}}$	4	+	•	٠	Ť	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	•		٦	•			4			eî îr	
Traffic Volume (veh/h)	41	682	41	42	620	14	31	3	32	25	5	39
Future Volume (veh/h)	41	682	41	42	620	14	31	3	32	25	5	39
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.90	1.00	1.00	0.90
Adj Sat Flow, veh/h/ln	1863	1863	1900	1863	1863	1900	1900	1863	1900	1900	1863	1900
Adj Flow Rate, veh/h	43	718	43	44	653	15	33	3	34	26	5	41
Adj No. of Lanes	1	1	0	1	1	0	0	1	0	0	2	0
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	341	1166	70	380	1215	28	168	28	136	324	57	272
Arrive On Green	0.67	0.67	0.67	0.22	0.22	0.22	0.21	0.21	0.21	0.21	0.21	0.21
Sat Flow, veh/h	766	1740	104	702	1814	42	549	135	646	1227	270	1297
Grp Volume(v), veh/h	43	0	761	44	0	668	70	0	0	31	0	41
Grp Sat Flow(s),veh/h/ln	766	0	1844	702	0	1855	1329	0	0	1497	0	1297
Q Serve(g_s), s	3.9	0.0	23.2	5.5	0.0	31.8	1.8	0.0	0.0	0.0	0.0	2.6
Cycle Q Clear(g_c), s	35.7	0.0	23.2	28.7	0.0	31.8	4.4	0.0	0.0	1.4	0.0	2.6
Prop In Lane	1.00		0.06	1.00		0.02	0.47		0.49	0.84		1.00
Lane Grp Cap(c), veh/h	341	0	1236	380	0	1243	332	0	0	381	0	272
V/C Ratio(X)	0.13	0.00	0.62	0.12	0.00	0.54	0.21	0.00	0.00	0.08	0.00	0.15
Avail Cap(c_a), veh/h	341	0	1236	380	0	1243	332	0	0	381	0	272
HCM Platoon Ratio	1.00	1.00	1.00	0.33	0.33	0.33	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	0.65	0.00	0.65	1.00	0.00	0.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	22.3	0.0	9.3	34.1	0.0	25.2	32.8	0.0	0.0	31.8	0.0	32.2
Incr Delay (d2), s/veh	0.8	0.0	2.3	0.4	0.0	1.1	1.4	0.0	0.0	0.4	0.0	1.2
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	0.9	0.0	12.4	1.1	0.0	16.7	1.7	0.0	0.0	0.7	0.0	1.0
LnGrp Delay(d),s/veh	23.0	0.0	11.6	34.5	0.0	26.3	34.3	0.0	0.0	32.2	0.0	33.4
LnGrp LOS	С		В	С		С	С			С		С
Approach Vol, veh/h		804			712			70			72	
Approach Delay, s/veh		12.2			26.8			34.3			32.9	
Approach LOS		В			С			С			С	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs		2	0	4	U	6	,	8				
Phs Duration (G+Y+Rc), s		27.0		73.0		27.0		73.0				
Change Period (Y+Rc), s		6.0		6.0		6.0		6.0				
Max Green Setting (Gmax), s		21.0		67.0		21.0		67.0				
Max Q Clear Time (g_c+I1), s		6.4		37.7		4.6		33.8				
Green Ext Time (p_c), s		0.4		13.7		4.0		33.0 14.4				
Orecure r time (p_c), s		0.0		13.7		0.7		14.4				

Intersection Summary HCM 2010 Ctrl Delay 20.3 HCM 2010 LOS С

Timing Report, Sorted By Phase 1: W Island Avenue/West Island Avenue & Venetian Way/.

		4	-4-	¥
Phase Number	2	4	6	8
Movement	NBTL	EBTL	SBTL	WBTL
Lead/Lag				
Lead-Lag Optimize				
Recall Mode	Мах	C-Max	Мах	C-Max
Maximum Split (s)	27	73	27	73
Maximum Split (%)	27.0%	73.0%	27.0%	73.0%
Minimum Split (s)	13	22	16	22
Yellow Time (s)	4	4	4	4
All-Red Time (s)	2	2	2	2
Minimum Initial (s)	7	16	10	16
Vehicle Extension (s)	3	3	3	3
Minimum Gap (s)	3	3	3	3
Time Before Reduce (s)	0	0	0	0
Time To Reduce (s)	0	0	0	0
Walk Time (s)	4	0	4	0
Flash Dont Walk (s)	14	0	17	0
Dual Entry	Yes	Yes	Yes	Yes
Inhibit Max	Yes	Yes	Yes	Yes
Start Time (s)	96	23	96	23
End Time (s)	23	96	23	96
Yield/Force Off (s)	17	90	17	90
Yield/Force Off 170(s)	3	90	0	90
Local Start Time (s)	6	33	6	33
Local Yield (s)	27	0	27	0
Local Yield 170(s)	13	0	10	0
Intersection Summary				
Cycle Length			100	
Control Type	Actu	ated-Cool	rdinated	
Natural Cycle			50	
Offset: 90 (90%), Referenced	d to phase	e 4:EBTL	and 8:WE	BTL, Start
Solits and Phases: 1. W Is				

Splits and Phases: 1: W Island Avenue/West Island Avenue & Venetian Way/.

↑ ø 2	→Ø4 (R)	
27 s	73 s	
↓ _{Ø6}	▼ Ø8 (R)	
27 s	73 s	

HCM Signalized Intersection Capacity Analysis
2: E Island Avenue/East Island Avenue & ./Venetian Way

5/12/2016	
-----------	--

	٦	-	$\mathbf{\hat{z}}$	F	4	-	•	٠	Ť	1	5	Ŧ
Movement	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT
Lane Configurations	ľ	•			Ľ.	•			\$			\$
Traffic Volume (vph)	45	616	79	37	79	556	72	98	1	98	41	1
Future Volume (vph)	45	616	79	37	79	556	72	98	1	98	41	1
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0			6.0	6.0			6.0			6.0
Lane Util. Factor	1.00	1.00			1.00	1.00			1.00			1.00
Frt	1.00	0.98			1.00	0.98			0.93			0.95
Flt Protected	0.95	1.00			0.95	1.00			0.98			0.97
Satd. Flow (prot)	1770	1831			1770	1831			1526			1542
Flt Permitted	0.24	1.00			0.18	1.00			0.81			0.77
Satd. Flow (perm)	438	1831			338	1831			1271			1228
Peak-hour factor, PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	46	635	81	38	81	573	74	101	1	101	42	1
RTOR Reduction (vph)	0	6	0	0	0	6	0	0	30	0	0	17
Lane Group Flow (vph)	46	710	0	0	119	641	0	0	173	0	0	54
Parking (#/hr)								0	0	0	0	0
Turn Type	Perm	NA		Perm	Perm	NA		Perm	NA		Perm	NA
Protected Phases		4				8			2			6
Permitted Phases	4			8	8			2			6	
Actuated Green, G (s)	50.1	50.1			50.1	50.1			37.9			37.9
Effective Green, g (s)	50.1	50.1			50.1	50.1			37.9			37.9
Actuated g/C Ratio	0.50	0.50			0.50	0.50			0.38			0.38
Clearance Time (s)	6.0	6.0			6.0	6.0			6.0			6.0
Vehicle Extension (s)	3.0	3.0			3.0	3.0			3.0			3.0
Lane Grp Cap (vph)	219	917			169	917			481			465
v/s Ratio Prot		c0.39				0.35						
v/s Ratio Perm	0.11				0.35				c0.14			0.04
v/c Ratio	0.21	0.77			0.70	0.70			0.36			0.12
Uniform Delay, d1	13.9	20.3			19.2	19.2			22.3			20.2
Progression Factor	1.83	1.72			1.00	1.00			1.00			1.00
Incremental Delay, d2	0.4	3.4			12.5	2.3			2.1			0.5
Delay (s)	25.9	38.5			31.7	21.5			24.4			20.7
Level of Service	С	D			С	С			С			С
Approach Delay (s)		37.7				23.1			24.4			20.7
Approach LOS		D				С			С			С
Intersection Summary												
HCM 2000 Control Delay			29.3	Н	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capac	ity ratio		0.59									
Actuated Cycle Length (s)			100.0		um of lost				12.0			
Intersection Capacity Utilizat	ion		78.6%	IC	CU Level o	of Service	:		D			
Analysis Period (min)			15									
c Critical Lane Group												

∡_

IntovenientJohnLand ConfigurationsTraffic Volume (vph)27Future Volume (vph)27Ideal Flow (vphpl)1900Total Lost time (s)1900Lane Util. FactorFrtFlt ProtectedSatd. Flow (prot)Flt PermittedSatd. Flow (perm)Peak-hour factor, PHF0.97Adj. Flow (vph)28RTOR Reduction (vph)0Lane Group Flow (vph)0Parking (#/hr)0Turn TypeProtected PhasesPermitted Green, G (s)Effective Green, g (s)Actuated Green, G (s)Effective Green, g (s)Actuated g/C RatioClearance Time (s)Vehicle Extension (s)Lane Grp Cap (vph)v/s Ratio Protv/s Ratio Protv/s Ratio Permv/c RatioUniform Delay, d1Progression FactorIncremental Delay, d2Delay (s)Level of ServiceApproach LOSIntersection Summary	Movement	SBR
Traffic Volume (vph)27Future Volume (vph)27Ideal Flow (vphpl)1900Total Lost time (s)1900Lane Util. FactorFrtFlt ProtectedSatd. Flow (prot)Flt PermittedSatd. Flow (perm)Peak-hour factor, PHF0.97Adj. Flow (vph)28RTOR Reduction (vph)0Lane Group Flow (vph)0Parking (#/hr)0Turn TypeProtected PhasesPermitted Green, G (s)Effective Green, g (s)Actuated g/C RatioClearance Time (s)Vehicle Extension (s)Lane Grp Cap (vph)v/s Ratio Permv/c RatioUniform Delay, d1Progression FactorIncremental Delay, d2Delay (s)Level of ServiceApproach LOS		0011
Future Volume (vph)27Ideal Flow (vphpl)1900Total Lost time (s)1900Lane Util. FactorFrtFIt ProtectedSatd. Flow (port)FIt PermittedSatd. Flow (perm)Peak-hour factor, PHF0.97Adj. Flow (vph)28RTOR Reduction (vph)0Lane Group Flow (vph)0Parking (#/hr)0Turn TypeProtected PhasesPermitted Green, G (s)Effective Green, g (s)Actuated g/C RatioClearance Time (s)Vehicle Extension (s)Lane Grp Cap (vph)v/s Ratio Permv/c RatioUniform Delay, d1Progression FactorIncremental Delay, d2Delay (s)Level of ServiceApproach LOS		27
Ideal Flow (vphpl)1900Total Lost time (s)1900Lane Util. FactorFrtFlt ProtectedSatd. Flow (port)Flt PermittedSatd. Flow (perm)Peak-hour factor, PHF0.97Adj. Flow (vph)28RTOR Reduction (vph)0Lane Group Flow (vph)0Parking (#/hr)0Turn TypeProtected PhasesPermitted PhasesActuated Green, G (s)Effective Green, g (s)Actuated g/C RatioClearance Time (s)Vehicle Extension (s)Lane Grp Cap (vph)v/s Ratio Permv/c RatioUniform Delay, d1Progression FactorIncremental Delay, d2Delay (s)Level of ServiceApproach LOS		
Total Lost time (s)Lane Util. FactorFrtFlt ProtectedSatd. Flow (prot)Flt PermittedSatd. Flow (perm)Peak-hour factor, PHF0.97Adj. Flow (vph)28RTOR Reduction (vph)0Lane Group Flow (vph)0Parking (#/hr)0Turn TypeProtected PhasesPermitted PhasesActuated Green, G (s)Effective Green, g (s)Actuated g/C RatioClearance Time (s)Vehicle Extension (s)Lane Grp Cap (vph)v/s Ratio Protv/s Ratio Permv/c RatioUniform Delay, d1Progression FactorIncremental Delay, d2Delay (s)Level of ServiceApproach LOS		
Lane Util. Factor Frt Flt Protected Satd. Flow (prot) Flt Permitted Satd. Flow (perm) Peak-hour factor, PHF 0.97 Adj. Flow (vph) 28 RTOR Reduction (vph) 0 Lane Group Flow (vph) 0 Parking (#/hr) 0 Turn Type Protected Phases Permitted Phases Actuated Green, G (s) Effective Green, g (s) Actuated g/C Ratio Clearance Time (s) Vehicle Extension (s) Lane Grp Cap (vph) v/s Ratio Prot v/s Ratio Perm v/c Ratio Uniform Delay, d1 Progression Factor Incremental Delay, d2 Delay (s) Level of Service Approach Delay (s) Actuant Service Approach LOS		
Frt Flt Protected Satd. Flow (prot) Flt Permitted Satd. Flow (perm) Peak-hour factor, PHF 0.97 Adj. Flow (vph) 28 RTOR Reduction (vph) 0 Lane Group Flow (vph) 0 Parking (#/hr) 0 Turn Type Protected Phases Permitted Phases Actuated Green, G (s) Effective Green, g (s) Actuated g/C Ratio Clearance Time (s) Vehicle Extension (s) Lane Grp Cap (vph) v/s Ratio Prot v/s Ratio Perm v/c Ratio Uniform Delay, d1 Progression Factor Incremental Delay, d2 Delay (s) Level of Service Approach Delay (s) Approach LOS		
Flt ProtectedSatd. Flow (prot)Flt PermittedSatd. Flow (perm)Peak-hour factor, PHF0.97Adj. Flow (vph)28RTOR Reduction (vph)0Lane Group Flow (vph)0Parking (#/hr)0Turn TypeProtected PhasesPermitted PhasesActuated Green, G (s)Effective Green, g (s)Actuated g/C RatioClearance Time (s)Vehicle Extension (s)Lane Grp Cap (vph)v/s Ratio Permv/c RatioUniform Delay, d1Progression FactorIncremental Delay, d2Delay (s)Level of ServiceApproach Delay (s)		
Satd. Flow (prot) Flt Permitted Satd. Flow (perm) Peak-hour factor, PHF 0.97 Adj. Flow (vph) 28 RTOR Reduction (vph) 0 Lane Group Flow (vph) 0 Parking (#/hr) 0 Turn Type Protected Phases Permitted Phases Actuated Green, G (s) Effective Green, g (s) Actuated g/C Ratio Clearance Time (s) Vehicle Extension (s) Lane Grp Cap (vph) v/s Ratio Prot v/s Ratio Perm v/c Ratio Uniform Delay, d1 Progression Factor Incremental Delay, d2 Delay (s) Level of Service Approach Delay (s) Approach LOS		
Flt PermittedSatd. Flow (perm)Peak-hour factor, PHF0.97Adj. Flow (vph)28RTOR Reduction (vph)0Lane Group Flow (vph)0Parking (#/hr)0Turn TypeProtected PhasesPermitted PhasesActuated Green, G (s)Effective Green, g (s)Actuated g/C RatioClearance Time (s)Vehicle Extension (s)Lane Grp Cap (vph)v/s Ratio Permv/c RatioUniform Delay, d1Progression FactorIncremental Delay, d2Delay (s)Level of ServiceApproach Delay (s)		
Peak-hour factor, PHF0.97Adj. Flow (vph)28RTOR Reduction (vph)0Lane Group Flow (vph)0Parking (#/hr)0Turn TypeProtected PhasesPermitted PhasesActuated Green, G (s)Effective Green, g (s)Actuated g/C RatioClearance Time (s)Vehicle Extension (s)Lane Grp Cap (vph)v/s Ratio Permv/c RatioUniform Delay, d1Progression FactorIncremental Delay, d2Delay (s)Level of ServiceApproach Delay (s)		
Adj. Flow (vph)28RTOR Reduction (vph)0Lane Group Flow (vph)0Parking (#/hr)0Turn TypeProtected PhasesPermitted PhasesActuated Green, G (s)Effective Green, g (s)Actuated g/C RatioClearance Time (s)Vehicle Extension (s)Lane Grp Cap (vph)v/s Ratio Protv/s Ratio Permv/c RatioUniform Delay, d1Progression FactorIncremental Delay, d2Delay (s)Level of ServiceApproach Delay (s)	Satd. Flow (perm)	
RTOR Reduction (vph)0Lane Group Flow (vph)0Parking (#/hr)0Turn TypeProtected PhasesPermitted PhasesActuated Green, G (s)Effective Green, g (s)Actuated g/C RatioClearance Time (s)Vehicle Extension (s)Lane Grp Cap (vph)v/s Ratio Protv/s Ratio Permv/c RatioUniform Delay, d1Progression FactorIncremental Delay, d2Delay (s)Level of ServiceApproach Delay (s)	Peak-hour factor, PHF	0.97
Lane Group Flow (vph)0Parking (#/hr)0Turn TypeProtected PhasesPermitted PhasesActuated Green, G (s)Effective Green, g (s)Actuated g/C RatioClearance Time (s)Vehicle Extension (s)Lane Grp Cap (vph)v/s Ratio Permv/c RatioUniform Delay, d1Progression FactorIncremental Delay, d2Delay (s)Level of ServiceApproach Delay (s)	Adj. Flow (vph)	28
Parking (#/hr)0Turn TypeProtected PhasesPermitted PhasesActuated Green, G (s)Effective Green, g (s)Actuated g/C RatioClearance Time (s)Vehicle Extension (s)Lane Grp Cap (vph)v/s Ratio Protv/s Ratio Permv/c RatioUniform Delay, d1Progression FactorIncremental Delay, d2Delay (s)Level of ServiceApproach Delay (s)		0
Turn Type Protected Phases Permitted Phases Actuated Green, G (s) Effective Green, g (s) Actuated g/C Ratio Clearance Time (s) Vehicle Extension (s) Lane Grp Cap (vph) v/s Ratio Prot v/s Ratio Perm v/c Ratio Uniform Delay, d1 Progression Factor Incremental Delay, d2 Delay (s) Level of Service Approach Delay (s) Approach LOS		0
Protected Phases Permitted Phases Actuated Green, G (s) Effective Green, g (s) Actuated g/C Ratio Clearance Time (s) Vehicle Extension (s) Lane Grp Cap (vph) v/s Ratio Prot v/s Ratio Perm v/c Ratio Uniform Delay, d1 Progression Factor Incremental Delay, d2 Delay (s) Level of Service Approach Delay (s) Approach LOS	Parking (#/hr)	0
Permitted Phases Actuated Green, G (s) Effective Green, g (s) Actuated g/C Ratio Clearance Time (s) Vehicle Extension (s) Lane Grp Cap (vph) v/s Ratio Prot v/s Ratio Perm v/c Ratio Uniform Delay, d1 Progression Factor Incremental Delay, d2 Delay (s) Level of Service Approach Delay (s) Approach LOS		
Actuated Green, G (s) Effective Green, g (s) Actuated g/C Ratio Clearance Time (s) Vehicle Extension (s) Lane Grp Cap (vph) v/s Ratio Prot v/s Ratio Perm v/c Ratio Uniform Delay, d1 Progression Factor Incremental Delay, d2 Delay (s) Level of Service Approach Delay (s) Approach LOS		
Effective Green, g (s) Actuated g/C Ratio Clearance Time (s) Vehicle Extension (s) Lane Grp Cap (vph) v/s Ratio Prot v/s Ratio Perm v/c Ratio Uniform Delay, d1 Progression Factor Incremental Delay, d2 Delay (s) Level of Service Approach Delay (s) Approach LOS		
Actuated g/C Ratio Clearance Time (s) Vehicle Extension (s) Lane Grp Cap (vph) v/s Ratio Prot v/s Ratio Perm v/c Ratio Uniform Delay, d1 Progression Factor Incremental Delay, d2 Delay (s) Level of Service Approach Delay (s) Approach LOS		
Clearance Time (s) Vehicle Extension (s) Lane Grp Cap (vph) v/s Ratio Prot v/s Ratio Perm v/c Ratio Uniform Delay, d1 Progression Factor Incremental Delay, d2 Delay (s) Level of Service Approach Delay (s) Approach LOS		
Vehicle Extension (s) Lane Grp Cap (vph) v/s Ratio Prot v/s Ratio Perm v/c Ratio Uniform Delay, d1 Progression Factor Incremental Delay, d2 Delay (s) Level of Service Approach Delay (s) Approach LOS		
Lane Grp Cap (vph) v/s Ratio Prot v/s Ratio Perm v/c Ratio Uniform Delay, d1 Progression Factor Incremental Delay, d2 Delay (s) Level of Service Approach Delay (s) Approach LOS		
v/s Ratio Prot v/s Ratio Perm v/c Ratio Uniform Delay, d1 Progression Factor Incremental Delay, d2 Delay (s) Level of Service Approach Delay (s) Approach LOS		
v/s Ratio Perm v/c Ratio Uniform Delay, d1 Progression Factor Incremental Delay, d2 Delay (s) Level of Service Approach Delay (s) Approach LOS		
v/c Ratio Uniform Delay, d1 Progression Factor Incremental Delay, d2 Delay (s) Level of Service Approach Delay (s) Approach LOS		
Uniform Delay, d1 Progression Factor Incremental Delay, d2 Delay (s) Level of Service Approach Delay (s) Approach LOS		
Progression Factor Incremental Delay, d2 Delay (s) Level of Service Approach Delay (s) Approach LOS		
Incremental Delay, d2 Delay (s) Level of Service Approach Delay (s) Approach LOS		
Delay (s) Level of Service Approach Delay (s) Approach LOS		
Level of Service Approach Delay (s) Approach LOS		
Approach Delay (s) Approach LOS		
Approach LOS		
Intersection Summary	Approach LUS	
	Intersection Summary	

Timing Report, Sorted By Phase 2: E Island Avenue/East Island Avenue & ./Venetian Way

		4	-↓⊳	-				
Phase Number	2	4	6	8				
Movement	NBTL	EBTL	SBTL	WBTL				
Lead/Lag								
Lead-Lag Optimize								
Recall Mode	C-Max	None	C-Max	None				
Maximum Split (s)	33	67	33	67				
Maximum Split (%)	33.0%	67.0%	33.0%	67.0%				
Minimum Split (s)	24	24	24	24				
Yellow Time (s)	4	4	4	4				
All-Red Time (s)	2	2	2	2				
Minimum Initial (s)	7	16	7	16				
Vehicle Extension (s)	3	3	3	3				
Minimum Gap (s)	3	3	3	3				
Time Before Reduce (s)	0	0	0	0				
Time To Reduce (s)	0	0	0	0				
Walk Time (s)	7	7	7	7				
Flash Dont Walk (s)	11	11	11	11				
Dual Entry	Yes	Yes	Yes	Yes				
Inhibit Max	Yes	Yes	Yes	Yes				
Start Time (s)	50	83	50	83				
End Time (s)	83	50	83	50				
Yield/Force Off (s)	77	44	77	44				
Yield/Force Off 170(s)	66	33	66	33				
Local Start Time (s)	73	6	73	6				
Local Yield (s)	0	67	0	67				
Local Yield 170(s)	89	56	89	56				
Intersection Summary								
Cycle Length			100					
Control Type	Actu	ated-Coo	rdinated					
Natural Cycle			60					
Offset: 77 (77%), Referenced to phase 2:NBTL and 6:SBTL, Start of Yellow								

Splits and Phases: 2: E Island Avenue/East Island Avenue & ./Venetian Way

Ø2 (R)	<u></u> 04
33 s	67 s
Ø6 (R)	
33 s	67 s

	≯	-	+	•	1	~	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	<u> </u>	1	4	n brit	<u> </u>	1	
Traffic Volume (veh/h)	74	650	573	245	101	104	
Future Volume (veh/h)	74	650	573	245	101	104	
Number	7	4	8	18	1	16	
nitial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00	Ũ	Ũ	1.00	1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	0.90	0.90	
Adj Sat Flow, veh/h/ln	1863	1863	1863	1900	1863	1863	
Adj Flow Rate, veh/h	80	699	616	263	109	112	
Adj No. of Lanes	1	1	1	0	1	1	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	
Percent Heavy Veh, %	2	2	2	2	2	2	
Cap, veh/h	173	1158	771	329	457	408	
Arrive On Green	0.62	0.62	0.42	0.42	0.29	0.29	
Sat Flow, veh/h	629	1863	1240	529	1597	1425	
Grp Volume(v), veh/h	80	699	0	879	109	112	
Grp Sat Flow(s), veh/h/ln	629	1863	0	1769	1597	1425	
Q Serve(g_s), s	15.4	29.6	0.0	56.5	6.8	7.9	
Cycle Q Clear(g_c), s	71.9	29.6	0.0	56.5	6.8	7.9	
Prop In Lane	1.00			0.30	1.00	1.00	
Lane Grp Cap(c), veh/h	173	1158	0	1100	457	408	
V/C Ratio(X)	0.46	0.60	0.00	0.80	0.24	0.27	
Avail Cap(c_a), veh/h	184	1189	0	1130	457	408	
HCM Platoon Ratio	1.00	1.00	0.67	0.67	1.00	1.00	
Upstream Filter(I)	0.54	0.54	0.00	0.82	1.00	1.00	
Uniform Delay (d), s/veh	49.2	14.9	0.0	30.8	35.5	35.9	
Incr Delay (d2), s/veh	1.0	0.4	0.0	3.4	1.2	1.7	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/In	2.7	15.3	0.0	28.7	3.2	3.3	
LnGrp Delay(d),s/veh	50.3	15.4	0.0	34.2	36.8	37.6	
LnGrp LOS	D	В		С	D	D	
Approach Vol, veh/h		779	879		221		
Approach Delay, s/veh		18.9	34.2		37.2		
Approach LOS		В	С		D		
Timer	1	2	3	4	5	6	7 8
Assigned Phs				4		6	8
Phs Duration (G+Y+Rc), s				86.8		43.2	86.8
Change Period (Y+Rc), s				6.0		6.0	6.0
Max Green Setting (Gmax), s				83.0		35.0	83.0
Max Q Clear Time (g_c+I1), s				73.9		9.9	58.5
Green Ext Time (p_c), s				6.9		0.6	14.5
ntersection Summary							
HCM 2010 Ctrl Delay			28.2				
HCM 2010 LOS			С				

5/12/2016)
-----------	---

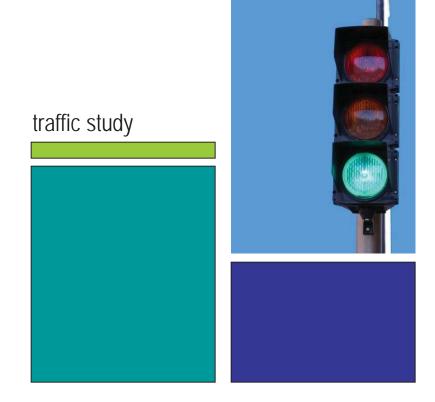
4 EBTL None 89 68.5% 24 4 2 14 3 3 3 0 0 0	6 SBL C-Max 41 31.5% 30 4 2 14 2 14 3 3 3 0	8 WBT None 89 68.5% 24 4 2 7 7 3 3 3			
None 89 68.5% 24 4 2 14 3 3 3 0	C-Max 41 31.5% 30 4 2 14 3 3 3 0	None 89 68.5% 24 4 2 7 3 3 3			
89 68.5% 24 4 2 14 3 3 3 0	41 31.5% 30 4 2 14 3 3 3 0	89 68.5% 24 4 2 7 3 3 3			
89 68.5% 24 4 2 14 3 3 3 0	41 31.5% 30 4 2 14 3 3 3 0	89 68.5% 24 4 2 7 3 3 3			
89 68.5% 24 4 2 14 3 3 3 0	41 31.5% 30 4 2 14 3 3 3 0	89 68.5% 24 4 2 7 7 3 3 3			
68.5% 24 4 2 14 3 3 3 0	31.5% 30 4 2 14 3 3 0	68.5% 24 4 2 7 7 3 3 3			
24 4 2 14 3 3 0	30 4 2 14 3 3 0	24 4 2 7 3 3			
4 2 14 3 3 0	4 2 14 3 3 0	4 2 7 3 3			
2 14 3 3 0	2 14 3 3 0	2 7 3 3			
14 3 3 0	14 3 3 0	7 3 3			
3 3 0	3 3 0	3			
3 0	3 0	3			
0	0				
		^			
0		0			
0	0	0			
0	7	0			
0	17	0			
Yes	Yes	Yes			
Yes	Yes	Yes			
92	51	92			
51	92	51			
45	86	45			
45	69	45			
6	95	6			
89	0	89			
89	113	89			
		130			
Actuated-Coordinated					
80					
	45 6 89 89 Actu	45 69 6 95 89 0 89 113			

Splits and Phases: 3: Venetian Way/Dade Boulevard & Purdy Avenue

		89 s
1		←
-Ø6 (R)	•	Ø8
41 s		89 s

	_#	-	+	•	1	-	6	~	ŧ۷	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	SWL	SWR	SWR2	
Lane Configurations	5	↑	↑			1		1	1	
Traffic Volume (vph)	213	610	592	0	0	84	0	171	71	
Future Volume (vph)	213	610	592	0	0	84	0	171	71	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	5.6	5.6	6.4			5.6		5.6	5.6	
Lane Util. Factor	1.00	1.00	1.00			1.00		1.00	1.00	
Frt	1.00	1.00	1.00			0.86		0.85	0.85	
Flt Protected	0.95	1.00	1.00			1.00		1.00	1.00	
Satd. Flow (prot)	1770	1863	1863			1450		1583	1583	
Flt Permitted	0.24	1.00	1.00			1.00		1.00	1.00	
Satd. Flow (perm)	444	1863	1863			1450		1583	1583	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	232	663	643	0	0	91	0	186	77	
RTOR Reduction (vph)	0	0	0	0	0	55	0	0	46	
Lane Group Flow (vph)	232	663	643	0	0	36	0	186	31	
Parking (#/hr)					0	0				
Turn Type	Perm	NA	NA		-	Perm		Perm	Perm	
Protected Phases	1 01111	4	8			1 0.111		1 01111	1 01111	
Permitted Phases	4		-			6		6	6	
Actuated Green, G (s)	67.0	67.0	66.2			51.8		51.8	51.8	
Effective Green, g (s)	67.0	67.0	66.2			51.8		51.8	51.8	
Actuated g/C Ratio	0.52	0.52	0.51			0.40		0.40	0.40	
Clearance Time (s)	5.6	5.6	6.4			5.6		5.6	5.6	
Vehicle Extension (s)	3.0	3.0	3.0			3.0		3.0	3.0	
Lane Grp Cap (vph)	228	960	948			577		630	630	
v/s Ratio Prot		0.36	0.35							
v/s Ratio Perm	c0.52					0.03		c0.12	0.02	
v/c Ratio	1.02	0.69	0.68			0.06		0.30	0.05	
Uniform Delay, d1	31.5	23.7	23.9			24.1		26.7	24.0	
Progression Factor	1.35	1.30	1.00			1.00		1.00	1.00	
Incremental Delay, d2	60.7	1.9	1.9			0.2		1.2	0.1	
Delay (s)	103.3	32.7	25.9			24.3		27.8	24.1	
Level of Service	F	С	С			С		С	С	
Approach Delay (s)		51.0	25.9		24.3		26.8			
Approach LOS		D	С		С		С			
Intersection Summary										
HCM 2000 Control Delay			37.8	H	CM 2000	Level of S	Service		D	
HCM 2000 Volume to Capa	acity ratio		0.71							
Actuated Cycle Length (s)			130.0	Si	um of lost	time (s)			12.0	
Intersection Capacity Utiliza	ation		69.2%	IC	U Level o	of Service	:		С	
Analysis Period (min)			15							
c Critical Lane Group										

	*	1	-
Phase Number	4	6	8
Movement	EBTL	SWR	WBT
Lead/Lag			
Lead-Lag Optimize			
Recall Mode	None	C-Max	None
Maximum Split (s)	94	36	94
Maximum Split (%)	72.3%	27.7%	72.3%
Minimum Split (s)	23.6	23.6	24.4
Yellow Time (s)	4	4	4
All-Red Time (s)	1.6	1.6	2.4
Minimum Initial (s)	14	14	14
Vehicle Extension (s)	3	3	3
Minimum Gap (s)	3	3	3
Time Before Reduce (s)	0	0	0
Time To Reduce (s)	0	0	0
Walk Time (s)	7	7	7
Flash Dont Walk (s)	11	11	11
Dual Entry	Yes	Yes	Yes
Inhibit Max	Yes	Yes	Yes
Start Time (s)	10.6	104.6	10.6
End Time (s)	104.6	10.6	104.6
Yield/Force Off (s)	99	5	98.2
Yield/Force Off 170(s)	88	124	87.2
Local Start Time (s)	5.6	99.6	5.6
Local Yield (s)	94	0	93.2
Local Yield 170(s)	83	119	82.2
Intersection Summary			
Cycle Length			130
0 I I T			10 I I


Cycle Length	130	
Control Type	Actuated-Coordinated	
Natural Cycle	65	
Offset: 5 (4%), Reference	ced to phase 2: and 6:SWR. Start of Yellow	

Splits and Phases: 4: Dade Boulevard & 17th Street & Bay Road

	→ Ø4	
	94 s	
H.	←	
Ø6 (R)	Ø8	
36 s	94 s	

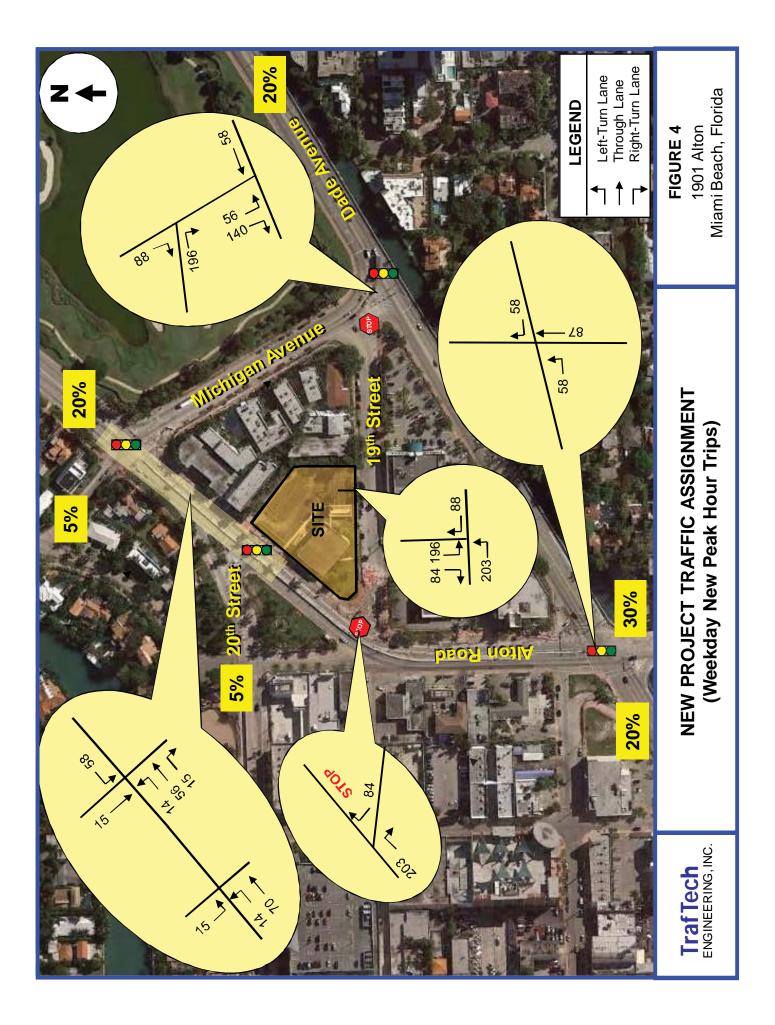
Appendix E: Committed Development

1901 Alton (Whole Foods) Miami Beach, Florida

prepared for: Crescent Heights

December 2014

The trip generation for the project was based on information contained in the Institute of Transportation Engineer's (ITE) *Trip Generation Manual* (9th Edition). According to the subject ITE manual, the most appropriate "land use" categories for the proposed land uses includes Land Use 850 – Supermarket and Land Use 912 – Drive-in Bank. Table 1 summarizes the external trips associated with the proposed 1901 Alton development.


TABLE 1Trip Generation Summary1901 Alton (Proposed Land Use)									
	Daily Weekday Peak Hour Trips								
Land Use	Size	Trips	s Inbound Outbound Total						
	PROPOSED USES								
Supermarket	Supermarket 49,328 sf 4,694 236 226 462								
Drive-in Bank	4,490 sf	665	55	54	109				
Total - 5,359 291 280 571									

Source: ITE Trip Generation Manual (9th Edition)

As indicated in Table 1, the external trips anticipated to be generated by the proposed 1901 Alton project consist of approximately 5,359 daily trips and approximately 571 trips (291 inbound and 280 outbound) during the typical PM peak hour. In order to assess impacts with a conservative approach, no deductions were made to account for trips associated with the existing land use (bank and parking lot), internal trips, and passer-by traffic. The trip generation rates used to determine the trips associated with the proposed uses are presented below:

ITE Land Use 850 – Supermarket

Daily Trips T = 66.95 (X) + 1391.56Where T = number of weekday daily trips and X = 1000 Sq feet gross floor area

Traffic Impact Study

Sunset Palau at Miami Beach

1201 – 1225 20th Street Miami Beach, Florida

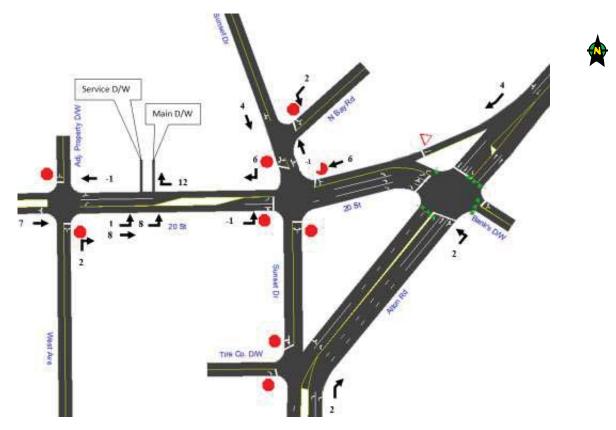
December 5th, 2011

Table 9: AM/PM Trip Generation Summary

		AM / PM PEAK HOUR TRIPS					
LAND USE (LU)	UNITS	ITE LU	ITE TRIP	TRIPS			
		CODE	GENERATION RATE / EQN	IN	Ουτ	TOTAL	
Existing							
	14.893 Th.Sq.Ft	*	3.56	27	26	53	
Quality Cleaners		*	4.63	32	37	69	
Existing Gross Vehicle Trips				27	26	53	
				32	37	69	
Proposed - New Project				e	Í	Í	
	70 DU	230	0.8LN(X)+.26	7	33	40	
Residential Condo			0.82LN(X)+.32	30	15	45	
		014	1.00	5	3	8	
Specialty Retail **	8.298 Th.Sq.Ft	814	2.71	10	13	23	
	4.758 Th.Sq.Ft	931	0.81	3	1	4	
Quality Restaurant			7.49	24	12	36	
Restaurant Pass-By (As Per ITE)				0	0	0	
				11	5	16	
Sub-Total				3	1	4	
(Rest. Gross Trips - Pass-by Trips)				13	7	20	
Proposed Gross Vehicle Trips (Driveways Trips)					37	52	
Troposed Gross venicle Trips (Driveways Trips)					40	104	
Net Vehicle Trips (Proposed - Existing - Pass-By)				-12	11	-1	
					-2	19	

NOTES:

Source(s): <u>ITE Trip Generation. 8th Edition and ITE Trip Generation Handbook. 2nd Edition.</u>
 * Trip Generation rates were obtained from empirical data collected at the existing Cleaners (Mark's - Quality Cleaning Laundry).
 ** Since ITE does not provide AM data for Specialty Retail (LU 814), LU 820 (Shopping Center) was used to calculate the AM peak hour trips.


Table 10: Midday Peak Hour (AM Peak Hour of Generator) Trip Generation Summary

		AM PEAK HOUR OF THE GENERATOR					
LAND USE (LU)	UNITS	ITE LU	ITE TRIP	TRIPS			
		CODE	GENERATION RATE / EQN	IN	OUT	TOTAL	
Existing							
Quality Cleaners	14.893 Th.Sq.Ft	*	4.47	34	33	67	
Existing Gross Vehicle Trips					33	67	
Proposed - New Project							
Residential Condo	70 DU	230	0.82LN(X)+.15	7	30	37	
Specialty Retail	8.298 Th.Sq.Ft	814	6.84	27	30	57	
Quality Restaurant	4.758 Th.Sq.Ft	931	5.57	22	5	27	
Proposed Gross Vehicle Trips (Driveways Trips)					65	121	
Net Vehicle Trips (Proposed - Existing)				22	32	54	
NOTES:					ļ	ļ	

Source(s): ITE Trip Generation, 8th Edition and ITE Trip Generation Handbook, 2nd Edition.

* The AM trip generation rate from empirical data was adjusted by 25.5% percent to calculate the existing trips (AM Peak Hour of the Generator).

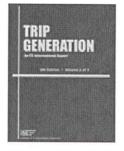
Figure 9: PM Peak Hour Site Traffic

#14112

Richard Garcia & Associates, Ir

Traffic Impact Study

17TH STREET HOTEL


1231 17th Street Miami Beach, Florida

July 20th, 2012

Project Traffic

This section of the report will cover the project traffic for the proposed project. In addition to calculating the trip generation, growth trends and site traffic were utilized to determine the future project traffic in the subsequent sections.

Trip Generation

The trip generation characteristics for the subject project were obtained from ITE's **Trip Generation Manual, 8th Ed**. The following land uses most closely resemble the proposed development. ITE's Land Use (LU) 310: Hotel and LU 814: Specialty Retail was utilized to determine the trip generation rates and totals for the subject project. As a result, the Trip Generation calculations for the PM peak hour yielded 63 net vehicle trips of which 33 vehicles are entering the site and 30 vehicles will exit. Please note the proposed gross vehicle trips were adjusted by subtracting the project internalization trips, transit trips and pedestrian trips. Transit and pedestrian trips were limited to 10% as stated in the MOU.

The project internalization trips were calculated following the methodology of Multi-Use Development Trip Generation and Internal Capture obtained from the ITE Trip Generation Handbook, 2nd Edition. This methodology estimates an internal capture rate between each pair of land uses within a multi-use development. The analysis yielded 2.8% of internalization trips for the PM peak hour. Table 3 below summarizes the Trip Generation while Appendix B contains the supporting documentation.

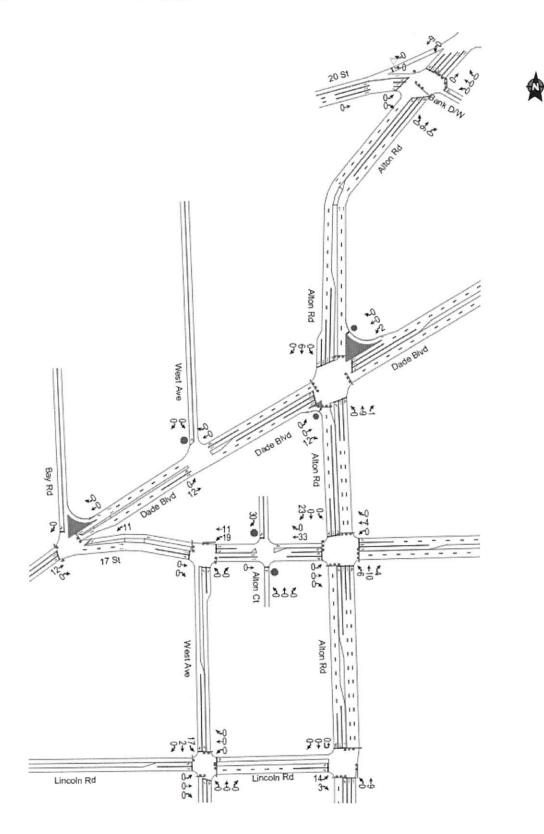
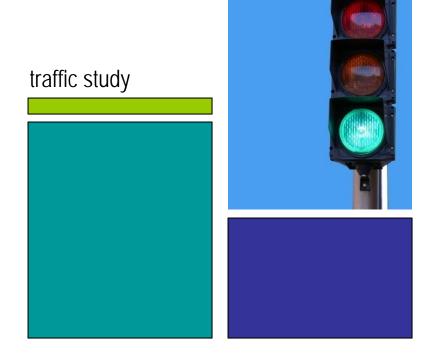

		PM PEAK HOUR TRIPS					
LAND USE (LU)	UNITS	ITE LU	ITE TRIP	TRIPS			
		CODE	GENERATION	IN	ОUT	TOTAL	
Existing							
Vacant							
Proposed							
Hotel	116 Rooms	310	0.59	36	32	68	
(includes incidental dining area)	8						
Specialty Retail	1.600 Th.Sq.Ft	814	2.71	2	2	4	
Proposed Gross Vehicle Trips	38	34	72				
Transit & Pedestrian Trips		4	3	7			
Project Internalization Trips	1	1	2				
Total Vehicle Trips Adjustment	5	4	9				
Net Vehicle Trips (Proposed Gr	33	30	63				
NOTES:							

Table 3: PM Peak Hour Trip Generation Summary


NOTES:

Sources: ITE Trip Generation, 8th Edition.

Figure 9: PM Peak Hour Site Traffic

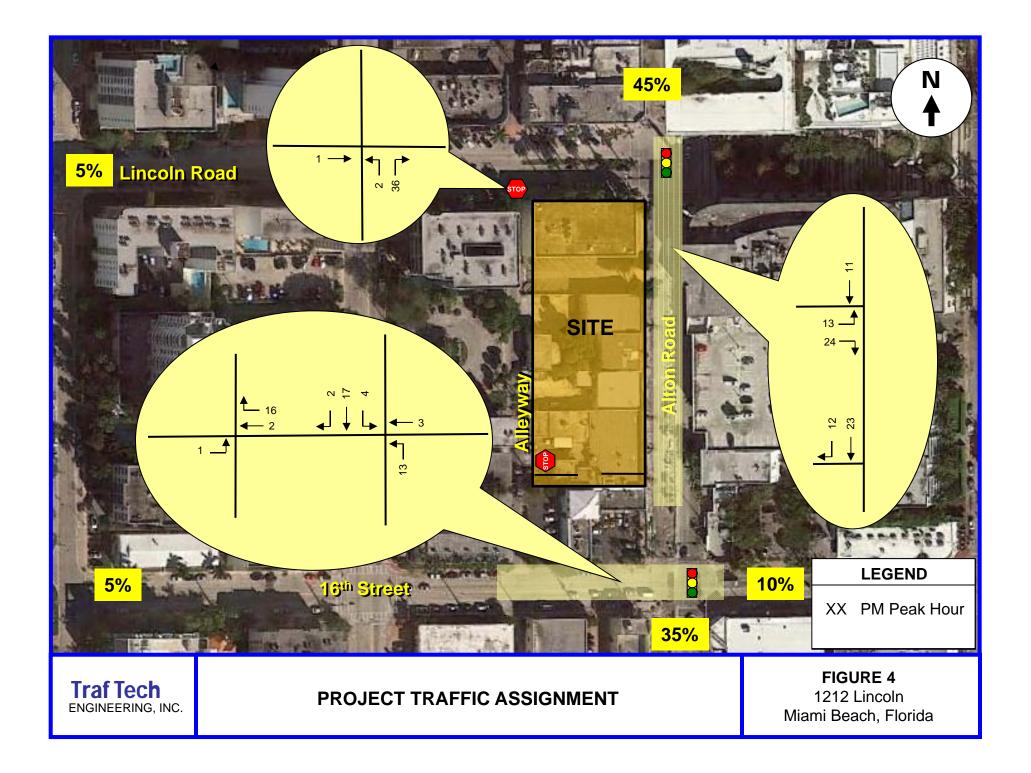
1212 Lincoln Miami Beach, Florida

prepared for: Crescent Heights

July 2014

The trip generation for the project was based on information contained in the Institute of Transportation Engineer's (ITE) *Trip Generation Manual (9th Edition)*. According to the subject ITE manual, the most appropriate "land use" category for the proposed land use is Land Use 826 – Specialty Retail Center. Table 1 below summarizes the external trips associated with the proposed 1212 Lincoln development.

TABLE 1Trip Generation Summary1212 Lincoln							
Number of Trips							
Land Use	Size	Daily	PM Peak				
	EXIS	TING DEVELOPN	MENT				
Specialty Retail	55,800 sf	2,425	155				
PROPOSED DEVELOPMENT							
Specialty Retail	83,700 sf	3,618	222				
Difference		+1,193	+67				


Source: ITE Trip Generation Manual (9th Edition)

As indicated in Table 1, the proposed 1212 Lincoln development is anticipated to generate approximately 3,618 gross daily trips and approximately 222 gross trips (98 inbound and 124 outbound) during the typical PM peak hour. The net new trips (proposed trips minus existing trips) include approximately 1,193 new daily trips and approximately 67 additional PM peak hour trips (29 inbound and 38 outbound).

ITE Land Use 826 – Specialty Retail Center

 $\frac{\text{Weekday Trip Generation}}{\text{T} = 42.78 \text{ (X)} + 37.66}$ Where T = number of weekday trips and X = 1,000 square feet of gross leasable area

<u>Weekday PM Peak Hour of Adjacent Street</u> T = 2.40 (X) + 21.48 (44% inbound and 56% outbound)Where T = number of weekday PM peak hour trips and X = 1,000 square feet of gross leasable area

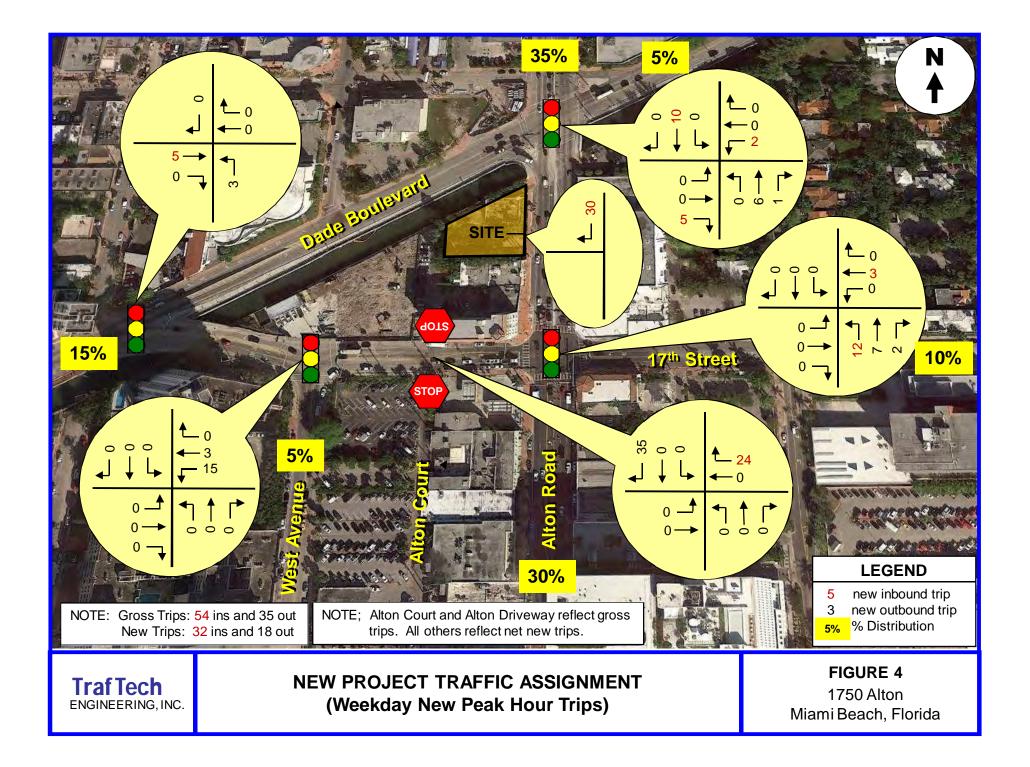
1750 Alton Miami Beach, Florida

prepared for: **SOBE Alton, LLC**

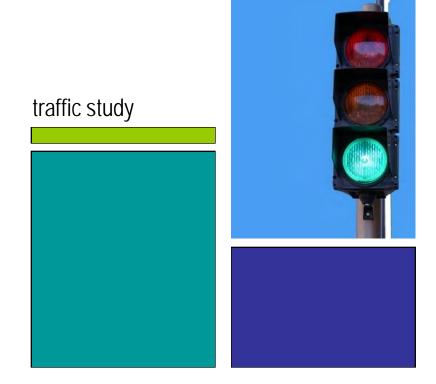
July 2015 Updated December 1, 2015

TRIP GENERATION

The trip generation for the project was based on information contained in the Institute of Transportation Engineer's (ITE) *Trip Generation Manual* (9th Edition). According to the subject ITE manual, the most appropriate "land use" category for the existing and proposed land uses includes: Land Use 310 – Hotel and Land Use 932 – High Turnover Restaurant. Table 1 summarizes the trips associated with the existing and proposed developments.


TABLE 1Trip Generation Summary1750 Alton Road										
Daily Weekday Peak Hour Trips										
Land Use	Size	Trips	Inbound	Outbound	Total					
	EXISTING USE									
Restaurant	94 seats	454	22	17	39					
	Р	ROPOSED	USE							
Hotel	96 Rooms	784	34	25	59					
Restaurant	160 seats	458	28	14	42					
SubTotal	SubTotal 1,242 62 39 101									
Internal Trips ¹ (30%)		-137	-8	-4	-12					
Total		1,105	54	35	89					
Difference	-	651	32	18	50					

Source: ITE Trip Generation Manual (9th Edition)


As indicated in Table 1, the new (excluding the existing restaurant) trips anticipated to be generated by the proposed development consist of approximately 651 daily trips and approximately 50 trips during the weekday peak hour (32 inbound and 18 outbound). The trips associated with the restaurant are already accounted for in the traffic counts.

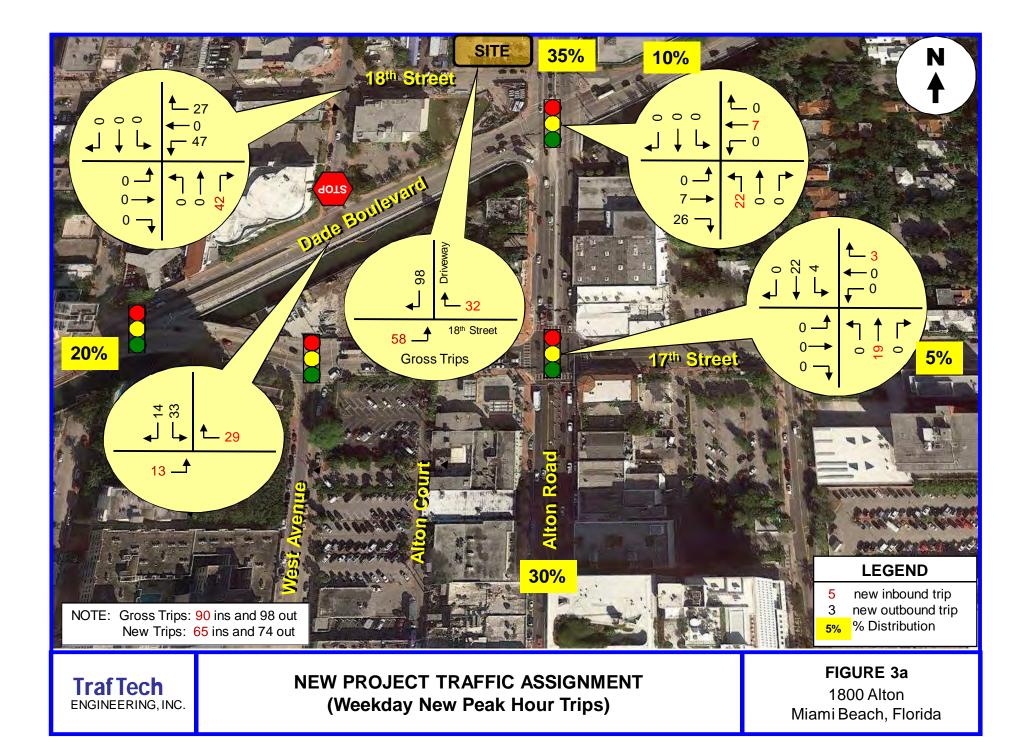
The trip generation rates used to determine the trips associated with the existing and proposed land uses are presented below:

¹ According to ITE's *Trip Generation Handbook* (Third Edition), up to 71% of restaurant trips within a hotel are internal trips. For purposes of this study, we have assumed that only 30% of the restaurant trips are internal to the project.

1800 Alton Miami Beach, Florida

prepared for: SABER 1800 ALTON, LLC

October 2015 Update January 21, 2016


TRIP GENERATION

The trip generation for the project was based on information contained in the Institute of Transportation Engineer's (ITE) *Trip Generation Manual* (9th Edition). According to the subject ITE manual, the most appropriate "land use" category for the existing and proposed land uses includes: Land Use 820 – Shopping Center and Land Use 946 – Gasoline Service Station with Convenience Market and Car Wash. Table 1 summarizes the trips associated with the existing and proposed developments.

	Trip (TABLE 2 Generation S			
		800 Alton F			
		Daily	Weekda	y Peak Hour T	rips
Land Use	Size	Trips	Inbound	Outbound	Total
]	EXISTING U	USE		
Gasoline Service	8 FP	1,222	56	54	110
Pass-by (56%)		-684	-31	-30	-61
External Trips		538	25	24	49
	PROPC	OSED USE –	Scenario 1		
Commercial	25,397 sf	2,786	115	124	239
Restaurant	160 seats	458	28	14	42
SubTotal 1		3,244	143	138	281
Pass-by (34%)		-1,103	-49	-47	-96
External Trips		2,141	94	91	185
	PROPC	SED USE –	Scenario 2		
Commercial	32,897 sf	3,298	136	148	284
Pass-by (34%)		-1,121	-46	-50	-96
External Trips		2,177	90	98	188
Difference (Worse)	-	1,639	65	74	139

Source: ITE Trip Generation Manual (9th Edition)

If valet service is provided for the restaurant, no new trips will be generated. The dropoff and pickup locations are at the entrance into and out of the parking garage.

Proposed Condition (2013)

The proposed condition includes background growth, committed trips and site traffic. The following sections describe the constraints utilized to calculate the proposed peak hour volumes. Please note this project has a design year of 2013.

Background Growth

The background growth rate was obtained by performing a regression analysis utilizing the two (2) sources as follows:

- Available historical data from the FDOT Count Station 0012 Growth rate 0.64 percent.
- Vehicle trips from the Miami-Dade County MPO Long Range Transportation Plan (SERPM) travel demand model for 2005 and 2035 **Growth Rate 0.83 percent.**

Moreover, the most conservative rate was used in the analysis and therefore, an annual growth rate of 0.83 percent was applied to the existing traffic counts to address background growth in the area. Appendix C contains the supporting documentation.

Committed Development

As described in the Traffic Impact Study Methodology, all the committed development within the study area was quantified and utilized in the analysis. Please note this committed data was obtained from the City of Miami Beach and additional analysis performed by Richard Garcia & Associates, Inc. (RGA). As a result, the following projects were identified:

- The Fresh Market
- Sunset Harbor Garage and Retail Development
- Remodeling To Premises at 1920 Alton Road (RGA)

Please note the committed trips from the above projects were included in the proposed condition analysis. Appendix D contains the supporting documentation.

Proposed Condition with & without Project Traffic

Intersection Analysis

The intersections previously identified were augmented with the background growth rate, committed trips and project traffic. This forms the basis for the proposed future condition analysis with project traffic in 2013. Please note this condition includes the redistribution of traffic for the driveway on Sunset Drive since such driveway will be removed. Moreover, the proposed condition analysis was performed consistent with the future FDOT roadway improvements for the Alton Road project as described in the subsequent sections. The calculations for the specific movements at each intersection are contained in Appendix D. Figure 10 depicts the proposed AM peak hour volumes with project traffic while Figure 11 illustrates the PM peak hour volumes. Appendix E contains the supporting documentation including the volumes for the proposed condition without project traffic. TABLE: A6 Sunset Palau - Revised

PM PEAK HOUR INTERSECTION APPROACH VOLUMES

TOTAL TRAFFIC (VPH) (PROPOSED) (2013)	14	274	898	0	1172	20	64	9	28	24	1152	131	26	1307	14	9	258	281	2788	0	154	0	154	0	1	963	964	1315	0	0	1315	4	0	0	7	2440
SITE TRAFFIC (VPH)	00	4	0	0	4	0	0	0	0	0	0	0	0	64	0	0	0	0	9	0	0	0	0	0	0	0	0	254	0	0	2	0	0	0	0	2
NET TRAFFIC W/O PROJECT	11	277	898	0	1175	20.	2	6	28	24	1152	132	26	1308	14	9	258	281	2792	0	154	0	154	0	E)	963	964	1316	0	0	1316	7	0	0	7	2441
CDMMITTED	10	92	0	0	76	0	0	0	0	0	0	15	0	15	0	0	99	66	157	0	8	D	ð	0	0	0	0	15.	0	0	15	0	D	0	0	24
BACKGROUND GROWTH @ 0.83% FOR 2 *EARS	di.	~	15	0	18	0	0	0	0	0	19	2	0	21	0	0	0	4	44	0	2	0	2	0	0	16	16	21	0	0	21	0	0	0	0	40
PM PEAK SEASONALLY ADJUSTED (EXISTING) (2011)	9	198	885	27	1110	19	2.	9	27	23	1133	115	25	1272	14	5	189	211	2620	0	143	0	143	1	1	948	950	1279	0	0	1279	12	0	0	2	2378
ц.	7	0.97	0.97	0.97		16'0	0.97	0.97		0.97	16.0	16:0	0.97		76.0	0.97	0.97			26.0	26.0	26.0		0.97	16.0	0.97		0.97	16.0	0.97		0.97	16.0	0.97		
He	9	1	00	6.0)		68	g.(1	T	9	96	0			21	6.0		0.974		GE	8.0	1		99	6.0			89	6.0			29	9.0		0.975
DATE	15				4	10	Z'	LL)et	100	200	- 6	epi	sər	4								11	50	.1	1.1	aqé	200	0.1	λe;	se	m1				
PM PEAK HR COUNT	+	204	912	28	1144	20	2	ġ	28	24	1168	119	26	1311	14	5	195	218	2701	0	147	0	147	1	1	118	919	1319	0	0	1319	7	a	0	7	2452
MOVEMENT	1	SBR	SBT	SBL	TOTAL	WBR	WBT	WBI	TOTAL	NBR	NBT	NBL	NBU	TOTAL	EBR	EBT	EBL	TOTAL		SBR	SBT	SBL	TOTAL	SWIBHR	SWBBR	SWEL	TOTAL	NBBR	NBT	NBL	TOTAL	EBR	EBT	EBL	TOTAL	
APPROACH	2		ALC: UNIT LOCAL MAILE	SOUTHBOUND				WESTBOUND				NORTHBOUND				and the second second second second	EASTBUUNU		TOTAL			SOUTHBOUND			CONTRACTOR INTERNET	SOUTHWESTBOUND			NUMBER OF STREET	NUCHERON			CACTORIAID	EMACHUNIN		TOTAL
INTERSECTION	-					1			a the second second	Allon Road &	20th Sheet																Alton Road &	Sunset Drive								
NO. NO.																											-	*								

@Richard Garcia and Associates Inc., 2008

12/3/2011

TABLE: A6

Sunset Palau - Revised

PM PEAK HOUR INTERSECTION APPROACH VOLUMES

TOTAL TRAFFIC (VPH) (PROPOSED) (2013)	13	37	47	26	110	39	323	39	402	0	0	0	0	77	254	59	391	902	0	0	4	7	1	219	138	358	102	0	*	116	11	282	-	354	835
SITE TRAFFIC (VPH)	12	ø	0	0	9	0	9	0	8	0	0	0	0	0	0	ţ	-1	11	0	0	0	0	0	14	0	4	2	0	0	2	0	2	0	7	10
NET TRAFFIC W/O PROJECT	11	31	47	26	104	55	317	39	412	0	0	0	0	11	254	70	402	917	0	0	7	7	1	220	138	359	104	0	14	118	14	287	1	359	843
COMMITTED	-01	4	2	0	đ	0	91	0	91	0	0	0	0	đ	99	10	85	185	0	0	0	0	0	69	30	66	21	0	0	21	0	58	0	58	178
BACKGROUND GROWTH @ 0.83% FOR 2 YEARS	9	0	-	0	2	1	4	-	2	0	0	0	0	1	E	1	40	12	0	0	0	0	0	2	2	4	1	0	0	2	+	4	0	5	11
PM PEAK SEASONALLY ADJUSTED (EXISTING) (2011)	01	23	45	25	93	54	222	39	315	1	2	4	4	67.	185	59	311	724	0	0	7	7	-	148	107	256	81	0	14	95	70	225	-	296	654
ц	1	0.97	16.0	0.97		0.97	0.97	0.97		0.97	0.97	16.0		0.97	16.0	0.97			16:0	0.97	16.0		16:0	16:0	16.0		0.97	16.0	16.0		16'0	16.0	0.97		
PHF			43	20	}		34	8.0)		52	9:0			<u>ÿ</u> t	6 0)	0.929		68	9 0	2	Γ	69	80	1		18	8.0	0		58	8 0		0.913
DATE OF COUNT	-				11	SO	4	1.1	əqd	1	0'	λėι	ost	ang	-							11	0Z	4	1.44	equ	atoi	0	Kep	pse	n				
PM PEAK HR COUNT	T	24	46	26	96	56	229	40	325	-	2	+	4	68	191	61	321	746	0	0	t	7	+	153	110	264	84	0	14	98	72	232	+	305	674
MOVEMENT		SBR	SBT	SBL	TOTAL	WBR	WBT	WBL	TOTAL	NBR	NBT	NBL	TOTAL	EBR	EBT	EBL	TOTAL		SBR	SBT	SBL	TOTAL	WBR	WBT	WBL	TOTAL	NBR	NBT	NBL	TOTAL	EBR	EBT	EBL	TOTAL	
APPROACH	-		and the inclusion in the	SUUTHBOUND			1 are service on later.	WESTBOUND			Monthland Min	NUCKTRECON			The manual state	EASTHOUND		TOTAL		Contract on the second states	SOUTHBOUND			A PERSON AND TAXABLE IN CONTRACTOR	WESTBOUND			ALCONTRACT MAIN	INDIA I LIDRUNIA			E A OTDOU MAIN	THURDELEAS		TOTAL
INTERSECTION NAME	-								Z0th Street &	Sunset Drive																20th Street &	West Avenue								
NOTERSECTION										7																	*								

@Richard Garcia and Associates. Inc., 2008

12/3/2011

TABLE: A6

Sunset Palau - Revised

UMES
VOL
APPROACH
HOUR INTERSECTION
HOUR I
PM PEAK

TOTAL TRAFFIC (VPH) (PROPOSED) (2013)	-33.	0	67	11	78	63	0	43	46	51	59	0	110	0	0	0	0	235
SITE TRAFFIC (VPH)	12	0	4	0	4	0	0	2	2	0	ŧ	D	7	0	0	0	0	5
NET TRAFFIC W/O PROJECT	11	+	63	11	75.	en.	2	41	46	51	60	60	137	0	0	0	0	259
COMMITTED	10	0	8	0	8	0	0	-		2	8	0	10	0	0	0	0	19
BACKGROUND GROWTH @ 0.83% FOR 2 YEARS		0	1	0	1	0	0	1	1	1	-	0	2	0	0	0	0	4
PM PEAK SEASONALLY ADJUSTED (EXISTING) (2011)	-	÷	2	11	66	63	2	40	45	40	51	25	125	0	0	0	0	236
Ω.	1	0.97	0.97	79.0		16:0	0.97	16:0		0.97	0.97	0.97		16:0	0.97	150		
H	H		08	9.0)		61	2.0)		28	1.0			63	g.()	0.863
DATE	10				11	0Z	4	1.1	eq	012	0,1	٨e	pise	en j				
PM PEAK HR COUNT	37	-	56	11	68	E	2	41	46	50	53	26	129	0	0	0	0	243
MOVEMENT	3	SBR	SBT	SBL	TOTAL	SWBR	SWBT	SWBL	TOTAL	NBR	NBT	NBL	TOTAL	EBR	EBT	EBL	TOTAL	
APROACH	-		and the set of the set	SOUTHBOUND			and the state of t	SOUTHWESTBOUND			ALCONTRACT INTO	NUCHHROUND		the distance of the	EASTBOUND	(MARK'S DRIVEWAY)	(Not Allowed)	TOTAL
INTERSECTION			1						Sunset Drive &	North Bay Road								
NO. INTERSECTION	I	Γ								112								

Notes.

- 1 Intersection Name
- 2 Intersection Approach
- 3 Intersection Approach Movement
 - 4 TMC data provided by RGA, Inc.
- 5 Date of Count 6 Peak Hour Factor 7 Seasonal Factor obtained from FDOT
- 8 Seasonally Adjusted TMC = Count * SF (These are the volumes utilized in the existing condition intersection LOS)

 - 9 A 0.83 percent background growth was utilized with a project build-out of two years
 - 10 Commied Traffic.
- 11 Proposed Traffic w/o Project = Peak Seasonally Adjusted TMC + Backgound+Committed
 - 12 Site traffic assignment.
- 13 Total Traffic = Net Traffic + Site Traffic (These are the volumes utilized in the proposed intersection LOS analysis)
 - O Volume was redistributed due to removal of driveway on Sunset Drive Adjusted volumes with redistribution of traffic.

Mickey Marrero

Subject:FW: Finvarb - Responses to Comments from Xavier Falconi (17th Street Marriott
Residence Inn)Attachments:17th Street Hotel_Analysis_rev3_A4.pdf

From: Richard [mailto:rgarcia@rgatraffic.com]
Sent: Friday, December 07, 2012 11:41 AM
To: Mickey Marrero
Cc: "Richard Finvarb'; "Ronald Finvarb'
Subject: RE: Finvarb - Responses to Comments from Xavier Falconi (17th Street Marriott Residence Inn)

Here you go, my responses are in CAPS.

Comments (Salman Rathore): Although your previously submitted valet analysis showed over 90% operating capability, it is important to perform the same analysis based on the revised site plan. Your analysis may or may not yield the same results but it needs to be documented based on the new internal traffic pattern. Also provide an updated site plan clearly showing the pick-up and drop off location.

THE STATICTICAL ANALYSIS PROVIDED DOES NOT CHANGE SINCE THE VARIABLES HAVE NOT CHANGED. THE NUMBER OF TRIPS ARE STILL THE SAME AND THE SERVICES RATES USED ARE CONSERVATIVE.

Comments (Salman Rathore). In regards to the 33 re-assigned entering and 30 existing trips (submitted as part of the memo) some questions still remain unanswered for the following intersections:

- <u>Alton Ct/17th Street</u>: WB Left Turning trips are reduced from 44 to 11 which makes sense. Those reduced trips (33) should be added to the WB through movement of 492 (becomes 525).
- <u>17th Street/West Avenue:</u> WB Left Turning trips are reduced from 365 to 332. The WB through trips remains the same (201). This doesn't make sense keeping in mind that 58 Southbound right turning trips (From Alton Ct/17th Street) are going WB and reach 17th Street/West Avenue. Please adjust the WB through/left turning traffic to include the 58 trips coming from the project site.
- <u>17th Street/Alton Road</u>: The NB left turning trips are reduced from 100 to 67 (33 short that is the project entering traffic) but are not added back to any other intersection movement since the remaining trips (all directions) remain the same as before. Please add these 33 project entering trips to either NB Left turn trips or WB Through trips or Southbound right trips.
- West Avenue/Lincoln Rd, Alton Road/Lincoln Rd: Similar to above comment please explain reduction
 of SB Left turning traffic at West Avenue/Lincoln Rd and EB Left turning traffic at Alton Road/Lincoln
 Rd. It seems to have been reduced by 33 entering trips, show where those trips get added to before it
 reaches the project driveway.

Please revise and reassign all the above intersection traffic and resubmit Proposed PM Peak Hour with project figure along with the revised synchro analysis.

THE 33 TRIPS ARE NOT BEING RE-ASSIGNED AS STATED BY THE REVIEWER, THEY ARE BEING ELIMINATED SINCE THE VALET NO LONGER MUST CIRCULATE AROUND THE BLOCK. PLEASE SEE THE ATTACHED INTERSECTION VOLUME SPREADSHEET WITH THE VALET TRAFFIC COLUMN 13 HIGHLIGHTED.

PLEASE NOTE, IN OUR ORIIGINAL ANALYSIS, WE FIRST ASSIGNED THE TRIPS IN AND OUT OF THE SITE USING THE STANDARD TAZ METHOD AS SHOWN ON COLUMN 12. THEN WE CIRCULATED THE VALET TRIPS ON COLUMN 13. THOSES TRIPS ON COLUMN 13 WERE SUBSEQUENTLY ZERO, SINCE THESE TRIPS NO LONGERE NEED TO RE-CIRCULATE AROUND THE BLOCK. WE HAVE RE-CHECKED OUR ANALYSIS AND FIND IT IS CORRECT.

Comments (Salman Rathore): See my comment 2 above - Provide an updated site plan clearly showing the pickup and drop off location.

PLEASE HAVE THE ARCHITECT PROVIDE.

Respectfully,

Richard Garcia, P.E.

Richard Garcia & Associates Inc. 13117 NW 107th Avenue, Suite 4 Hialeah Gardens, FL 33018 PH: 305-595-7505 FAX: 305-675-6474 TABLE: A4 17th Street Hotel

-

1. 1. 1. C

PM PEAK HOUR INTERSECTION APPROACH VOLUMES

0	INTERSECTION N								-																	2									
	INTERSECTION								Alton Road & 17	Street																1/ Street &	AVPSI AVENUE								
	APPROACH		SOF THROUND				WESTBOUND				NORTHBOUND				EASTEOUND			TOTAL		SOUTHBOUND				WESTBOUND				NORTHBOUND				EASTBOUND			TOTAL
	MOVEMENT	SBR	SBT	SBL	TOTAL	WBR	WBT	WBL	TOTAL	NBR	NBT	NBL	TOTAL	EBR	EBT	EBL	IDIAL		SBR	SBI	SBL	TOTAL	MEK	190	TRAN	TOTAL	NBK	IAN	NBL	TOTAL	EBR		EBL	I IUIAL	
	PM PEAK HR COUNT	171	810	209	1190	301	144	272	717	173	786	59	1018	76	142	372	590	3515	0	0	0	0		1/6	301	477	265	0	215	480	259	228		184	1444
	DATE OF COUNT					210	50	01	٨ır	י רי	Yet	58	nΤ									2	510	2 '	01	٨m	r'ı	Ket	5 89	n⊥					
	Ч								686	3.0	6	_		_											1	856	0.0		_	_					
	'n	1.02	1.02	1.02		1.02	1.02	1.02		1.02	1.02	1.02		1.02	1.02	1.02			1.02	1.02	1.02		1.02	1.02	1.02		1.02	1.02	1.02		1.02	1.02	1.02		
	PM PEAK SEASONALLY ADJUSTED (EXISTING) (2012)	174	826	213	1214	307	147	277	731	176	802	60	1038	78	145	379	602	3585	-	0	-	-	0	180	307	487	270	•	219	480	264	233	0	497	64.77
	BACKGROUND GRØWFH @ 0.62% FOR 3 YEARS	3	15	4	23	6	3	5	14	3	15	-	19	-	3	7	11	67	0	0	0	0	0	6	9	6	5	0	4 .	6	5	4	0	6	05
	COMMITTED DEVELOPMENT	0	0	0 .	0	0	0	0	0	0	0	0	0	0	0	0	•	0	0	0	0	0	0	7	0	7	D	0	14	14	13	4	0	20	
	TOTAL TRAFFIC (VPH) (PROPOSED WIO PROJECT) (2015)	178	842	217	1237	313	150	283	745	180	817	61	1053	79 .	148	387	613	3652	0	0	0	0	0	190	313	503	275	0	237	513	282	244	0	526	
The second secon	SITE TRAFFIC (VPH)	23	0	0	23	0	4	0	4	4	10	8	20	0	0	0	0	47	0	0	0	0	0	11	19	30	0	0	0	0	0	0	0	0	
	SITE TRAFFIC (VPH) VALET OPERATION	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	
	TOTAL TRAFFIC (VPH) (PROPOSED WI PROJECT) (2015)	201	842	217	1260	313	154	283	749	184	827	67	1078	64	148	387.	613	3699	0	0	0	0	0	201	332	533	275	0	237	513	282	244	0	526	

_

@Richard Garcia and Associates, Inc., 2008

12/7/2012

17th Street Hotel TABLE: 44

1

PM PEAK HOUR INTERSECTION APPROACH VOLUMES

	E TOTAL FIC TRAFFIC (VPH) (PROPOSED WI PROJECT) TION (2015)	52		101						0		0	0	0	258			754						100	121	282	503	234	1202	84	1519	73	112	101	286	
FI	SITE SITE TRAFFIC (VPH) VALET OPERATION	0	0	0	c			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•	0	0	0	0	0	0	0	0	0	Ö	0	0	
21) SITE TRAFFIC (VPH)	0	0	0	-	0	0	0	•	0	0	0	•	0	12	0	12	12	0	6	0	0	6	0	0	2	2	•	6	0	10	12	0	0	12	į
11	TOTAL TRAFFIC (VPH) (PROPOSED W/O PROJECT) (2015)	52	0	101	152	95	202	0	297	D	0	0	0	0	246	47	293	742	45	948	59	23	1075	100	121	280	501	233	1193	84	1509	61	112	101	274	4966
10	COMMITTED	0	0	~	L	0	14	0	14	0	0	0	0	0	0	21	21	42	0	13	7	0	20	0	2	0	4	0	7	7	14	0	7	0	7	97
6	BACKGROUND GROWTH @ 0.62% FOR 3 YEARS	F	0	2	3	2	9	0	5	0	D	0	0	0	2	0	5	13	+	17	-	0	19	2	2	5	6	4	22	+	27	-	2	2	5	54
9	PM PEAK SEASONALLY ADJUSTED (EXISTING) (2012)	51	0	92	143	63	185	0	277	0	0	0	0	0	242	58	267	587	44	918	51	22	1013	86	112	274	485	228	1164	75	1468	60	103	66	262	7002
	ц. С	1.02	1.02	1.02		1.02	1.02	1.02		1.02	1.02	1.02		1.02	1.02	1.02			1.02	1.02	1.02	1.02		1.02	1.02	1.02		1.02	1.02	1.02		1.02	1.02	1.02		
•	ЧНЧ								296	3.0																58	86'0	0								
-	DATE OF COUNT		_		1	210	50	10	λin	۰ Jı	Kep	620	nī										51	50	' 0	L 4	ու	'ÁE	ps	an,	L					
*	PM PEAK HR COUNT	50	0	90	140	91	181	0	272	0	0	P.		D	23/	62	262	674	43	000	8	22	1015	8	011	269	4/5	224	1411	74	1439	BS	101	16	157	3186
2	MOVEMENT	SBR	SBT	-SBL	TOTAL	SWBR	SWBT	SWBL	TOTAL	NBR	19N	UBL I	NEDAL	NEBK	NEG	NEGL	IUIAL	000	SBR	18S	SBL	CBS	TOTAL	HAM	IPM	TRAC	DIAL	NBK	NB	NUL	UIAL	LEAK	-FBI	EBL	IUIAL	
2	APPROACH		SOUTHROUND				SOUTHWESTROUND				NORTHBOUND				NORTHEASTBOUND			IUIAL			SUCIHEDUND				WESTBOUND				NORTHEOUND				EASTBOUND			TOTAL
-	INTERSECTION NAME								Dade Boulevard	& West Avenue		100														Alton Road &	Dade Boulevard									
Ċ	INTERSECTION NO			075	0.07				0																		+								I	

@Richard Garcia and Associates. Inc., 2008

17th Street Hotel TABLE: A4

.....

-		-	r -	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	_	-	-	-	-	-	-		-
14	TOTAL TRAFFIC (VPH) (PROPOSED W/ PROJECT) (2015)	51	0	0	51	0	0	403	403	546	343	0	889	86	168	0	254	1597	265	688	24	1177	12		2	16	14	1141	127	20	1301	23	80	302	333	2826
E1	SITE TRAFFIC (VPH) VALET OPERATION	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12	SITE TRAFFIC (VPH)	0	0	0	0	0	0	11	11	0	12	0	12	0	0	0	0	23	0	cn	0	6	0	0	0	0	0	6	0	0	6	0	0	0	0	18
11	TOTAL TRAFFIC (VPH) (PROPOSED WIO PROJECT) (2015)	51	0	0	51	0	0	392	392	546	331	0	877	86	168	0	254	1574	265	879	24	1168	12	1	2	16	14	1132	127	20	1292	23	80	302	333	2808
10	COMMIT ED DEVELOPMENT	27	0	0	27	0	0	21	21	20	0	0	20	14	0	0	14	82	52	0	0	62	0	0	0	Q	0	0	16	٥	16	0	0	45	45	113
6	BACKGROUND GROWTH @ 0.62% FOR 3 YEARS	0	0	0	0	0	0	7	7	10	6	0	16			Q	4	27	4	16	0	21	0	0	0	ð	0	21	2	0	23	0	0	5	5	50
	PM PEAK SEASONALLY ADJUSTED (EXISTING) (2312)	23	0	0	52	0	0	364	364	516	325	0	842	01	165	0	236	1465	209	863	23	1095	12	-	2	15	13	1111	109	6	1253	22	8	252	283	2646
	. Y	1.02	1.02	1.02		1.02	1.02	1.02		1.02	1.02	1.02		1.02	1.02	1.02			1.02	1.02	1.02		1.02	1,02	1.02		1.02	1.02	1.02	1.02		1.02	1.02	1.02		
•	ЧН	T							63	6.0				200									_		_	Þ	l	0				1			-	
-	DATE					210	50	'OL	Apr.	יור	/e	ose	mı										zı	50.	'0	LÁ	μı	۰۸۱	sps	ən	ı					
	PM PEAK HR COUNT	23	0	0	23	0	0	357	357	506	319	0	825	69	162	0	231	1436	205	846	23	1074	12	-	2	15	13	1089	107	19	1228	22	80	247	277	2594
	MOVEMENT	SBR	SBT	SBL	TOTAL	WBR	WBT	WBL	TOTAL	NEBR	.NEBT	NEBL	TOTAL	SWBR	SWBT	SWBL	TOTAL		SBR	SBT	SBL	TOTAL	HEM	IBM	TIAM	TOTAL	NBR	IBN	NBL	NBN	TOTAL	EBR	EBT	EBL	TOTAL	
	APPROACH		SOLTHROLIND				WESTROUND				NORTHEASTBOUND				SOUTHWESTBOUND			TOTAL		SOUTHBOUND			ki	WESTBOUND	-								EASTBOUND			TOTAL
	INTERSECTION				1			17 Street / Rav	Brad & Dade	Boulevard			1													Alton Road & 20	Street						_			
0	INTERSECTION N								v:	,							T									-	o								1	

PM PEAK HOUR INTERSECTION APPROACH VOLUMES

SRichard Carcia and Associates, Inc., 2008

12/7/2012

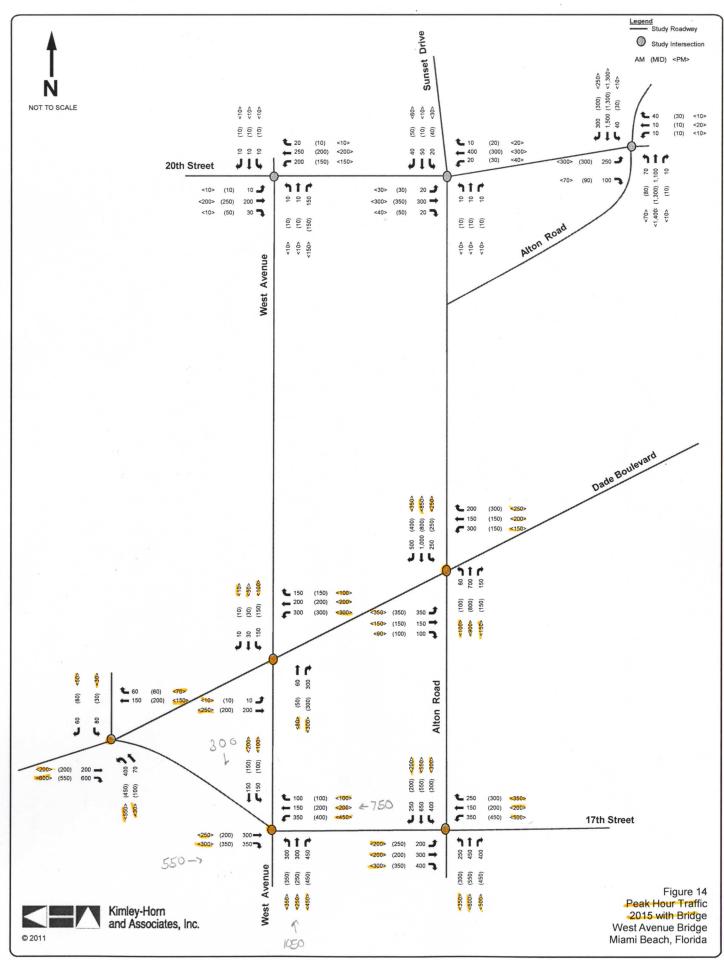
17th Street Hotel TABLE: A4

PM PEAK HOUR INTERSECTION APPROACH VOLUMES

				1							
		DATE			PM PEAK	BACKGROUND		TOTAL TRAFFIC (VPH)		SITE	TOTAL
MOVEMENT PM PEAK	N		HH	ب ۳	ADJUSTED (EXISTING)	GROWTH @ 0.62% FOR 3	COMMITTED DEVELOPMENT	(PROPOSED WIO	TRAFFIC	(VPH)	(PROPOSED
					(2012)	YEARS		PROJECT) (2015)	heart	OPERATION	(2015)
10				1.02	5	2	0	104	0	0	104
201			1	1.02	1046	20	0	1065	0	0	1065
1150	-		1	70.1	26	0	0	26	0	0	26
0		21	£	1 00 1		77		1195		0	1195
0		50	Ľ	1.02	0	e	0		0	ò	0
0		'01	1	1.02	0	0	0				0
0		λį,	91		0	0	0	0	0		
•	1	۰ . ار		1.02	0	0	0	0	0	0	
938	Т	(ep	1	.02	957	18	0	975	0	0	984
2	Т	50		.02	F	-	0	73	0	0	73
1008		nΤ			1028	19	0	1047	6	0	1056
8	_			.02	66	-	0	68	3	0	12
0	-			.02	0	0	0	0	0	C	0
68				1.02	69	-	0	71	14	c	BC
133					136	5		138	17		155
2291				-	2337	44	e	1224	36		
88				.02	91	2		60	27		1047
397			<u> </u>	02	405	a		20			75
25			1	102	26			415	7	0	415
511		-	1_		521	ę		20			54
42		21	Ľ	02	63	-	, c	NV NV	2		Dee
45		50	Ē	.02	ę			47			4
45		'01	1	1.02	27	-	0	48			41
133		. Ky		-	136		0	120			40
46		٦ſ	6.0	.02	17	-	0	48	e		071
411		·Xe	_	1.02	419	8	c	100			40
13		pse	<u> </u>	.02	13	0	0	14			174
470		anj	L		479	6	0	483			4
23		L	Γ	1.02	23	c		T'C			485
29	Γ	020	1	03	UE			47	5	2	24
54	Γ		ſ	1 07	3 4	-	2	200		0	30
106	Τ		1	4	3		-	90	0	0	56
over 1	t	t		┨	001	7	2	110	0	0	110
0771	1				1244	23	0	1268	19	0	1287
2	Т			1.02	15	0	0	16	30	0	46
	Т			02	0	0	0	0	0	0	0
21	Τ			1.02	12	0	0	12	0	0	12
17				-	38	-	0	28	30	0	3
=	1			1.02	11	0	0	11	0	0	11
435	1	50	-	1.02	444	80	1 1	459	EE	-	100
0		01	+	1.02	0	0	0	c	e		701
446		Á)	96	-	455	5	-	470			2
78	ľ	np	Ľ	601	CB.		-	110	22	•	203
	T		1	3	no ·	-	0	81	0	0	81
	T	lep	-1	1.02		0	0	-	0	0	-
8	T	920	-	02	27	0	0	27	0	0	76
105	Τ	nΤ			107	2	0	109	0		100
0			r'	02	•	0	0	0	-		-
489			-	02	499	6	0	- aus			-
4	Γ		-	1.02	4	, ,	>		-		508
493	Π	-	L.	$\left \right $	503	6		542			4
1011	F		╞	╞	1002	00					710
	1		-								A REAL PROPERTY AND ADDRESS OF ADDRE

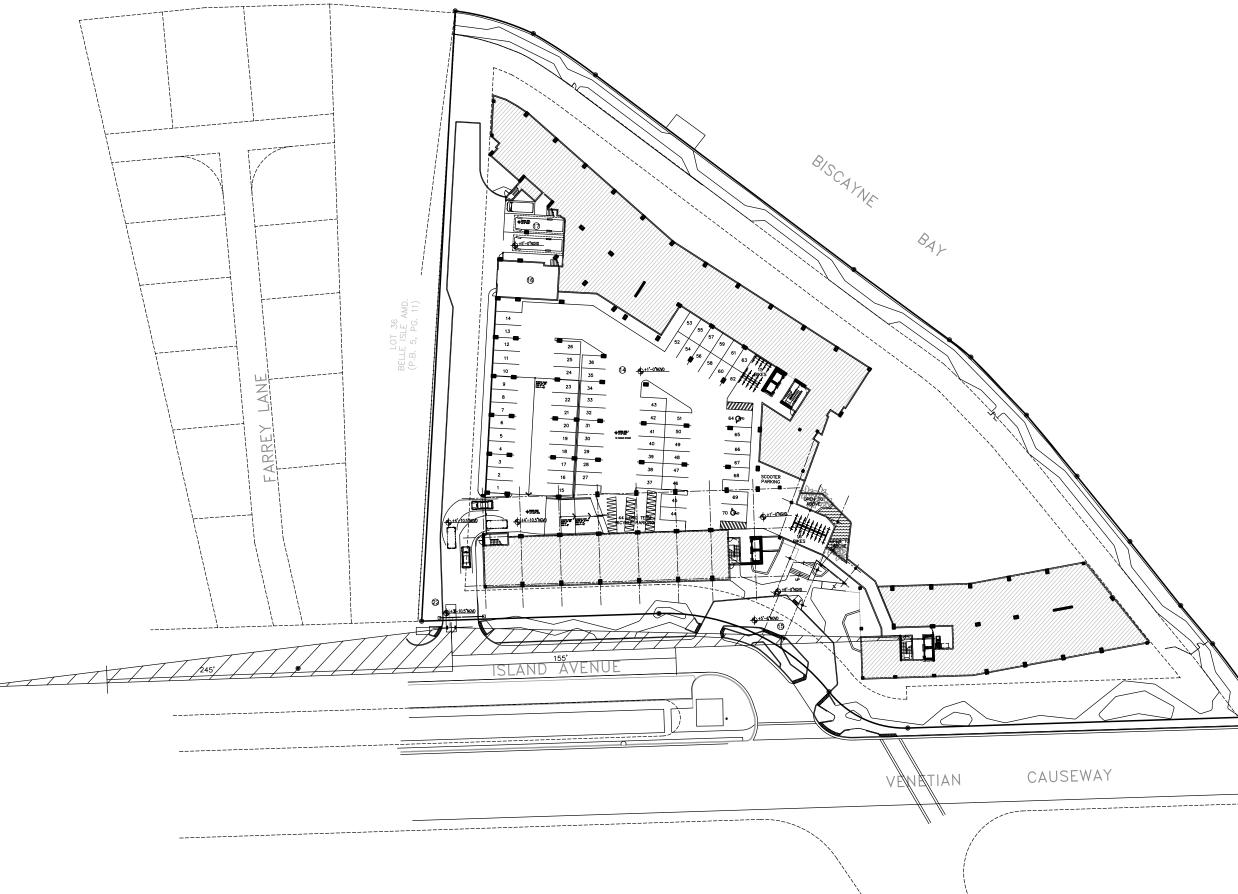
Volumes extrapolated from PD&E TMC data.

1 Intersection Name

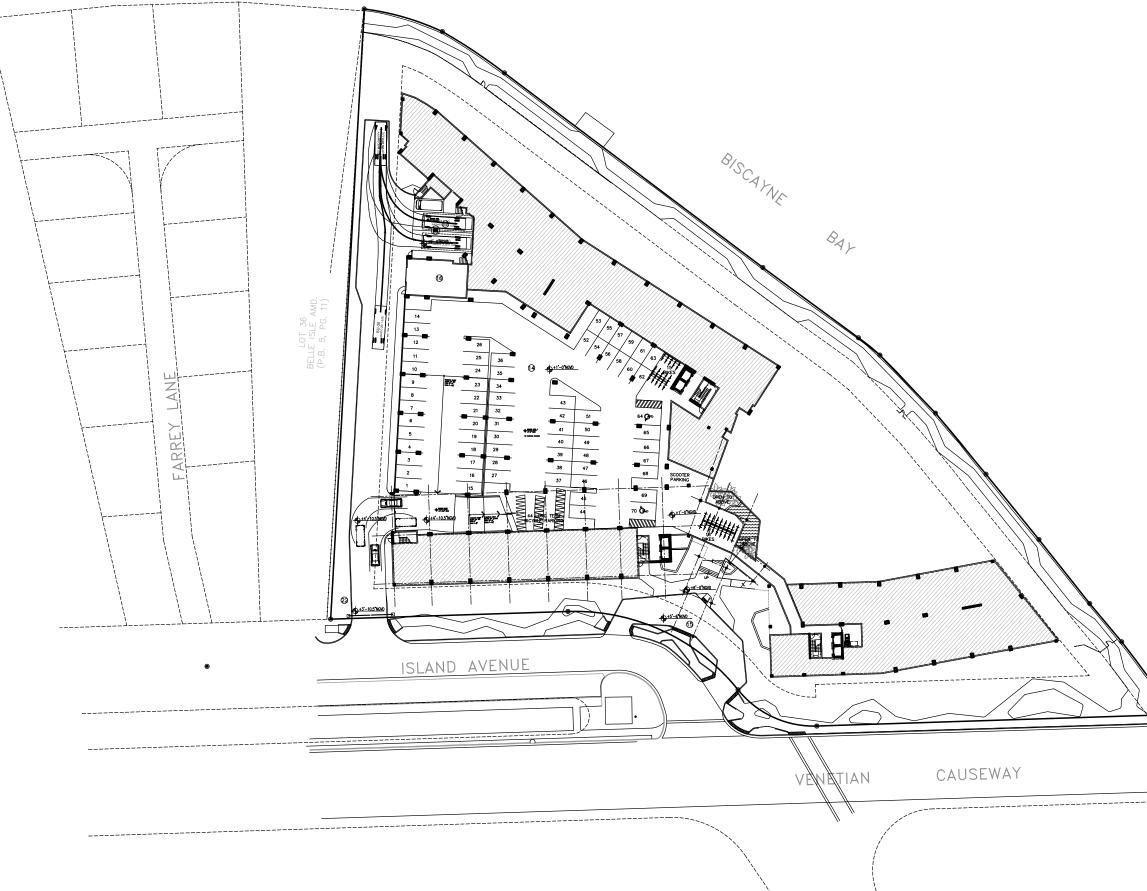

2 Intersection Approach 3 Intersection Approach 3 Intersection Approach Movement 4 TMC data provided by RGA, Inc. 5 Date of Count 6 Peak Hour Factor 7 Sessonal Factor obtained from FDOT ©Richard Garcia and Associates, Inc., 2008

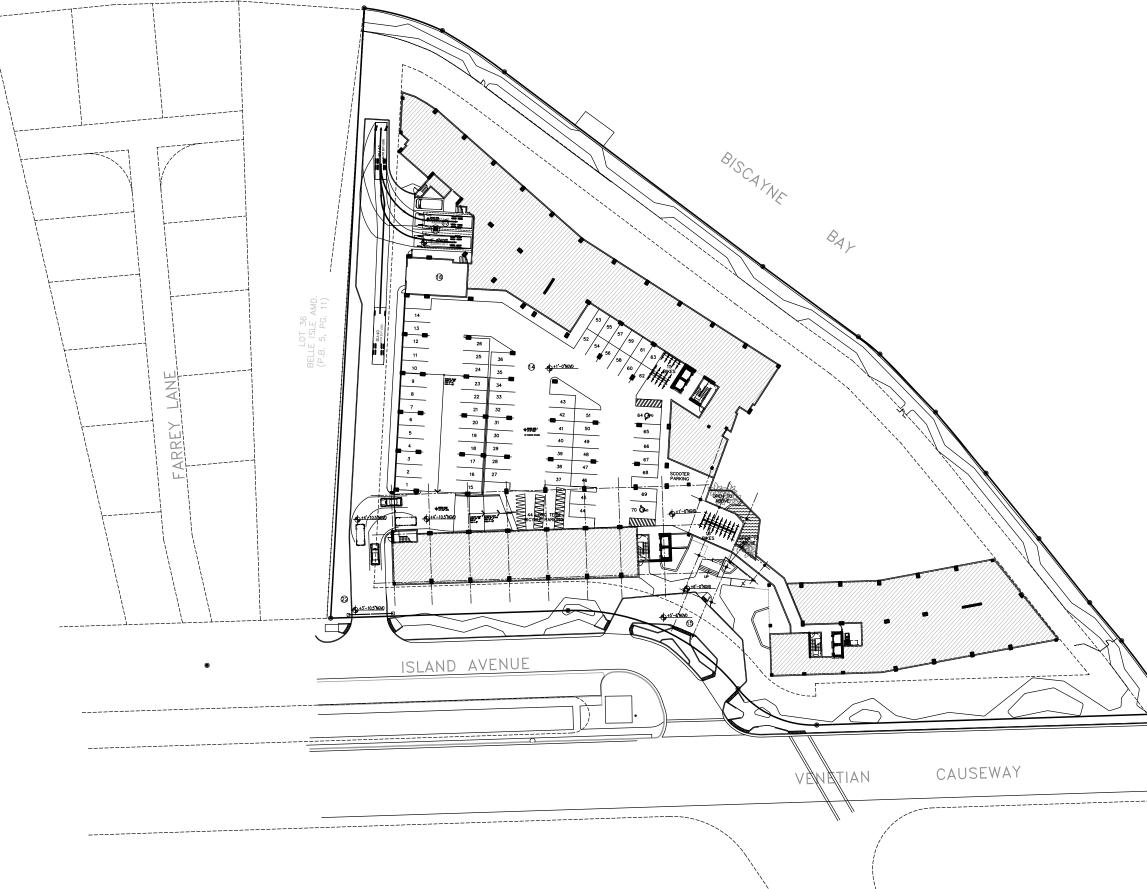
Commiled Traffic.
 Proposed Traffic who Project = Peak Seasonally Adjusted TMC + Backgound+Commiled
 Proposed Traffic who Project = Peak Seasonally Adjusted TMC + Backgound+Commiled
 Site traffic assignment.
 Site traffic assignment for Valet Operation.
 Site traffic assignment for Valet Operation.
 Site traffic assignment for Valet Operation.

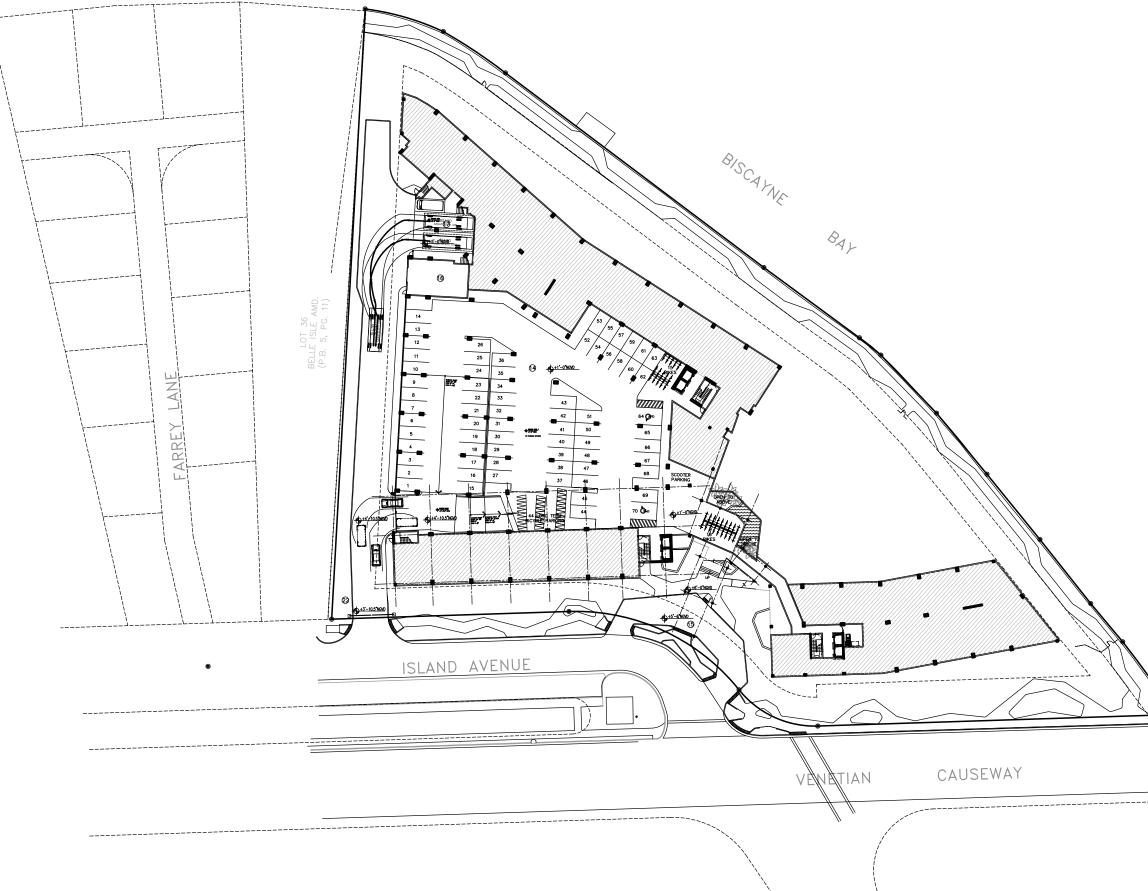
8 Seasonally Adjusted TMC = Count 'SF (These are the volumes utilized in the existing condition intersection LCS), 9 A 0.62 percent background growth was utilized with a project build-out of bries years.

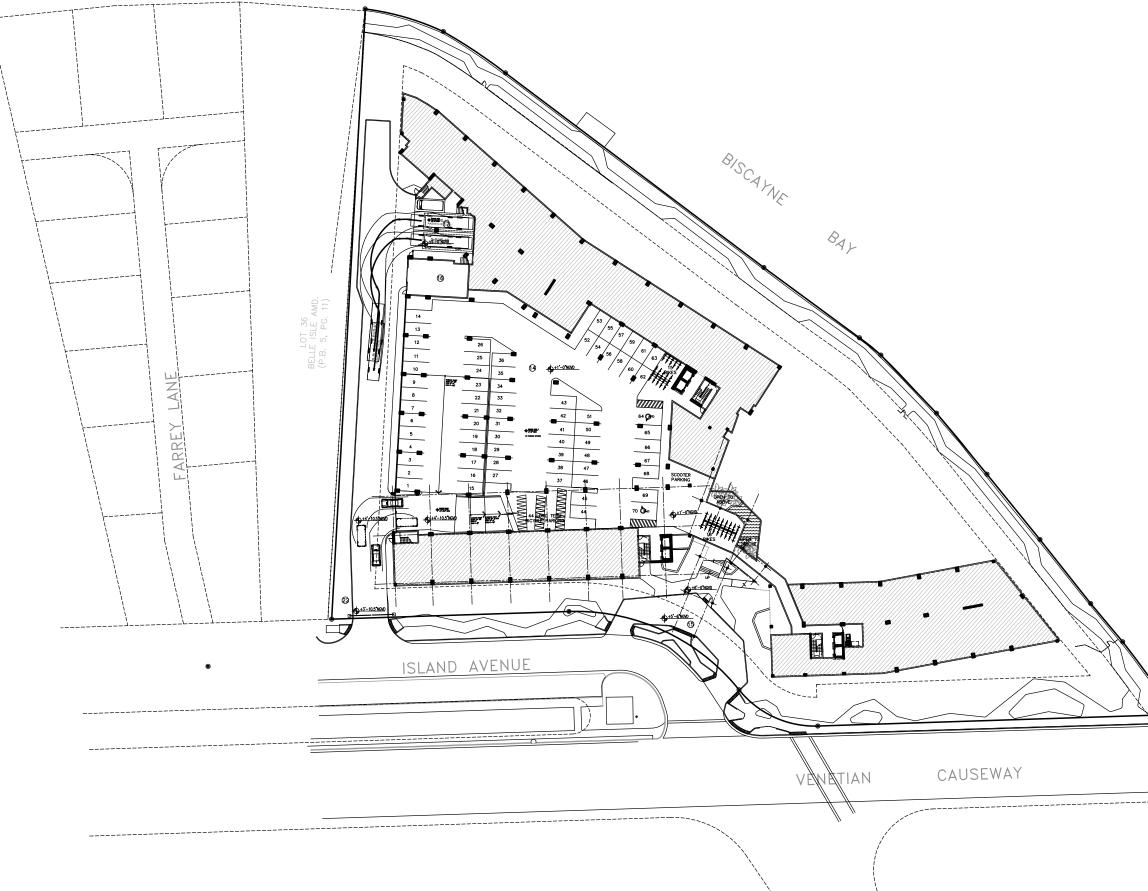

12/7/2012

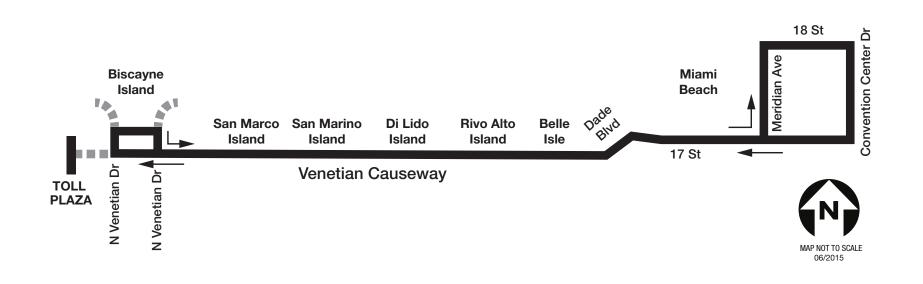

Appendix F West Bridge PD&E Documentation

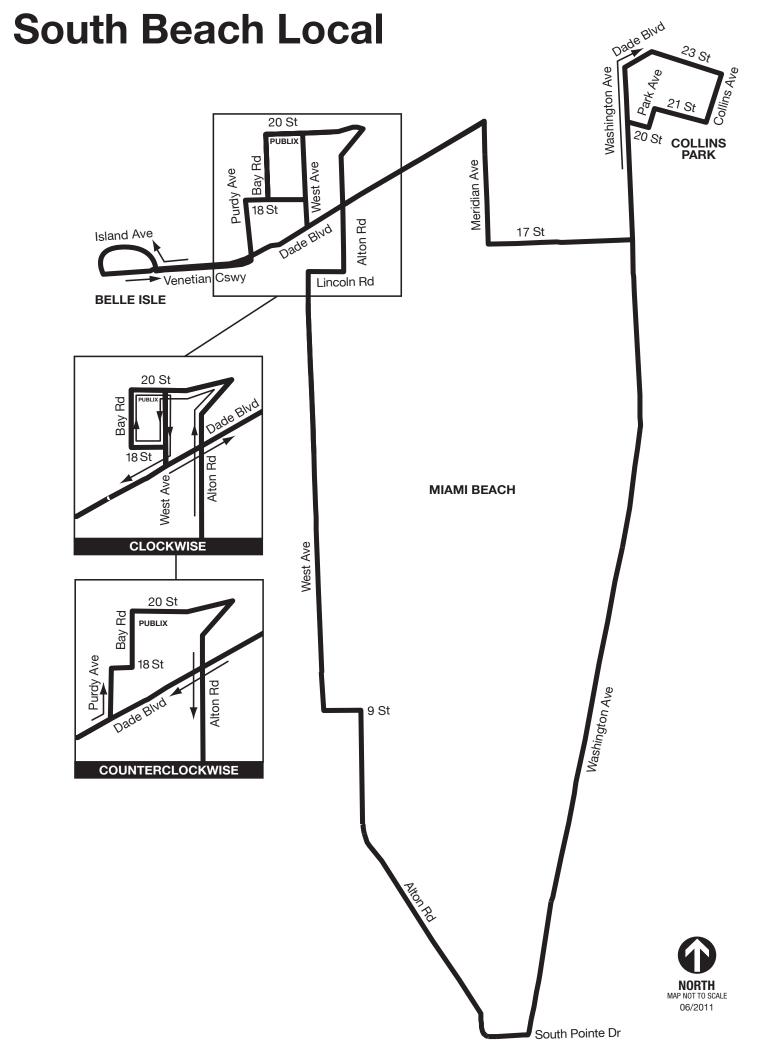


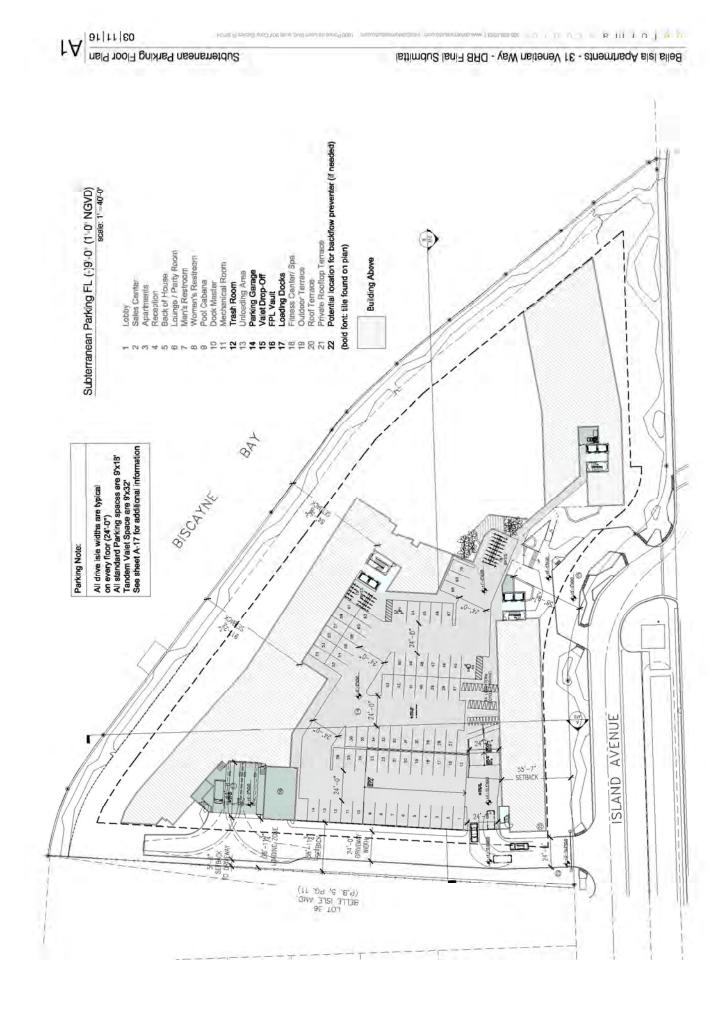

ATTACHMENT 3

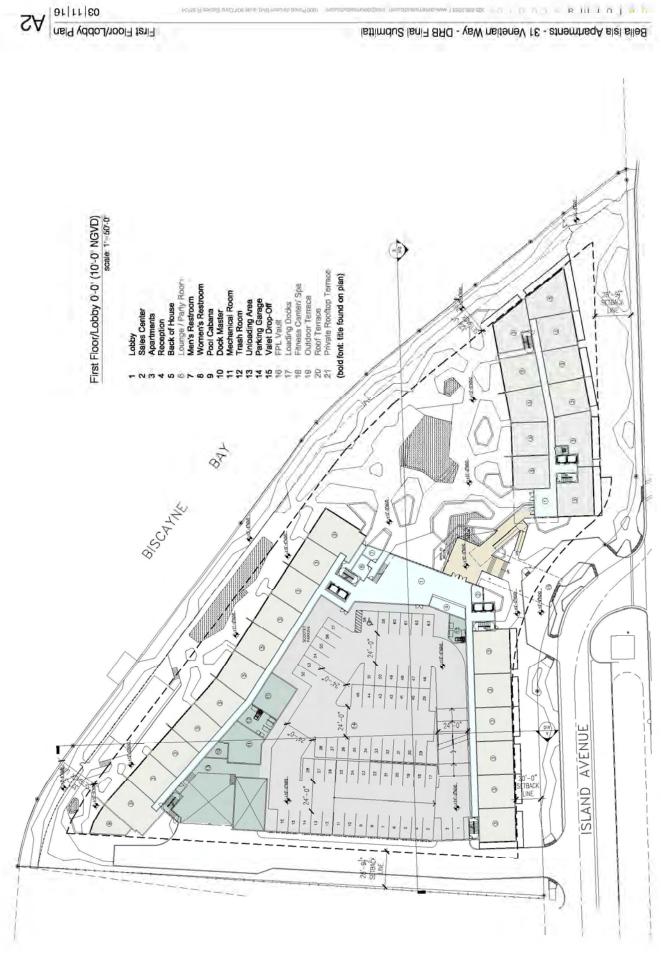

Appendix G Circulation / Bus Route Information

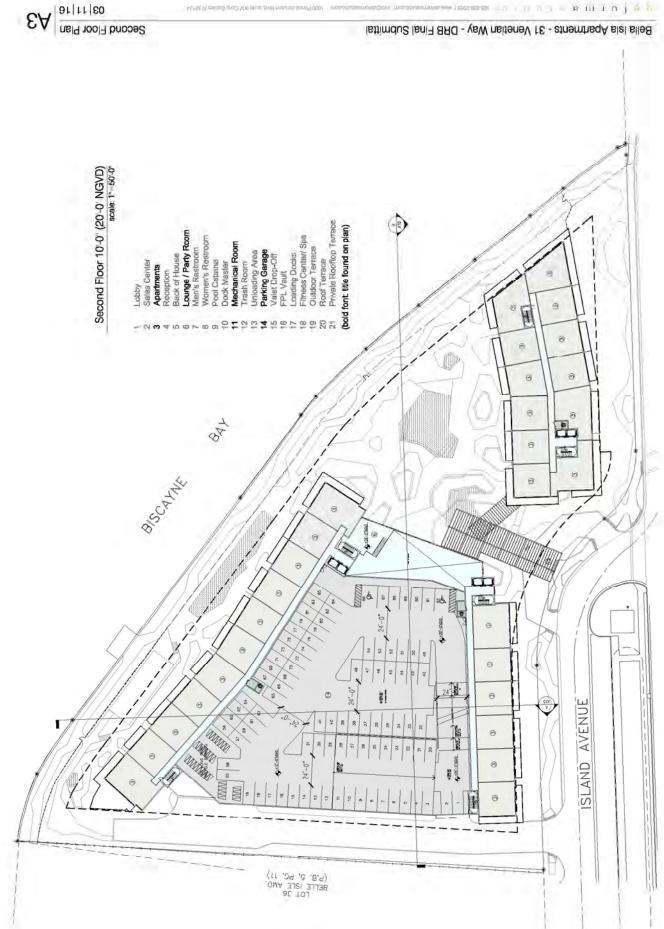




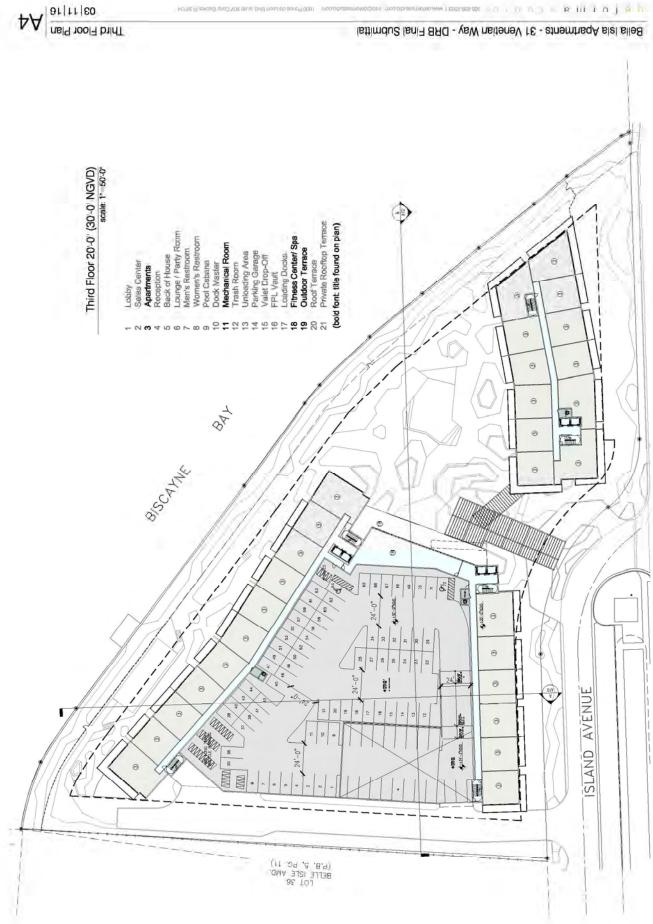





Route A Detour



Appendix H Queuing Documentation



ESOS SERVICE O LO DO S R HILLO J A D

REPORT OF THE REPORT OF THE POLICE

REPORT OF THE REPORT OF THE POLICE

Attachment 2

Grand Beach Hotel

Date:

Observer:

July 20,2011

J. Espinosa (DPA)

hiolo	In	Out	Type	Arrival Time	Processing	Notos
ehicle	111	Jui	Туре	Arrival Line	Time	Notes
1		Х	Car	8:34 AM	0:00:37	Valet Return
2		Х	Car	8:35 AM	0:01:06	Valet Return
3		Х	Car	8:36 AM	0:00:25	Valet Return
4		Х	Car	8:36 AM	0:00:38	Pick Up (Personal)
5	Х		Car	8:41 AM	0:00:18	Guest In
6		Х	Car	8:45 AM	0:00:30	Valet Return
7	Х		Car	8:52 AM	0:01:17	Check In
8		Х	Car	9:02 AM	0:01:46	Check Out
9	Х		Car	9:04 AM	0:01:01	Check In
10	Х		Car	9:05 AM	0:00:51	Check In
11		Х	Van	9:06 AM	0:00:32	Tour
12		Х	Taxi	9:09 AM	0:00:26	Guest Out
13	х		Car	9:09 AM	0:02:34	Check In
14		Х	Car	9:10 AM	0:00:26	Valet Return
15		х	Car	9:11 AM	0:00:37	Valet Return
16	х		Car	9:14 AM	0:00:28	Guest In
17		Х	Car	9:14 AM	0:00:22	Valet Return
18	Х		Car	9:18 AM	0:01:02	Check In
19		Х	Car	9:18 AM	0:00:36	Valet Return
20		Х	Taxi	9:21 AM	0:00:22	Guest Out
21		Х	Car	9:21 AM	0:01:26	Check Out
22		Х	Car	9:22 AM	0:00:44	Valet Return
23	х		Car	9:25 AM	0:01:21	Check In
24		Х	Car	9:25 AM	0:01:06	Valet Return
25		Х	Car	9:26 AM	0:00:23	Valet Return
26		Х	Car	9:28 AM	0:00:25	Valet Return
27		Х	Car	9:29 AM	0:00:22	Valet Return
28		Х	Car	9:29 AM	0:00:21	Valet Return
29		Х	Car	9:34 AM	0:00:46	Valet Return
30	Х		Car	9:38 AM	0:01:04	Check In
31		Х	Car	9:38 AM	0:00:36	Valet Return
32		Х	Car	9:39 AM	0:00:21	Valet Return
33		Х	Car	9:41 AM	0:00:34	Guest Out
34		Х	Car	9:43 AM	0:00:14	Valet Return
35		Х	Car	9:45 AM	0:02:04	Check Out
36	Х		Car	9:45 AM	0:01:20	Check In
37		Х	Taxi	9:48 AM	0:00:48	Check Out
38		Х	Car	9:49 AM	0:00:26	Guest Out
39		Х	Car	9:49 AM	0:00:48	Valet Return
40	Х		Car	9:51 AM	0:00:37	Check In
41		Х	Car	9:51 AM	0:00:30	Valet Return
42		Х	Car	9:57 AM	0:00:28	Valet Return
43		Х	Car	9:58 AM	0:01:22	Check Out
44		Х	Car	10:02 AM	0:00:32	Valet Return
45		Х	Car	10:03 AM	0:00:35	Valet Return
46		Х	Van	10:04 AM	0:00:46	Valet Return
47	Х		Car	10:06 AM	0:00:39	Check In
48		Х	Car	10:08 AM	0:01:58	Check Out
49		Х	Taxi	10:08 AM	0:01:48	Check Out
50		Х	Car	10:09 AM	0:00:41	Valet Return
51		Х	Car	10:10 AM	0:00:44	Valet Return
52		Х	Car	10:12 AM	0:00:26	Valet Return
53	х		Taxi	10:13 AM	0:00:42	Check In
54		х	Taxi	10:14 AM	0:02:21	Check Out
55			Taxi	10:16 AM	0:01:48	Check Out
56		х	Car	10:18 AM	0:00:37	Valet Return
57		X	Car	10:18 AM	0:00:56	Valet Return
58	х		Car	10:20 AM	0:00:40	Guest In
59		х	Car	10:24 AM	0:00:57	Valet Return
				sing Time:	0:50:10	
		A.v.o	rago Droc	essing Time:	0:00:51	

The first vehicle dropping-off children arrived at school at 8:30 AM. Data collection began at this time.

Applications of Queueing Analysis

location, a 5% probability of back-up onto the adjacent street is judged to be acceptable. Demand on the system for design is expected to be 110 vehicles in a 45-minute period. Average service time was expected to be 2.2 minutes. Is the queue storage adequate?

Such problems can be quickly solved using Equation (8-9b) given in Table 8-10 and repeated below for convenience.

$$M = \left[\frac{\ln P(x > M) - \ln Q_M}{\ln \rho}\right] - 1$$

where:

- M = queue length which is exceeded p percent of the time
- N = number of service channels (drive-in positions)
- Q = service rate per channel (vehicles per hour)

$$\rho = \frac{\text{demand rate}}{\text{service rate}} = \frac{q}{NQ} = \text{utilization factor}$$

- q = demand rate on the system (vehicles per hour)
- $Q_{\rm M}$ = tabled values of the relationship between queue length, number of channels, and utilization factor (see Table 8.11)

TABLE 8-11

Table of Q_M Values

A	N = 1	2	3	4	6	8	10
0.0	0.0000	0.0000	0.0000	0.0000			
0.1	.1000	.0182	.0037	.0008	.0000	0.0000	0.0000
.2	.2000	.0666	.0247	.0096	.0015	.0002	.0000
.3	.3000	.1385	.0700	.0370	.0111	.0036	.0011
.4	.4000	.2286	.1411	.0907	.0400	.0185	.0088
.5	.5000	.3333	.2368	.1739	.0991	.0591	.0360
.6	.6000	.4501	.3548	.2870	,1965	,1395	.1013
.7	.7000	.5766	.4923	.4286	.3359	.2706	.2218
.8	.8000	.7111	.6472	.5964	.5178	.4576	.4093
.9	.9000	.8526	.8172	.7878	.7401	.7014	.6687
1.0	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

arrival rate, total a p

(number of channels) (service rate per channel) NQ

N – number of channels (service positions)

Solution

Step 1:	$Q = \frac{60 \text{ min/hr}}{2.2 \text{ min/service}} = 27.3 \text{ services per hour}$
	$q = (110 \text{ veh}/45 \text{ min}) \times (60 \text{ min/hr}) = 146.7 \text{ vehicles per hour}$
	$\rho = \frac{q}{NQ} = \frac{146.7}{(6)(27.3)} = 0.8956$
Step 4:	$Q_M = 0.7303$ by interpolation between 0.8 and 0.9 for $N = 6$ from the
	table of Q_M values (see Table 8-11).

Step 5: The acceptable probability of the queue, M, being longer than the storage, 18 spaces in this example, was stated to be 5%. P(x > M) = 0.05, and: ...

$$M = \left[\frac{\ln 0.05 - \ln 0.7303}{\ln 0.8956}\right] - 1 = \left[\frac{-2.996 - (-0.314)}{-0.110}\right] - 1$$

= 24.38 - 1 = 23.38, say 23 vehicles