March 23, 2018



# **5757 Collins Avenue**

c/o Mr. Matthew A. Barnes, AICP Consultant Akerman, LLP 98 Southeast Seventh Street, Suite 1100 Miami, Florida 33131

#### **Review Report – Traffic Study 5775 Collins - Response to Review Comments** Re: (March 20, 2018)

Dear Matt:

We received traffic-related comments in connection with the 5775 Collins Development project. The responses to the traffic-related comments are provided below:

- 1. Please clarify the land use code and the ITE trip generation edition used. There are conflicting references within the document. The land use code is LUC 222 and the ITE trip generation edition is the 10<sup>th</sup>. The text in the report was revised accordingly.
- 2. It seems that the study used the average rate to determine the trip generation for land use code 222. The best fit formula should be used. The best fit formula was used for the trip generation calculations. The trip generation was revised accordingly.
- 3. The project is located in TAZ 627 not 527. Please review Table 2 and the proposed traffic assignment.

Table 2 was revised and the project traffic assignment was updated.

- 4. Figure 3 should identify the trips assigned to the intersection of 63rd street at Indian Creek and Collins Avenue. Trips assigned to the intersection of 63rd street at Indian Creek and Collins Avenue were added to Figure 3.
- 5. Intersection Analysis
- a. The synchro models should include all the intersections to be analyzed. Please model the intersection of Collins Avenue at 5875 Block. The updated SYNCHRO files include the intersections analyzed.
- b. The synchro file models are showing the intersection at 65th street. However, there was no reference to them on the study. The 65<sup>th</sup> Street intersection was deleted from the SYNCHRO file.
- c. The signal timings or existing volumes for the intersections of 63rd street at Indian Creek and Collins Avenue were not provided within the appendix. Timings and volumes were added to Appendix B.



# 6. Valet Operations

a. Please indicate how the service rate was determined. The study assumes various times for different parts of the service, but it doesn't indicate how those times were determined.

The service rate includes four components (ticket processing time, driving time, parking time and walking period). Since the parking garage is on site, the driving time to a parking space was assumed to be 2 minutes and the walking time through the building at 1 minute. Based on discussions with mechanical lifts manufacturers and as used in other projects in Miami Beach, 2 minutes appears to be the average time to park or unpark a vehicle from a mechanical parking system. For purposes of this evaluation, we used 3 minutes.

- **b.** Please indicate the type of mechanical parking system and its operational characteristics.
- c. The type of mechanical parking system has not been selected yet. It will likely between Klaus or ParkPlus.
- 7. Figures 1-3 should include the complete study area. Figure 3 has a typo in the legend.

Figures 1-3 were revised accordingly.

8. Please provide figures summarizing the intersections existing background and expected volumes.

Figures 4, 5, and 6 were added to Appendix E

9. Appendix E – shows that a growth rate of 1.5% was used in the analysis. Please provide supportive documentation.

Documentation supporting the 1.5% growth rate was added to Appendix B.

- 10. Loading and Trash Pickup Please indicate the type of loading vehicles that will be serving the project and provide a loading zone maneuverability analysis. In addition, please discuss the garbage pickup operations and provide maneuverability analysis diagrams for this operation as well. The attached diagram depicts the trash pickup route.
- **11.** This project requires the installation of bike racks. Please show their location on the proposed site plan.

The attached plan shows the bike racks within the site.

**12.** The trip distribution and circulation section has a typo indicating a restaurant use.

The text in the report was revised.

Please call me if you have any questions.

# TRAF TECH ENGINEERING, INC.

Joaquin E. Vargas, P.E. Senior Transportation Engineer



| 5775 COLLINS AVE | GARAGE - EL3.6' NGVD |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2018.03.23 | A-1-01 |
|------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------|
| MULTIPLAN        |                      | All designs indicated in these dravings on the property of Arquitectanica International Corp. All caying the reserved 2017. No capies, transmissions, reproductions ar electronic<br>manipulation of any particular diversity is a whole or in port are to be node without the express written permission of Arquitectanical Corp. The concepts<br>represented in these dravings are subject to review and verification by the dy of Miami Beech, as well as other governmental and local agencies having priodiction. | ARQUITECT  | TONICA |



5775 Collins Avenue March/2018 Vehicle Maneuvering Study Loading Area



March 22, 2018

### **5757 Collins Avenue**

c/o Mr. Matthew A. Barnes, AICP Consultant Akerman, LLP 98 Southeast Seventh Street, Suite 1100 Miami, Florida 33131

# Re: 5775 Collins Avenue – Traffic Study

Dear Matt:

Traf Tech Engineering, Inc. is pleased to provide you with the results of the traffic study conducted for the proposed re-development of the existing residential development located at 5775 Collins Avenue in the City of Miami Beach in Miami-Dade County, Florida. Figure 1 depicts the location of the project site and the nearby transportation network. The existing residential development will be replaced with a less-intense residential building consisting of 89 high-rise residential units. Even though the existing residential development currently has 10 residential units currently occupied, the new project impacts associated with all 89 high-rise units will be assessed herein. It is important to note that the current residential development is more intense (more residential units) than the proposed building and the current building can be fully occupied without the need for a traffic study. However, as discussed with the City of Miami Beach, the future traffic impacts with the 89 high-rise units are documented herein.

This following section addresses the existing roadway system located in the vicinity of the project site, nearby U-turn locations, traffic counts, trip generation and trip distribution.

# **Existing Roadway Conditions**

The roadway system located near the project site includes Collins Avenue. Collins Avenue is a six-lane divided arterial roadway with a one-lane frontage road on the east side of the roadway. The driveway to the future high-rise development will remain unchanged (right-turns only).

# Nearby U-Turn Locations

For ingress and egress purposes, U-turns are expected at the signalized U-turn location at the 5800 block (north of the project site) and at a directional median opening located south of the 5775 Collins project.

Figure 2 shows the existing lane geometry of the two U-turn locations.

8400 North University Drive, Suite 309, Tamarac, Florida 33321 Tel: (954) 582-0988 Fax: (954) 582-0989



# **Traffic Counts**

Traf Tech Engineering, Inc., in association with Video Data Solutions, Inc., collected traffic data at the two U-turn locations. These traffic counts were collected for information purposes.

The intersection turning movement counts were collected on Friday, March 10, 2017 during the PM peak period (4:00 PM to 7:00 PM). As indicated in the traffic counts, the amount of U-turn currently occurring at the two U-turn locations is minimal (less than one vehicle per minute). The existing PM peak hour traffic counts are contained in Appendix B.

# **Trip Generation Estimation**

The trip generation for the project was based on information contained in the Institute of Transportation Engineer's (ITE) *Trip Generation Manual (10<sup>th</sup> Edition)*. According to the subject ITE manual, the most appropriate "land use" category for the proposed land use is: Land Use 222 – High Rise Apartment. Table 1 below summarizes the external trips associated with the proposed 5775 Collins residential development.

|           |      | TAB<br>Trip Generat<br>5775 ( | LE 1<br>ion Summary<br>Collins |               |         |
|-----------|------|-------------------------------|--------------------------------|---------------|---------|
|           |      | Daily                         | AM                             | l (PM) Peak H | our     |
| Land Use  | Size | Trips                         | Ins                            | Out           | Total   |
| High-Rise | 89   | 562                           | 9 (24)                         | 29 (15)       | 38 (39) |

*SOURCE: ITE Trip Generation Manual (10<sup>th</sup> Edition)* 

As indicated in Table 1, the proposed development is anticipated to generate approximately 562 new daily trips and approximately 38/39 new trips (9/24 inbound and 29/15 outbound) during the typical AM/PM peak hour. Hence, the new trips generated by the 5775 Collins development are considered minimal from a traffic engineering standpoint (one new peak hour trip every two minutes).

ITE Land Use 222 – High Rise Residential Condominium

<u>Weekday Trip Generation</u> T = 3.94 (X) + 211.81Where T = number of weekday trips and X = number of units

<u>Weekday AM Peak Hour of Adjacent Street</u> T = 0.28 (X) + 12.86 (24% inbound and 76% outbound)Where T = number of weekday PM peak hour trips and X = number of units



<u>Weekday PM Peak Hour of Adjacent Street</u> T = 0.34 (X) + 8.56 (61% inbound and 39% outbound)Where T = number of weekday PM peak hour trips and X = number of units

# **Trip Distribution and Traffic Circulation**

The trip distribution and traffic assignment for the project were based on Miami-Dade County's Cardinal Distribution information for the study area. Table 2 summarizes the County's cardinal distribution data for Traffic Analysis Zone 627, which is applicable to the project site from the latest SERPM data published by Miami-Dade County.

|        | TABLE 2<br>Project Trip Distri<br>5775 Collins | ibution          |
|--------|------------------------------------------------|------------------|
|        | Direction                                      | % of Total Trips |
| North: | Northwest                                      | 24.7             |
|        | Northeast                                      | 4.7              |
| South: | Southwest                                      | 31.7             |
|        | Southeast                                      | 0.0              |
| East:  | Northeast                                      | 0.0              |
|        | Southeast                                      | 0.0              |
| West:  | Northwest                                      | 12.9             |
|        | Southwest                                      | 26.0             |
|        | Total                                          | 100.00%          |

Source: Miami-Dade County (2040 SERPM)

Based on the above, the following traffic assignment was assumed for the proposed development:

- 42% to/from the north via Collins Avenue
- 58% to/from the south via Collins Avenue

The new peak hour traffic generated by the project was assigned to the nearby transportation network using the traffic assignment documented above. The new project traffic assignment is summarized in Figure 3. As depicted in Figure 3, the projected U-turns at the north and south median openings are minimal (less than one new vehicle trip every six minutes).

The traffic circulation within the site consists of the following:

• All inbound vehicles will enter via the south driveway from the Collins Avenue frontage road and drop-off at the porte-cochere area near the center of the site. The south driveway is restricted to right-turns-in only. Vehicles will be parked by entering via the north ramp that leads to the parking garage. Vehicles are



retrieved from the parking garage and returned to the porte-cochere via the south ramp. From the porte-cochere all exiting vehicles exit onto the Collins Avenue frontage road via the north driveway which is restricted to right-turns-out only.

# **Pedestrian Circulation**

A 9-foot four-inch sidewalk is located in front of the 5775 Collins Avenue site (east side of Collins Avenue/frontage road). The wide-sidewalk provides north-south pedestrian mobility within the immediate area of the project. From the sidewalk, access to the subject residential development is provided via a pedestrian access path/stairs located between the sidewalk and the porte-cochere. Moreover, a signalized pedestrian crossing is provided at the 5800 block approximately 625 feet north of the site.

# Pedestrian Facilities Analysis (Sidewalks and Crosswalks)

Based on the traffic counts contained in Appendix B, approximately 22 pedestrians used the signalized pedestrian crosswalk located at the 5800-block during the peak pedestrian hour. As shown in the signal timing plans contained in Appendix C for the signalized located at the 5800 block (timing plan refers to the location as the 5875 block, but the street sign indicates 5800 block), the subject pedestrian crossing operates with a signal cycle of 140 seconds, which results in approximately 25 pedestrian crossing opportunities per hour. Hence, the signalized pedestrian crossing at the 5800 block has 25 opportunities per hour to accommodate 22 pedestrians per hour (sufficient pedestrian capacity is available at the subject signalized pedestrian crossing).

The traffic counts contained in Appendix B show a maximum of 27 pedestrians during the peak 15-minute period using the sidewalk located on the east side of Collins Avenue/frontage road (west of the site, refer to ped column on westbound approach at Collins Ave at 5701 Block). With a sidewalk width of 9.33 feet (9 feet, 4 inches), the resulting pedestrian flow rate is approximately 0.193 pedestrians/minute/foot of sidewalk width (27 pedestrians per peak 15-minute period divided by 15 divided by 9.33). According the 2010 Highway Capacity Manual (refer to Appendix D), the resulting level of service of the sidewalk adjacent to the site is "A".

# Transit Service

Miami-Dade County transit service has three (3) bus routes that travel north and south along Collins Avenue. These bus routes include S, L and 120. There is a bus stop (with a bus bench) in front of the 5775 Collins Avenue site for northbound traveling passengers. Similarly, there is another bus stop (with a bus shelter) for southbound traffic on the west side of Collins Avenue approximately 100 feet north of the 5775 Collins Avenue site.



# DecoBike

DecoBike is the Official City of Miami Beach Bike Sharing & Rental program. It provides new alternative mode of transportation for both residents and visitors of the City of Miami Beach. The DecoBike Program features a network of 100 solar-powered bike rental & sharing stations. Station 302 is located within walking distance (at the 5300 block) from the 5775 Collins Site.

# **Transportation Demand Management**

Travel Demand Management plans (TDM) establish policies and mechanisms to reduce automobile trips to and from designated facilities. TDM plans usually use several approaches to address all modes of transportation likely to be used to provide access to a facility such as single occupant driving, carpooling, transit, bicycling and walking. The goal of TDM plans is to increase the use of alternatives modes to single occupant driving, i.e., to reduce the number of automobile trips to and from the facility and consequently, minimizing automobile traffic impacts on the street system.

Successful TDM plans not only address all modes of transportation, but also use policies such as inducements for alternative modes, physical enhancements (bike lockers, preferential parking for carpools) and disincentives for automobile use..

Potential measures for each mode are addressed below.

### Pedestrian Access

Walking not only reduces automobile trips and their contribution to congestion and emissions, it also provides health benefits to the residents who use this mode of transportation. In addition, the area near the subject mixed-use project is a high pedestrian traffic area and densely populated residential area and therefore, many future residents of the 5775 Collins development are expected to regularly choose walking over alternative transportation methods. Sidewalks exist on the east and south sides of Collins Avenue as well as safe pedestrian crosswalks (with ramps and pedestrian signals) at the signalized intersection of Collins Avenue and the 5800 Block.

### Bicycling

The site of the 5775 Collins offers a potential approach to encourage cycling vi the use of the DecoBike program.



Use of DecoBikes will be encouraged by facilitating the acquisition of monthly passes on site. Monthly passes are \$15.00 for unlimited 30 minute rides and \$25.00 for unlimited 60 minute rides. Within the immediate area of the project, there is one convenient DecoBike rental stations (Station 302: Collins Avenue at the 5300 Block). Residents will be informed of DecoBike Stations 302. (Goal: 4 Residents).

### Mass Transit

There are transit options for the 5775 Collins development. These transit routes include 120, L and S. The nearest bus stop for these services is located adjacent to the project (on both sides of Collins Avenue). These transit routes provide frequent service and access to all of Miami-Dade County as well as connections to other destinations outside of the County. Residents will be informed of the transit routes available.

# Carpooling

Carpooling is historically the least effective alternative transportation mode, even when implemented on a regional basis. It is unlikely that carpooling will provide a significant amount of trip reduction. However, preferential parking could be made available to residents that carpool. (Goal: 2 Residents).

### TDM Program Management

An employee of the future 5775 Collins building will be designated as the "TDM Manager" and will have assigned duties that include establishment and management of the TDM program. Said employee will need to be able to explain the bicycling, mass transit and carpooling options to residents. In addition, said employee will advise residents of the benefits relative to each mode of transportation. Materials describing the TDM program will be made available to all residents. The TDM Manager will coordinate with the City of Miami Beach, and potentially with MDT and DECOBIKES LLC for monthly transit passes and DecoBike passes respectively. The TDM Manager will need to set up a method and a schedule to monitor participation of residents for each mode of transportation. The person assigned to manage the TDM plan will be identified at the time of permitting.

# Level of Service

Level of service analyses were undertaken for the AM and PM peak hours for the intersections of 63<sup>rd</sup> Street at both Indian Creek Drive and Collins Avenue. The analyses conducted for the 6372 Collins project were used as background conditions and the projected trips associated with this project were added to the above-referenced intersection system. As indicated in the SYNCHRO analyses contained in Appendix E, the impacts created by the 5775 Collins project are minimal.

| TA<br>Intersection<br>577:                                  | ABLE 3<br>Level of Serv<br>5 Collins | ice                   |                        |
|-------------------------------------------------------------|--------------------------------------|-----------------------|------------------------|
|                                                             |                                      | Future Traf           | fic Conditions         |
| Intersection                                                | Existing                             | Future<br>w/o Project | Future<br>With Project |
| Indian Creek Drive & W 63 <sup>rd</sup> Street (signalized) | F (F)                                | F (F)                 | F (F)                  |
| Collins Avenue & W 63 <sup>rd</sup> Street<br>(signalized)  | B (C)                                | C (C)                 | C (C)                  |
| Collins and 5875 Block (signalized)                         | _                                    | _                     | (A)                    |

Source: Highway Capacity Manual Legend: AM (PM)

The projected impact to the northbound U-turn at the 5800 block is projected to be minimal. Based on the project trips depicted in Figure 3, a maximum of nine (9) vehicles will impact the subject northbound U-turn during the AM peak hour, which is one new vehicle trip every six minutes and 40 seconds (approximately one vehicle trip every 3 signal cycles).

# Valet Service and Queuing

In order to determine the potential on-site vehicle stacking at the valet station as a result of the proposed mechanical parking, a queuing analysis was undertaken. The length of queue anticipated at the valet station using information contained in ITE's *Transportation and Land Development*, Chapter 8<sup>1</sup>. For this analysis, the following input variables were used:

- <u>Service Rate</u>: For purposes of this evaluation, it was assumed that each valet runner would take approximately seven (7) minutes to park/unpark a valet vehicle. This assumption is based on the following: (1 minute for ticket processing time, 2 minutes of driving time, 3 minutes to park/unpark a vehicle within the mechanical parking system, and 1 minute of walking time back to the valet station).
- <u>Demand Rate</u>: As indicated in Table 1, a maximum of 39 inbound/outbound vehicles will arrive/depart during the highest hour.

<sup>&</sup>lt;sup>1</sup> By Vergil G. Stover and Frank J. Koepke.



Using equation 8-9b and Table 8-11 of ITE's *Transportation and Land Development*, the maximum length of queue anticipated at the 95% confidence level is eight (8) vehicle. Therefore, the on-site queueing at the valet station is not anticipated to be a problem with up to six (6) valet runners. The results of the ITE queuing procedure are contained in Appendix F.

It has been a pleasure working with you on this project.

Sincerely,

TRAF TECH ENGINEERING, INC.

Joaquin E. Vargas, P.E. Senior Transportation Engineer





# **PROJECT LOCATION MAP**

5775 Collins Miami Beach, Florida



# FIGURE 2

5775 Collins Miami Beach, Florida

# **EXISTING LANE GEOMETRY**

Traf Tech ENGINEERING, INC.





Traf Tech ENGINEERING, INC. EXISTING TRAFFIC COUNTS AM & (PM) Peak Hour **FIGURE 4** 5775 Collins Miami Beach, Florida



Traf Tech ENGINEERING, INC. BACKGROUND TRAFFIC AM & (PM) Peak Hour **FIGURE 5** 5775 Collins Miami Beach, Florida





TOTAL TRAFFIC AM & (PM) Peak Hour **FIGURE 6** 5775 Collins Miami Beach, Florida

# **APPENDIX** A Site Plan – 5775 Collins



# 5775 COLLINS AVE

# SITE PLAN

All designs indicated in these drawings are the property of Arquitectonica International Corp. All copyrights reserved 2017. No copies, transmissions, reproductions or electronic manipulation of any portion of these drawings in whole or in part are to be made without the express writem permission of Arquitectonica International Corp. The concepts represented in these drawings are subject to review and verification by the äty of Miami Beach, as well as other governmental and local agencies having jurisdiction.

0 5 10 20



# MULTIPLAN

### 2018.03.05 A-1-00



# **APPENDIX B**

Traffic Counts and Growth Rate Information

CLIENT : TRAF TECH Engineering JOB NO : 2017-26 PROJECT: Collins Ave COUNTY : Miami-Dade

|                  |       |      |          |         |            |       | (    | Groups  | s Printe | ed- Auto   | <u>) - Hea</u> | vy Veh | icles    |         |            |       |      |         |         |            |            |
|------------------|-------|------|----------|---------|------------|-------|------|---------|----------|------------|----------------|--------|----------|---------|------------|-------|------|---------|---------|------------|------------|
|                  |       | Co   | ollins A | ve      |            |       | 58   | 300 Blo | ock      |            |                | C      | ollins A | Ave     |            |       | 58   | 300 Blo | ock     |            |            |
|                  |       | So   | uthbou   | und     |            |       | W    | estbou  | und      |            |                | No     | orthbo   | und     |            |       | E    | astbou  | ind     |            |            |
| Start Time       | Right | Thru | Left     | U-Turns | App. Total | Right | Thru | Left    | U-Turns  | App. Total | Right          | Thru   | Left     | U-Turns | App. Total | Right | Thru | Left    | U-Turns | App. Total | Int. Total |
| 16:30            | 0     | 230  | 0        | 1       | 231        | 0     | 0    | 0       | 0        | 0          | 0              | 279    | 0        | 15      | 294        | 0     | 0    | 0       | 0       | 0          | 525        |
| 16:45            | 0     | 235  | 0        | 3       | 238        | 0     | 0    | 0       | 0        | 0          | 0              | 295    | 0        | 9       | 304        | 0     | 0    | 0       | 0       | 0          | 542        |
| Total            | 0     | 465  | 0        | 4       | 469        | 0     | 0    | 0       | 0        | 0          | 0              | 574    | 0        | 24      | 598        | 0     | 0    | 0       | 0       | 0          | 1067       |
|                  | -     |      |          |         |            | -     |      |         |          |            | -              |        |          |         |            | -     |      |         |         | -          |            |
| 17:00            | 0     | 234  | 0        | 6       | 240        | 0     | 0    | 0       | 0        | 0          | 0              | 300    | 0        | 7       | 307        | 0     | 0    | 0       | 0       | 0          | 547        |
| 17:15            | 0     | 246  | 0        | 3       | 249        | 0     | 0    | 0       | 0        | 0          | 0              | 325    | 0        | 8       | 333        | 0     | 0    | 0       | 0       | 0          | 582        |
| 17:30            | 0     | 255  | 0        | 4       | 259        | 0     | 0    | 0       | 0        | 0          | 0              | 339    | 0        | 6       | 345        | 0     | 0    | 0       | 0       | 0          | 604        |
| 17:45            | 0     | 242  | 0        | 2       | 244        | 0     | 0    | 0       | 0        | 0          | 0              | 340    | 0        | 9       | 349        | 0     | 0    | 0       | 0       | 0          | 593        |
| Total            | 0     | 977  | 0        | 15      | 992        | 0     | 0    | 0       | 0        | 0          | 0              | 1304   | 0        | 30      | 1334       | 0     | 0    | 0       | 0       | 0          | 2326       |
|                  |       |      |          |         |            |       |      |         |          |            |                |        |          |         |            |       |      |         |         |            |            |
| 18:00            | 0     | 215  | 0        | 2       | 217        | 0     | 0    | 0       | 0        | 0          | 0              | 329    | 0        | 8       | 337        | 0     | 0    | 0       | 0       | 0          | 554        |
| 18:15            | 0     | 221  | 0        | 3       | 224        | 0     | 0    | 0       | 0        | 0          | 0              | 314    | 0        | 7       | 321        | 0     | 0    | 0       | 0       | 0          | 545        |
| 18:30            | 0     | 205  | 0        | 0       | 205        | 0     | 0    | 0       | 0        | 0          | 0              | 305    | 0        | 0       | 305        | 0     | 0    | 0       | 0       | 0          | 510        |
| 18:45            | 0     | 195  | 0        | 0       | 195        | 0     | 0    | 0       | 0        | 0          | 0              | 289    | 0        | 0       | 289        | 0     | 0    | 0       | 0       | 0          | 484        |
| Iotal            | 0     | 836  | 0        | 5       | 841        | 0     | 0    | 0       | 0        | 0          | 0              | 1237   | 0        | 15      | 1252       | 0     | 0    | 0       | 0       | 0          | 2093       |
| Grand Total      | 0     | 2278 |          |         |            |       |      |         |          |            |                | 3115   | 0        | 69      | 3184       | 0     | 0    | 0       | 0       | 0          | 5486       |
| Apprch %         | 0     | 99   | 0        | 1       |            | 0     | 0    | 0       | 0        |            | 0              | 97.8   | 0        | 2.2     |            | 0     | 0    | 0       | 0       | -          |            |
| Total %          | 0     | 41.5 | 0        | 0.4     | 42         | 0     | 0    | 0       | 0        | 0          | 0              | 56.8   | 0        | 1.3     | 58         | 0     | 0    | 0       | 0       | 0          |            |
| Auto             | 0     | 2246 | 0        | 24      | 2270       | 0     | 0    | 0       | 0        | 0          | 0              | 3078   | 0        | 69      | 3147       | 0     | 0    | 0       | 0       | 0          | 5417       |
| % Auto           | 0     | 98.6 | 0        | 100     | 98.6       | 0     | 0    | 0       | 0        | 0          | 0              | 98.8   | 0        | 100     | 98.8       | 0     | 0    | 0       | 0       | 0          | 98.7       |
| Heavy Vehicles   |       |      |          |         |            |       |      |         |          |            |                |        |          |         |            |       |      |         |         |            |            |
| % Heavy Vehicles | 0     | 1.4  | 0        | 0       | 1.4        | 0     | 0    | 0       | 0        | 0          | 0              | 1.2    | 0        | 0       | 1.2        | 0     | 0    | 0       | 0       | 0          | 1.3        |

CLIENT : TRAF TECH Engineering JOB NO : 2017-26 PROJECT: Collins Ave COUNTY : Miami-Dade



CLIENT : TRAF TECH Engineering JOB NO : 2017-26 PROJECT: Collins Ave COUNTY : Miami-Dade

|              |          | С      | ollins A | Ave     |            |        | 58   | 300 BI | ock     |            |       | С    | ollins / | Ave     |            |       | 58   | 300 BI | ock     |            | [          |
|--------------|----------|--------|----------|---------|------------|--------|------|--------|---------|------------|-------|------|----------|---------|------------|-------|------|--------|---------|------------|------------|
|              |          | Sc     | outhbo   | und     |            |        | W    | estbo  | und     |            |       | N    | orthbo   | und     |            |       | E    | astbou | ind     |            |            |
| Start Time   | Right    | Thru   | Left     | U-Turns | App. Total | Right  | Thru | Left   | U-Turns | App. Total | Right | Thru | Left     | U-Turns | App. Total | Right | Thru | Left   | U-Turns | App. Total | Int. Total |
| Peak Hour A  | nalysis  | From 1 | 16:30 t  | o 18:45 | 5 - Peak   | 1 of 1 |      |        |         |            |       |      |          |         |            |       |      |        |         |            |            |
| Peak Hour fo | r Entire | Inters | ection   | Begins  | at 17:1    | 5      |      |        |         |            |       |      |          |         |            |       |      |        |         |            |            |
| 17:15        | 0        | 246    | 0        | 3       | 249        | 0      | 0    | 0      | 0       | 0          | 0     | 325  | 0        | 8       | 333        | 0     | 0    | 0      | 0       | 0          | 582        |
| 17:30        | 0        | 255    | 0        | 4       | 259        | 0      | 0    | 0      | 0       | 0          | 0     | 339  | 0        | 6       | 345        | 0     | 0    | 0      | 0       | 0          | 604        |
| 17:45        | 0        | 242    | 0        | 2       | 244        | 0      | 0    | 0      | 0       | 0          | 0     | 340  | 0        | 9       | 349        | 0     | 0    | 0      | 0       | 0          | 593        |
| 18:00        | 0        | 215    | 0        | 2       | 217        | 0      | 0    | 0      | 0       | 0          | 0     | 329  | 0        | 8       | 337        | 0     | 0    | 0      | 0       | 0          | 554        |
| Total Volume | 0        | 958    | 0        | 11      | 969        | 0      | 0    | 0      | 0       | 0          | 0     | 1333 | 0        | 31      | 1364       | 0     | 0    | 0      | 0       | 0          | 2333       |
| % App. Total |          |        |          |         |            |        |      |        |         |            |       |      |          |         |            |       |      |        |         |            |            |
| PHF          | .000     | .939   | .000     | .688    | .935       | .000   | .000 | .000   | .000    | .000       | .000  | .980 | .000     | .861    | .977       | .000  | .000 | .000   | .000    | .000       | .966       |



CLIENT : TRAF TECH Engineering JOB NO : 2017-26 PROJECT: Collins Ave COUNTY : Miami-Dade

|                |       |         |      |      |       |        | Grou  | os Printe | d- Peds |         |      |      |       |        |       |      |            |
|----------------|-------|---------|------|------|-------|--------|-------|-----------|---------|---------|------|------|-------|--------|-------|------|------------|
|                |       | Collins | Ave  |      |       | 5800 E | Block |           |         | Collins | Ave  |      |       | 5800 E | Block |      |            |
|                |       | Southb  | ound |      |       | Westb  | ound  |           |         | Northb  | ound |      |       | Eastbo | ound  |      |            |
| Start Time     | Right | Thru    | Left | Peds | Right | Thru   | Left  | Peds      | Right   | Thru    | Left | Peds | Right | Thru   | Left  | Peds | Int. Total |
|                |       |         |      |      |       |        |       |           |         |         |      |      |       |        |       |      |            |
| 16:30          | 0     | 0       | 0    | 0    | 0     | 0      | 0     | 0         | 0       | 0       | 0    | 1    | 0     | 0      | 0     | 0    | 1          |
| 16:45          | Ő     | Õ       | Õ    | Õ    | 0     | Õ      | Õ     | Õ         | Õ       | Õ       | Õ    | 3    | 0     | 0      | Õ     | 0    | 3          |
| Total          | 0     | 0       | 0    | 0    | 0     | 0      | 0     | 0         | 0       | 0       | 0    | 4    | 0     | 0      | 0     | 0    | 4          |
|                |       |         |      |      |       |        |       |           |         |         |      |      |       |        |       |      |            |
| 17:00          | 0     | 0       | 0    | 0    | 0     | 0      | 0     | 0         | 0       | 0       | 0    | 9    | 0     | 0      | 0     | 0    | 9          |
| 17:15          | 0     | 0       | 0    | 0    | 0     | 0      | 0     | 0         | 0       | 0       | 0    | 5    | 0     | 0      | 0     | 0    | 5          |
| 17:30          | 0     | 0       | 0    | 0    | 0     | 0      | 0     | 0         | 0       | 0       | 0    | 4    | 0     | 0      | 0     | 0    | 4          |
| 17:45          | 0     | 0       | 0    | 0    | 0     | 0      | 0     | 0         | 0       | 0       | 0    | 4    | 0     | 0      | 0     | 0    | 4          |
| Total          | 0     | 0       | 0    | 0    | 0     | 0      | 0     | 0         | 0       | 0       | 0    | 22   | 0     | 0      | 0     | 0    | 22         |
|                | 1     |         |      |      |       |        |       |           |         |         |      |      | 1     |        |       |      | 1          |
| 18:00          | 0     | 0       | 0    | 0    | 0     | 0      | 0     | 0         | 0       | 0       | 0    | 5    | 0     | 0      | 0     | 0    | 5          |
| 18:15          | 0     | 0       | 0    | 0    | 0     | 0      | 0     | 0         | 0       | 0       | 0    | 5    | 0     | 0      | 0     | 0    | 5          |
| 18:30          | 0     | 0       | 0    | 0    | 0     | 0      | 0     | 0         | 0       | 0       | 0    | 6    | 0     | 0      | 0     | 0    | 6          |
| 18:45          | 0     | 0       | 0    | 0    | 0     | 0      | 0     | 0         | 0       | 0       | 0    | 2    | 0     | 0      | 0     | 0    | 2          |
| Total          | 0     | 0       | 0    | 0    | 0     | 0      | 0     | 0         | 0       | 0       | 0    | 18   | 0     | 0      | 0     | 0    | 18         |
| <b>A 1 - 1</b> |       |         |      |      |       |        |       |           |         |         |      |      |       |        |       |      |            |
| Grand I otal   | 0     | 0       | 0    | 0    | 0     | 0      | 0     | 0         | 0       | 0       | 0    | 44   | 0     | 0      | 0     | 0    | 44         |
| Apprch %       | 0     | 0       | 0    | 0    | 0     | 0      | 0     | 0         | 0       | 0       | 0    | 100  | 0     | 0      | 0     | 0    |            |
| Total %        | 0     | 0       | 0    | 0    | 0     | 0      | 0     | 0         | 0       | 0       | 0    | 100  | 0     | 0      | 0     | 0    |            |

CLIENT : TRAF TECH Engineering JOB NO : 2017-26 PROJECT: Collins Ave COUNTY : Miami-Dade

|              |          | С      | ollins A | Ave     |            |        | 58   | 300 Bl | ock  |            |       | С    | ollins / | Ave  |            |       | 58   | 300 Bl | ock  |            |            |
|--------------|----------|--------|----------|---------|------------|--------|------|--------|------|------------|-------|------|----------|------|------------|-------|------|--------|------|------------|------------|
|              |          | Sc     | outhbo   | und     |            |        | W    | estbo  | und  |            |       | N    | orthbo   | und  |            |       | E    | astbou | ind  |            |            |
| Start Time   | Right    | Thru   | Left     | Peds    | App. Total | Right  | Thru | Left   | Peds | App. Total | Right | Thru | Left     | Peds | App. Total | Right | Thru | Left   | Peds | App. Total | Int. Total |
| Peak Hour A  | nalysis  | From 1 | 6:30 t   | o 18:45 | 5 - Peak   | 1 of 1 |      |        |      |            |       |      |          |      |            |       |      |        |      |            |            |
| Peak Hour fo | r Entire | Inters | ection   | Begins  | at 17:00   | )      |      |        |      |            |       |      |          |      |            |       |      |        |      |            |            |
| 17:00        | 0        | 0      | 0        | 0       | 0          | 0      | 0    | 0      | 0    | 0          | 0     | 0    | 0        | 9    | 9          | 0     | 0    | 0      | 0    | 0          | 9          |
| 17:15        | 0        | 0      | 0        | 0       | 0          | 0      | 0    | 0      | 0    | 0          | 0     | 0    | 0        | 5    | 5          | 0     | 0    | 0      | 0    | 0          | 5          |
| 17:30        | 0        | 0      | 0        | 0       | 0          | 0      | 0    | 0      | 0    | 0          | 0     | 0    | 0        | 4    | 4          | 0     | 0    | 0      | 0    | 0          | 4          |
| 17:45        | 0        | 0      | 0        | 0       | 0          | 0      | 0    | 0      | 0    | 0          | 0     | 0    | 0        | 4    | 4          | 0     | 0    | 0      | 0    | 0          | 4          |
| Total Volume | 0        | 0      | 0        | 0       | 0          | 0      | 0    | 0      | 0    | 0          | 0     | 0    | 0        | 22   | 22         | 0     | 0    | 0      | 0    | 0          | 22         |
| % App. Total | 0        | 0      | 0        | 0       |            | 0      | 0    | 0      | 0    |            | 0     | 0    | 0        | 100  |            | 0     | 0    | 0      | 0    |            |            |
| PHF          | .000     | .000   | .000     | .000    | .000       | .000   | .000 | .000   | .000 | .000       | .000  | .000 | .000     | .611 | .611       | .000  | .000 | .000   | .000 | .000       | .611       |



CLIENT : TRAF TECH Engineering JOB NO : 2017-26 PROJECT: Collins Ave COUNTY : Miami-Dade

|                  |      |      |          |          |            |       | (    | Groups  | <u>s Printe</u> | ed- Auto   | <u>- Hea</u> | <u>vy Veh</u> | icles    |         |            |       |      |         |         |            |            |
|------------------|------|------|----------|----------|------------|-------|------|---------|-----------------|------------|--------------|---------------|----------|---------|------------|-------|------|---------|---------|------------|------------|
|                  |      | Co   | ollins A | ve       |            |       | 57   | '01 Blo | ock             |            |              | Co            | ollins A | Ave     |            |       | 57   | 701 Blo | ock     |            |            |
|                  |      | So   | uthbou   | und      |            |       | W    | estbou  | und             |            |              | No            | orthbo   | und     |            |       | E    | astbou  | ind     |            |            |
| Start Time       | Thru | Left | U-Turn A | U-Turn B | App. Total | Right | Thru | Left    | U-Turns         | App. Total | Right        | Thru          | Left     | U-Turns | App. Total | Right | Thru | Left    | U-Turns | App. Total | Int. Total |
| 16:30            | 221  | 6    | 4        | 7        | 238        | 1     | 0    | 1       | 0               | 2          | 3            | 309           | 0        | 7       | 319        | 0     | 0    | 0       | 0       | 0          | 559        |
| 16:45            | 226  | 5    | 3        | 11       | 245        | 1     | 0    | 0       | 0               | 1          | 2            | 313           | 0        | 7       | 322        | 0     | 0    | 0       | 0       | 0          | 568        |
| Total            | 447  | 11   | 7        | 18       | 483        | 2     | 0    | 1       | 0               | 3          | 5            | 622           | 0        | 14      | 641        | 0     | 0    | 0       | 0       | 0          | 1127       |
|                  |      |      |          |          |            |       |      |         |                 |            |              |               |          |         |            |       |      |         |         |            |            |
| 17:00            | 231  | 3    | 1        | 5        | 240        | 2     | 0    | 1       | 0               | 3          | 5            | 325           | 0        | 2       | 332        | 0     | 0    | 0       | 0       | 0          | 575        |
| 17:15            | 233  | 2    | 0        | 5        | 240        | 1     | 0    | 1       | 0               | 2          | 4            | 347           | 0        | 5       | 356        | 0     | 0    | 0       | 0       | 0          | 598        |
| 17:30            | 232  | 0    | 2        | 2        | 236        | 2     | 0    | 0       | 0               | 2          | 5            | 372           | 0        | 3       | 380        | 0     | 0    | 0       | 0       | 0          | 618        |
| 17:45            | 219  | 1    | 11       | 15       | 246        | 0     | 0    | 0       | 0               | 0          | 1            | 360           | 0        | 11      | 372        | 0     | 0    | 0       | 0       | 0          | 618        |
| Total            | 915  | 6    | 14       | 27       | 962        | 5     | 0    | 2       | 0               | 7          | 15           | 1404          | 0        | 21      | 1440       | 0     | 0    | 0       | 0       | 0          | 2409       |
|                  |      |      |          |          |            |       |      |         |                 |            |              |               |          |         |            |       |      |         |         |            |            |
| 18:00            | 207  | 2    | 8        | 8        | 225        | 1     | 0    | 0       | 0               | 1          | 2            | 350           | 0        | 8       | 360        | 0     | 0    | 0       | 0       | 0          | 586        |
| 18:15            | 201  | 3    | 3        | 5        | 212        | 1     | 0    | 0       | 0               | 1          | 3            | 342           | 0        | 7       | 352        | 0     | 0    | 0       | 0       | 0          | 565        |
| 18:30            | 194  | 1    | 4        | 4        | 203        | 2     | 0    | 0       | 0               | 2          | 3            | 336           | 0        | 7       | 346        | 0     | 0    | 0       | 0       | 0          | 551        |
| 18:45            | 197  | 2    | 3        | 5        | 207        | 1     | 0    | 0       | 0               | 1          | 2            | 327           | 0        | 5       | 334        | 0     | 0    | 0       | 0       | 0          | 542        |
| Total            | 799  | 8    | 18       | 22       | 847        | 5     | 0    | 0       | 0               | 5          | 10           | 1355          | 0        | 27      | 1392       | 0     | 0    | 0       | 0       | 0          | 2244       |
| Grand Total      | 2161 | 25   | 30       | 67       | 2202       | 12    | 0    | з       | 0               | 15         | 30           | 2201          | 0        | 62      | 3/73       | 0     | 0    | 0       | 0       | 0          | 5780       |
|                  | 0/ 3 | 11   | 17       | 20       | 2232       | 80    | 0    | 20      | 0               | 15         | 00           | 07 /          | 0        | 1.8     | 5475       | 0     | 0    | 0       | 0       | 0          | 5700       |
| Total %          | 37.4 | 0.4  | 0.7      | 1.3      | 39.7       | 0.2   | 0    | 0.1     | 0               | 03         | 0.5          | 58.5          | 0        | 1.0     | 60.1       | 0     | 0    | 0       | 0       | 0          |            |
|                  | 2135 | 25   | 30       | 67       | 2266       | 12    | 0    | 3       | 0               | 15         | 30           | 3353          | 0        | 62      | 3445       | 0     | 0    | 0       | 0       | 0          | 5726       |
| % Auto           | 98.8 | 100  | 100      | 100      | 98.9       | 100   | 0    | 100     | 0               | 100        | 100          | 99.2          | 0        | 100     | QQ 2       | 0     | 0    | 0       | 0       | 0          | 99.1       |
| Home Vohider     | 00.0 |      |          | .00      |            |       |      |         |                 | 100        |              | 00.2          |          | .00     | 55.Z       |       |      |         |         | 0          |            |
| % Heavy Vehicles | 1.2  | 0    | 0        | 0        | 1.1        | 0     | 0    | 0       | 0               | 0          | 0            | 0.8           | 0        | 0       | 0.8        | 0     | 0    | 0       | 0       | 0          | 0.9        |

CLIENT : TRAF TECH Engineering JOB NO : 2017-26 PROJECT: Collins Ave COUNTY : Miami-Dade



CLIENT : TRAF TECH Engineering JOB NO : 2017-26 PROJECT: Collins Ave COUNTY : Miami-Dade

|              |          | С                                                                                                                                                                                                                       | ollins A | Ave      |            |        | 5    | 701 Bl | ock     |            |       | С    | ollins / | Ave     |            |       | 57   | 701 Blo | ock     |            |            |
|--------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|------------|--------|------|--------|---------|------------|-------|------|----------|---------|------------|-------|------|---------|---------|------------|------------|
|              |          | Sc                                                                                                                                                                                                                      | outhbo   | und      |            |        | W    | estbo  | und     |            |       | N    | orthbo   | und     |            |       | E    | astbou  | ind     |            |            |
| Start Time   | Thru     | Left                                                                                                                                                                                                                    | U-Turn A | U-Turn B | App. Total | Right  | Thru | Left   | U-Turns | App. Total | Right | Thru | Left     | U-Turns | App. Total | Right | Thru | Left    | U-Turns | App. Total | Int. Total |
| Peak Hour A  | nalysis  | From 2                                                                                                                                                                                                                  | 16:30 t  | o 18:45  | 5 - Peak   | 1 of 1 |      |        |         |            |       |      |          |         |            |       |      |         |         |            |            |
| Peak Hour fo | r Entire | Iysis From 16:30 to 18:45 - Peak 1 of 1   Entire Intersection Begins at 17:15   233 2 0 5 240 1 0 1 0 2 4 347 0 5 356 0 0 0 0 5   233 2 0 5 240 1 0 1 0 2 4 347 0 5 356 0 0 0 0 0 6   232 0 2 2 5 372 0 3 380 0 0 0 0 6 |          |          |            |        |      |        |         |            |       |      |          |         |            |       |      |         |         |            |            |
| 17:15        | 233      | 2                                                                                                                                                                                                                       | 0        | 5        | 240        | 1      | 0    | 1      | 0       | 2          | 4     | 347  | 0        | 5       | 356        | 0     | 0    | 0       | 0       | 0          | 598        |
| 17:30        | 232      | 0                                                                                                                                                                                                                       | 2        | 2        | 236        | 2      | 0    | 0      | 0       | 2          | 5     | 372  | 0        | 3       | 380        | 0     | 0    | 0       | 0       | 0          | 618        |
| 17:45        | 219      | 1                                                                                                                                                                                                                       | 11       | 15       | 246        | 0      | 0    | 0      | 0       | 0          | 1     | 360  | 0        | 11      | 372        | 0     | 0    | 0       | 0       | 0          | 618        |
| 18:00        | 207      | 2                                                                                                                                                                                                                       | 8        | 8        | 225        | 1      | 0    | 0      | 0       | 1          | 2     | 350  | 0        | 8       | 360        | 0     | 0    | 0       | 0       | 0          | 586        |
| Total Volume | 891      | 5                                                                                                                                                                                                                       | 21       | 30       | 947        | 4      | 0    | 1      | 0       | 5          | 12    | 1429 | 0        | 27      | 1468       | 0     | 0    | 0       | 0       | 0          | 2420       |
| % App. Total |          |                                                                                                                                                                                                                         |          |          |            |        |      |        |         |            |       |      |          |         |            |       |      |         |         |            |            |
| PHF          | .956     | .625                                                                                                                                                                                                                    | .477     | .500     | .962       | .500   | .000 | .250   | .000    | .625       | .600  | .960 | .000     | .614    | .966       | .000  | .000 | .000    | .000    | .000       | .979       |



CLIENT : TRAF TECH Engineering JOB NO : 2017-26 PROJECT: Collins Ave COUNTY : Miami-Dade

|             |      |        |          |          |       |        | Group | os Printe | ed- Peds |         |       |      |       |        |       |      |            |
|-------------|------|--------|----------|----------|-------|--------|-------|-----------|----------|---------|-------|------|-------|--------|-------|------|------------|
|             |      | Collin | s Ave    |          |       | 5701 E | Block |           |          | Collins | s Ave |      |       | 5701 E | Block |      |            |
|             |      | South  | bound    |          |       | Westb  | ound  |           |          | Northb  | ound  |      |       | Eastb  | ound  |      |            |
| Start Time  | Thru | Left   | U-Turn A | U-Turn B | Right | Thru   | Left  | Peds      | Right    | Thru    | Left  | Peds | Right | Thru   | Left  | Peds | Int. Total |
|             |      |        |          |          |       |        |       |           |          |         |       |      |       |        |       |      |            |
| 16:30       | 0    | 0      | 0        | 0        | 0     | 0      | 0     | 5         | 0        | 0       | 0     | 4    | 0     | 0      | 0     | 2    | 11         |
| 16:45       | 0    | 0      | 0        | 0        | 0     | 0      | 0     | 6         | 0        | 0       | 0     | 1    | 0     | 0      | 0     | 7    | 14         |
| Total       | 0    | 0      | 0        | 0        | 0     | 0      | 0     | 11        | 0        | 0       | 0     | 5    | 0     | 0      | 0     | 9    | 25         |
|             |      |        |          |          |       |        |       |           |          |         |       |      |       |        |       |      |            |
| 17:00       | 0    | 0      | 0        | 0        | 0     | 0      | 0     | 11        | 0        | 0       | 0     | 3    | 0     | 0      | 0     | 4    | 18         |
| 17:15       | 0    | 0      | 0        | 0        | 0     | 0      | 0     | 16        | 0        | 0       | 0     | 1    | 0     | 0      | 0     | 2    | 19         |
| 17:30       | 0    | 0      | 0        | 0        | 0     | 0      | 0     | 16        | 0        | 0       | 0     | 1    | 0     | 0      | 0     | 9    | 26         |
| 17:45       | 0    | 0      | 0        | 0        | 0     | 0      | 0     | 13        | 0        | 0       | 0     | 2    | 0     | 0      | 0     | 3    | 18         |
| Total       | 0    | 0      | 0        | 0        | 0     | 0      | 0     | 56        | 0        | 0       | 0     | 7    | 0     | 0      | 0     | 18   | 81         |
| 1           |      |        |          |          | I     |        |       |           |          |         |       |      |       |        |       |      | I          |
| 18:00       | 0    | 0      | 0        | 0        | 0     | 0      | 0     | 27        | 0        | 0       | 0     | 2    | 0     | 0      | 0     | 10   | 39         |
| 18:15       | 0    | 0      | 0        | 0        | 0     | 0      | 0     | 23        | 0        | 0       | 0     | 1    | 0     | 0      | 0     | 7    | 31         |
| 18:30       | 0    | 0      | 0        | 0        | 0     | 0      | 0     | 15        | 0        | 0       | 0     | 3    | 0     | 0      | 0     | 5    | 23         |
| 18:45       | 0    | 0      | 0        | 0        | 0     | 0      | 0     | 13        | 0        | 0       | 0     | 1    | 0     | 0      | 0     | 3    | 17         |
| Total       | 0    | 0      | 0        | 0        | 0     | 0      | 0     | 78        | 0        | 0       | 0     | 7    | 0     | 0      | 0     | 25   | 110        |
| Grand Total | 0    | 0      | 0        | 0        | 0     | 0      | 0     | 145       | 0        | 0       | 0     | 10   | 0     | 0      | 0     | 52   | 216        |
| Appreh %    | 0    | 0      | 0        | 0        | 0     | 0      | 0     | 100       | 0        | 0       | 0     | 100  | 0     | 0      | 0     | 100  | 210        |
| Total %     | 0    | 0      | 0        | 0        | 0     | 0      | 0     | 67.4      | 0        | 0       | 0     | 001  | 0     | 0      | 0     | 24.4 |            |
| Total %     | 0    | 0      | 0        | 0        | 0     | 0      | 0     | 07.1      | 0        | 0       | 0     | 8.8  | 0     | 0      | 0     | 24.1 |            |

### TRAFFIC SURVEY SPECIALISTS, INC. 85 SE 4TH AVENUE, UNIT 109 DELRAY BEACH, FLORIDA PHONE (561)272-3255

Site Code : 00170131 Start Date: 08/04/17 File I.D. : 63STCOLL Page : 1

#### ALL VEHICLES

|          | COLLINS  | AVENUE |      |       | DRIVEWA  | Y    |      |       | COLLINS | AVENUE |         |       | 63RD ST     | REET |      |       |       |
|----------|----------|--------|------|-------|----------|------|------|-------|---------|--------|---------|-------|-------------|------|------|-------|-------|
|          | From No  | rth    |      |       | From Eas | st   |      |       | From So | uth    |         |       | From We     | st   |      |       |       |
|          | UTurn    | Left   | Thru | Right | UTurn    | Left | Thru | Right | UTurn   | Left   | Thru    | Right | <br>  UTurn | Left | Thru | Right | Total |
| Date 08, | /04/17 - |        |      |       |          |      |      |       |         | •      |         |       |             |      |      |       |       |
| 07:00    | 0        | 0      | 0    | 0     | 0        | 0    | 0    | 0     | 0       | 29     | 110     | 0     | 0           | 87   | 2    | 0     | 228   |
| 07:15    | 0        | 0      | 0    | 0     | 0        | 0    | 0    | 0     | 0       | 14     | 106     | 1     | 0           | 91   | 1    | 0     | 213   |
| 07:30    | 0        | 0      | 0    | 0     | 0        | 0    | 0    | 0     | 0       | 25     | 124     | 0     | 1           | 97   | 2    | 0     | 249   |
| 07:45    | 0        | 0      | 0    | 0     | 0        | 0    | 0    | 0     | 0       | 29     | 120     | 1     | 1           | 110  | 5    | 0 1   | 266   |
| Hr Total | L O      | 0      | 0    | 0     | 0        | 0    | 0    | 0     | 0       | 97     | 460     | 2     | 2           | 385  | 10   | 0     | 956   |
| 08:00    | 0        | 0      | 0    | 0     | 0        | 0    | 0    | 0     | 0       | 40     | 135     | 0     | 1 0         | 105  | 5    | 0     | 285   |
| 08:15    | 0        | 0      | 0    | 0     | 0        | 0    | 0    | 0     | 0       | 37     | 124     | 0     | 1           | 100  | 2    | 0 1   | 264   |
| 08:30    | 0        | 0      | 0    | 0     | 0        | 0    | 0    | 0     | 0       | 51     | 128     | 1     | 1           | 109  | 4    | 0     | 294   |
| 08:45    | 0        | 0      | 0    | 0     | L0       | 0    | 0    | 0     | 0       | 48     | 154     | 1     | 2           | 114  | 5    | 0 1   | 324   |
| Hr Total | 0        | 0      | 0    | 0     | 0        | 0    | 0    | 0     | 0       | 176    | 541     | 2     | 4           | 428  | 16   | 0     | 1167  |
|          | * BRI    | EAK *  |      |       |          |      |      |       |         |        | <b></b> |       |             |      |      |       |       |
| 16:00    | 0        | 0      | 0    | 0     | 0        | 0    | 0    | 0     | 0       | 57     | 230     | 1     | 1           | 158  | 1    | 0     | 448   |
| 16:15    | 0        | 0      | 0    | 0     | 0        | 0    | 0    | 0     | 0       | 61     | 260     | 0     | 1           | 191  | 2    | 0 1   | 515   |
| 16:30    | 0        | 0      | 0    | 0     | 0        | 0    | 0    | 0     | 0       | 89     | 337     | 0     | 1           | 198  | 1    | 0     | 626   |
| 16:45    | 0        | 0      | 0    | 0     | 0        | 0    | 0    | 0     | 0       | 59     | 279     | 1     |             | 195  | 5    | 0     | 539   |
| Hr Total | 0        | 0      | 0    | 0     | 0        | 0    | 0    | 0     | 0       | 266    | 1106    | 2     | 3           | 742  | 9    | 0     | 2128  |
| 17:00    | 0        | 0      | 0    | 0     | O        | 0    | 0    | 0     | 0       | 71     | 287     | 1     | 0           | 209  | 1    | 0     | 569   |
| 17:15    | 0        | 0      | 0    | 0     | 0        | 0    | 0    | 0     | 0       | 67     | 327     | 0     | 3           | 203  | 2    | 0     | 602   |
| 17:30    | 0        | 0      | 0    | 0     | 0        | 0    | 0    | 0     | 0       | 79     | 286     | 0     | 0           | 191  | 2    | 0     | 558   |
| 17:45    | 0        | 0      | 0    | 0     | 0        | 0    | 0    | 0     | 0       | 61     | 219     | 0     | 2           | 192  | 0    | 0     | 474   |
| Hr Total | 0        | 0      | 0    | 0     | 0        | 0    | 0    | 0     | 0       | 278    | 1119    | 1     | 5           | 795  | 5    | 0     | 2203  |
| *TOTAL*  | 0        | 0      | 0    | <br>0 | 0        |      |      | 0     | 0       | 817    | 3226    | 7     | 14          | 2350 | 40   | o I   | 6454  |

#### TRAFFIC SURVEY SPECIALISTS, INC. 85 SE 4TH AVENUE, UNIT 109 DELRAY BEACH, FLORIDA PHONE (561)272-3255

Site Code : 00170131 Start Date: 08/04/17 File I.D. : 63STCOLL Page : 2

#### ALL VEHICLES COLLINS AVENUE DRIVEWAY COLLINS AVENUE 63RD STREET From North From East From South From West Т 1 1 UTurn Left Thru Right | Total Date 08/04/17 -----Peak Hour Analysis By Entire Intersection for the Period: 07:00 to 09:00 on 08/04/17 Peak start 08:00 08:00 08:00 08:00 1 Volume 0 0 0 0 0 0 0 0 0 176 541 2 4 428 16 0 | 08 Percent 08 08 0% 0% 0% 0% 0% 0% 24% 75€ 0% 1% 96% 48 0% 0 Pk total 0 719 448 Highest 07:00 ł 07:00 08:45 1 08:45 0 0 Volume 0 0 0 0 0 0 0 2 114 48 154 1 | 5 0 | Hi total 0 121 1 0 203 PHF . 0 1 . 0 .89 1 1 . 93 COLLINS AVENUE 0 0 0 . 0 432 541 0 \_ \_ \_ \_ - - -- -- --0 0 0 0 0 973 0 0 973 0 63RD STREET 0 176 · ALL VEHICLES 0 176 0 0 0 0 432 432 0 624 18 0 16 16 448 Intersection Total 0 1,167 18 16 2 0 0 DRIVEWAY 719 719 0 0 0 176 541 2 0 0 0 - - -0 176 2 541 0 COLLINS AVENUE

#### TRAFFIC SURVEY SPECIALISTS, INC. 85 SE 4TH AVENUE, UNIT 109 DELRAY BEACH, FLORIDA PHONE (561)272-3255

Site Code : 00170131 Start Date: 08/04/17 File I.D. : 63STCOLL Page : 3

#### ALL VEHICLES



### TRAFFIC SURVEY SPECIALISTS, INC. 85 SE 4TH AVENUE, UNIT 109 DELRAY BEACH, FLORIDA PHONE (561)272-3255

Site Code : 00170131 Start Date: 08/04/17 File I.D. : 63STCOLL Page : 1

#### PEDESTRIANS & BIKES

|          | COLLINS AVENUE<br>From North |         |       |      |      | Y     |       |      | COLLINS | G AVENUE | 5     |      | 63RD ST |       |       |      |       |
|----------|------------------------------|---------|-------|------|------|-------|-------|------|---------|----------|-------|------|---------|-------|-------|------|-------|
|          | 1101111                      | /1 Cm   |       |      |      | 100   |       |      |         | ucn      |       |      | FLOM WE | sc    |       |      |       |
|          | Left                         | BIKES   | Right | Peds | Left | BIKES | Right | Peds | Left    | BIKES    | Right | Peds | Left    | BIKES | Right | Peds | Total |
| Date 08/ | /04/17 -                     |         |       |      |      |       |       |      |         | •        |       |      |         |       |       |      |       |
| 07:00    | 0                            | 0       | 0     | 0    | 0    | 0     | 0     | 0    | 0       | 0        | 0     | 0    | 0       | 0     | 0     | 0    | 0     |
| 07:15    | 0                            | 0       | 0     | 0    | 0    | 2     | 0     | 0    | 0       | 0        | 0     | 3    | 0       | 0     | 0     | 0    | 5     |
| 07:30    | 0                            | 0       | 0     | 0    | 0    | 0     | 0     | 2    | 0       | 1        | 0     | 1    | 0       | 0     | 0     | 5    | 9     |
| 07:45    | 0                            | 0       | 0     | 0    | 0    | 0     | 0     | 0    | 0       | 0        | 0     | 0    | 0       | 0     | 0     | 12   | 12    |
| Hr Total | 0                            | 0       | 0     | 0    | 0    | 2     | 0     | 2    | 0       | 1        | 0     | 4    | 0       | 0     | 0     | 17   | 26    |
| 08:00    | 0                            | 0       | 0     | 0    | 0    | 0     | 0     | 0    | 0       | 0        | 0     | 8    | 0       | 0     | 0     | 0    | 8     |
| 08:15    | 0                            | 0       | 0     | 0    | 0    | 0     | 0     | 0    | 0       | 1        | 0     | 3    | 0       | 0     | 0     | 7    | 11    |
| 08:30    | 0                            | 0       | 0     | 0    | 0    | 0     | 0     | 0    | 0       | 0        | 0     | 5    | 0       | 1     | 0     | 0    | 6     |
| 08:45    | . 0                          | 0       | 0     | 0    | 0    | 0     | 0     | 0    | 0       | 0        | 0     | 6    | 0       | 0     | 0     | 5    | 11    |
| Hr Total | . 0                          | 0       | 0     | 0    | 0    | 0     | 0     | 0    | 0       | 1        | 0     | 22   | 0       | 1     | 0     | 12   | 36    |
|          | * BR                         | EAK * - |       |      |      |       |       |      |         | •        | ~~    |      |         |       |       |      |       |
| 16:00    | 0                            | 0       | 0     | 0    | 0    | 0     | 0     | 0    | 0       | 0        | 0     | 4    | 0       | 0     | 0     | 13   | 17    |
| 16:15    | 0                            | 0       | 0     | 0    | 0    | 0     | 0     | 0    | 0       | 0        | 0     | 4    | 0       | 0     | 0     | 1    | 5     |
| 16:30    | 0                            | 0       | 0     | 0    | 0    | 0     | 0     | 0    | 0       | 0        | 0     | 0    | 0       | 0     | 0     | 8    | 8     |
| 16:45    | 0                            | 0       | 0     | 0    | 0    | 0     | 0     | 0    | 0       | 0        | 0     | 10   | 0       | 1     | 0     | 6    | 17    |
| Hr Total | 0                            | 0       | 0     | 0    | 0    | 0     | 0     | 0    | 0       | 0        | 0     | 18   | 0       | 1     | 0     | 28   | 47    |
| 17:00    | 0                            | 0       | 0     | 0    | 0    | 0     | 0     | 0    | 0       | 0        | 0     | 9    | 0       | 0     | 0     | 4    | 13    |
| 17:15    | 0                            | 0       | 0     | 0    | 0    | 0     | 0     | 0    | 0       | 0        | 0     | 13   | 0       | 0     | 0     | 13   | 26    |
| 17:30    | 0                            | 0       | 0     | 0    | 0    | 0     | 0     | 0    | 0       | 0        | 0     | 3    | 0       | 0     | 0     | 14   | 17    |
| 17:45    | 0                            | 0       | 0     | 0    | 0    | 0     | 0     | 0    | 0       | 3        | 0     | 8    | 0       | 1     | 0     | 3    | 15    |
| Hr Total | 0                            | 0       | 0     | 0    | 0    | 0     | 0     | 0    | 0       | 3        | 0     | 33   | 0       | 1     | 0     | 34   | 71    |
| *TOTAL*  | 0                            | 0       | 0     | 0    | 0    | 2     | 0     | 2    | 0       | 5        | 0     | 77   | 0       | 3     | 0     | 91   | 180   |

Lambordy C3ST 2 La Gorce Palace ins Alc ~ Miami Beach, FLorida June 20, 2014 drawn by: Luis Palomino signalized RD 8-4-17

63RD STREET & INDIAN CREEK DRIVE MIAMI BEACH, FLORIDA COUNTED BY: S. SALVO & W. DE LUNA VARGAS SIGNALIZED

### TRAFFIC SURVEY SPECIALISTS, INC. 85 SE 4TH AVENUE, UNIT 109 DELRAY BEACH, FLORIDA PHONE (561)272-3255

Site Code : 00170131 Start Date: 08/04/17 File I.D. : 63STINDI Page : 1

#### ALL VEHICLES

|          | INDIAN<br>From No | CREEK E<br>rth | RIVE |       | 63RD STREET<br> From East |      |      |       | INDIAN CREEK DRIVE<br> From South |      |          |       | 63RD ST<br> From We |               |      |       |       |
|----------|-------------------|----------------|------|-------|---------------------------|------|------|-------|-----------------------------------|------|----------|-------|---------------------|---------------|------|-------|-------|
|          | UTurn             | Left           | Thru | Right | UTurn                     | Left | Thru | Right | <br>  UTurn                       | Left | Thru     | Right | UTurn               | Left          | Thru | Right | Total |
| Date 08/ | /04/17 -          |                |      |       |                           |      |      |       |                                   |      |          |       |                     | • • • • • • • |      |       |       |
| 07:00    | 0                 | 13             | 213  | 261   | 0                         | 9    | 0    | 21    |                                   | 0    | 0        | 0     |                     | 10            | 0.5  | 10    |       |
| 07:15    | 2                 | 12             | 216  | 369   |                           | 4    | 0    | 11    |                                   | 0    | 0        | 0     |                     | 40            | 00   | 12    | 655   |
| 07:30    | 1                 | 9              | 251  | 463   | 1 0                       | 4    | õ    | 18    | 0                                 | 0    | 0        | 0     |                     | 54            | 90   | 10    | 770   |
| 07:45    | 0                 | 16             | 303  | 454   | 1                         | 13   | 0    | 19    | 0                                 | 0    | 0        | 0     |                     | 76            | 00   | 22    | 1004  |
| Hr Total | L 3               | 50             | 983  | 1547  | 1 1                       | 30   | 0    | 69    | 0                                 | 0    | 0        | 0     | 0                   | 226           | 362  | 57    | 3328  |
| 08.00    | 2                 | 21             | 200  | 533   |                           |      |      |       |                                   |      |          | 540   |                     |               |      |       |       |
| 00.15    | 2                 | 21             | 200  | 531   |                           | 11   | 0    | 29    | 0                                 | 0    | 0        | 0     | 0                   | 69            | 93   | 13    | 1057  |
| 09.30    | 1                 | 17             | 330  | 532   |                           | 10   | 0    | 23    | 0                                 | 0    | 0        | 0     | 0                   | 69            | 112  | 13    | 1093  |
| 08.45    | 1                 | 22             | 357  | 556   |                           | 19   | 0    | 33    | 0                                 | 0    | 0        | 0     | 0                   | 108           | 105  | 20    | 1215  |
| Hr Total | 4                 | 62             | 1260 | 2152  |                           | 16   | 0    | 30    | 0                                 | 0    | 0        | 0     | 0                   | 111           | 99   | 22    | 1124  |
|          |                   | 00             | 1200 | 2131  | 1 0                       | 50   | 0    | 112   | 0                                 | 0    | 0        | 0     | 0                   | 357           | 409  | 68    | 4489  |
|          | * BRI             | EAK * -        |      |       |                           |      |      |       |                                   |      | <b>.</b> |       |                     |               |      |       |       |
|          |                   |                |      |       |                           |      |      |       |                                   |      |          |       |                     |               |      |       |       |
| 16:00    | 1                 | 21             | 207  | 329   | 0                         | 7    | 0    | 44    | 0                                 | 0    | 0        | 0     | 0                   | 230           | 152  | 27    | 1018  |
| 16:15    | 2                 | 21             | 193  | 333   | 0                         | 8    | 0    | 40    | 0                                 | 0    | 0        | 0     | 0                   | 285           | 189  | 35    | 1106  |
| 16:30    | 1                 | 27             | 237  | 328   | 0                         | 11   | 0    | 68    | 0                                 | 0    | 0        | 0     | 0                   | 232           | 167  | 37    | 1108  |
| 16:45    | 4                 | 17             | 194  | 309   | 1                         | 7    | 0    | 50    | 0                                 | 0    | 0        | 0     | 0                   | 252           | 177  | 33    | 1044  |
| Hr Total | . 8               | 86             | 831  | 1299  | 1                         | 33   | 0    | 202   | 0                                 | 0    | 0        | 0     | 0                   | 999           | 685  | 132   | 4276  |
| 17:00    | 0                 | 23             | 188  | 370   | 1                         | 4    | 0    | 69    | 0                                 | 0    | 0        | 0     | 0                   | 288           | 182  | 28    | 1153  |
| 17:15    | 4                 | 17             | 211  | 338   | 0                         | 9    | 0    | 56    | 0                                 | 0    | 0        | 0     | 0                   | 305           | 192  | 23    | 1155  |
| 17:30    | 2                 | 14             | 198  | 308   | 0                         | 11   | 0    | 66    | 0                                 | 0    | 0        | 0     |                     | 271           | 169  | 23    | 1063  |
| 17:45    | 0                 | 26             | 184  | 339   | 0                         | 14   | 0    | 43    | 1 0                               | 0    | 0        | 0     | 0                   | 278           | 170  | 27    | 1003  |
| Hr Total | 6                 | 80             | 781  | 1355  | 1                         | 38   | 0    | 234   | 0                                 | 0    | 0        | 0     | 0                   | 1142          | 713  | 100   | 4450  |
|          |                   |                |      |       |                           |      |      |       |                                   |      |          |       |                     |               |      |       |       |
| *TOTAL*  | 21                | 279            | 3855 | 6358  | 3                         | 157  | 0    | 620   | 0                                 | 0    | 0        | 0     | 0                   | 2724          | 2169 | 357   | 16543 |




TRAFFIC SURVEY SPECIALISTS, INC.

63RD STREET & INDIAN CREEK DRIVE MIAMI BEACH, FLORIDA COUNTED BY: S. SALVO & W. DE LUNA VARGAS SIGNALIZED

#### TRAFFIC SURVEY SPECIALISTS, INC. 85 SE 4TH AVENUE, UNIT 109 DELRAY BEACH, FLORIDA PHONE (561)272-3255

Site Code : 00170131 Start Date: 08/04/17 File I.D. : 63STINDI Page : 1

#### PEDESTRIANS & BIKES

|          | INDIAN CREEK DRIVE<br>From North |        |       |      | 63RD STREET<br>From East |       |       |      |            | INDIAN CREEK DRIVE<br> From South<br> |       |      |            | 63RD STREET<br>From West |       |      |       |
|----------|----------------------------------|--------|-------|------|--------------------------|-------|-------|------|------------|---------------------------------------|-------|------|------------|--------------------------|-------|------|-------|
|          | Left                             | BIKES  | Right | Peds | Left                     | BIKES | Right | Peds | <br>  Left | BIKES                                 | Right | Peds | <br>  Left | BIKES                    | Right | Peds | Total |
| Date 08/ | /04/17                           | ·      |       |      |                          |       |       |      |            | •                                     |       |      |            |                          |       |      |       |
| 07:00    | 0                                | 1      | 0     | 2    | 0                        | 0     | 0     | 1    | 0          | 0                                     | 0     | 5    | 0          | 1                        | 0     | 0    | 10    |
| 07:15    | 0                                | 0      | 0     | 1    | 0                        | 0     | 0     | 2    | I 0        | 0                                     | 0     | 3    | 0          | 0                        | 0     | 0    | 6     |
| 07:30    | 0                                | 0      | 0     | 1    | 0                        | 1     | 0     | 0    | 0          | 1                                     | 0     | 5    | 0          | 1                        | 0     | 1    | 10    |
| 07:45    | 0                                | 0      | 0     | 1    | 0                        | 0     | 0     | 2    | 0          | 0                                     | 0     | 7    | 0          | 0                        | 0     | 0    | 10    |
| Hr Total | 0                                | 1      | 0     | 5    | 0                        | 1     | 0     | 5    | 0          | 1                                     | 0     | 20   | 0          | 2                        | 0     | 1    | 36    |
| 08:00    | 0                                | 1      | 0     | 0    | 0                        | 0     | 0     | 0    | 0          | 3                                     | 0     | 5    | 0          | 1                        | 0     | 0    | 10    |
| 08:15    | 0                                | 0      | 0     | 2    | 0                        | 0     | 0     | 1    | 0          | 1                                     | 0     | 6    | 0          | 1                        | 0     | 2    | 13    |
| 08:30    | 0                                | 0      | 0     | 0    | 0                        | 0     | 0     | 1    | 0          | 0                                     | 0     | 5    | 0          | 1                        | 0     | 0    | 7     |
| 08:45    | 0                                | 1      | 0     | 0    | 0                        | 0     | 0     | 0    | ) o        | 0                                     | 0     | 1    | 0          | 0                        | 0     | 0    | 2     |
| Hr Total | 0                                | 2      | 0     | 2    | 0                        | 0     | 0     | 2    | 0          | 4                                     | 0     | 17   | 0          | 3                        | 0     | 2    | 32    |
|          | * BI                             | REAK * |       |      |                          |       |       |      |            | <b>.</b>                              |       |      |            |                          |       |      |       |
| 16:00    | 0                                | 0      | 0     | 0    | 0                        | 0     | 0     | 1    | 0          | 1                                     | 0     | 3    | 1 0        | 2                        | 0     | 2    | 9     |
| 16:15    | 0                                | 0      | 0     | 0    | 0                        | 0     | 0     | 0    | 0          | 0                                     | 0     | 2    | 0          | 7                        | 0     | 0    | 9     |
| 16:30    | 0                                | 1      | 0     | 0    | 0                        | 0     | 0     | 2    | 0          | 0                                     | 0     | 2    | 0          | 0                        | 0     | 0    | 5     |
| 16:45    | 0                                | 0      | 0     | 0    | 0                        | 0     | 0     | 0    | 0          | 0                                     | 0     | 5    | 0          | 0                        | 0     | 2    | 7     |
| Hr Total | . 0                              | 1      | 0     | 0    | 0                        | 0     | 0     | 3    | 0          | 1                                     | 0     | 12   | 0          | 9                        | 0     | 4    | 30    |
| 17:00    | 0                                | 0      | 0     | 0    | 0                        | 0     | 0     | 0    | 0          | 0                                     | 0     | 5    | 0          | 0                        | 0     | 4    | 9     |
| 17:15    | 0                                | 0      | 0     | 0    | 0                        | 0     | 0     | 1    | 0          | 1                                     | 0     | 7    | 0          | 1                        | 0     | 7    | 17    |
| 17:30    | 0                                | 0      | 0     | 1    | 0                        | 0     | 0     | 0    | 0          | 0                                     | 0     | 2    | 0          | 0                        | 0     | 3    | 6     |
| 17:45    | 0                                | 2      | 0     | 0    | 0                        | 0     | 0     | 0    | 0          | 3                                     | 0     | 5    | 0          | 2                        | 0     | 1    | 13    |
| Hr Total | 0                                | 2      | 0     | 1    | 0                        | 0     | 0     | 1    | 0          | 4                                     | 0     | 19   | 0          | 3                        | 0     | 15   | 45    |
| *TOTAL*  | 0                                | 6      | 0     | 8    | 0                        | 1     | 0     | 11   | 0          | 10                                    | 0     | 68   | 0          | 17                       | 0     | 22   | 143   |





#### FLORIDA DEPARTMENT OF TRANSPORTATION TRANSPORTATION STATISTICS OFFICE 2016 HISTORICAL AADT REPORT

COUNTY: 87 - MIAMI-DADE

SITE: 2541 - SR A1A/COLLINS AVE, 500' S OF 63 ST (MIAMI BEACH)

| YEAR | AADT    | DI    | RECTION 1 | DIRECTION 2 | *K FACTOR | D FACTOR | T FACTOR |
|------|---------|-------|-----------|-------------|-----------|----------|----------|
| 2016 | 21000 C | <br>N | 21000     | 0           | 9.00      | 99.90    | 7.80     |
| 2015 | 20000 C | N     | 20000     | 0           | 9.00      | 99.90    | 4.60     |
| 2014 | 21500 C | Ν     | 21500     |             | 9.00      | 99.90    | 5.10     |
| 2013 | 21000 C | Ν     | 21000     | 0           | 9.00      | 99.90    | 6.10     |
| 2012 | 19000 C | Ν     | 19000     | 0           | 9.00      | 99.90    | 8.40     |
| 2011 | 17000 C | Ν     | 17000     | 0           | 9.00      | 99.90    | 7.50     |
| 2010 | 15000 C | Ν     | 15000     | 0           | 8.98      | 99.99    | 8.80     |
| 2009 | 21000 C | Ν     | 21000     | 0           | 8.99      | 99.99    | 8.40     |
| 2008 | 18000 C | Ν     | 18000     | 0           | 9.09      | 99.99    | 5.30     |
| 2007 | 16000 S |       | 0         | 0           | 8.01      | 99.99    | 4.90     |
| 2006 | 16000 F |       |           |             | 7.97      | 99.99    | 2.20     |
| 2005 | 16000 C | Ν     | 16000     |             | 8.80      | 99.90    | 5.50     |
| 2004 | 17000 C | Ν     | 17000     |             | 9.00      | 99.90    | 8.20     |
| 2003 | 18000 C | Ν     | 18000     |             | 8.80      | 99.90    | 4.90     |
| 2002 | 18500 C | Ν     | 18500     |             | 9.80      | 99.90    | 2.60     |
| 2001 | 18500 C | Ν     | 18500     |             | 8.20      | 99.90    | 3.00     |

AADT FLAGS: C = COMPUTED; E = MANUAL ESTIMATE; F = FIRST YEAR ESTIMATE S = SECOND YEAR ESTIMATE; T = THIRD YEAR ESTIMATE; R = FOURTH YEAR ESTIMATE V = FIFTH YEAR ESTIMATE; 6 = SIXTH YEAR ESTIMATE; X = UNKNOWN \*K FACTOR: STARTING WITH YEAR 2011 IS STANDARDK, PRIOR YEARS ARE K30 VALUES



\*Axle-Adjusted

# **APPENDIX C**

**Signal Timing Plan** (Collins Avenue and 5800/5875 Block)

### TOD Schedule Report for 3923: Collins Av@5875 Blk

**Print Time** 

3/21/2017 10:43 AM TOD TOD <u>Active</u> Active **Intersection** Schedule **Op Mode** <u>Plan #</u> **Offset** Setting PhaseBank Maximum Asset Cycle 3923 Collins Av@5875 Blk DOW-3 TOD [02] PRE-AM PEAK 100 35 Max 2 N/A 1 <u>Splits</u> <u>PH 1</u> <u>PH 2</u> <u>PH 5</u> <u>PH 3</u> <u>PH 4</u> <u>PH 6</u> <u>PH 7</u> <u>PH 8</u> SBL NBT NWT PED SBT ---0 37 33 0 37 0 0 11 N/A

#### Active Phase Bank: Phase Bank 1

**Print Date:** 

| <b>Phase</b> | <u>Walk</u> | <u>Don't Walk</u> | <u>Min Initial</u> | <u>Veh Ext</u> | <u>Max Limit</u> | <u>Max 2</u> | Yellow | Red | Last In Service Date: unknown |
|--------------|-------------|-------------------|--------------------|----------------|------------------|--------------|--------|-----|-------------------------------|
|              | Phase Bank  |                   |                    |                |                  |              |        |     | Last in Gervice Date. Unknown |
|              | 1 2 3       | 1 2 3             | 1 2 3              | 1 2 3          | 1 2 3            | 1 2 3        |        |     | Permitted Phases              |
| 1 SBL        | 0 - 0 - 0   | 0 - 0 - 0         | 5 - 5 - 5          | 2 - 2 - 2      | 15 - 15 - 15     | 30 - 28 - 28 | 3.7    | 2.3 |                               |
| 2 NBT        | 0 - 0 - 0   | 0 - 0 - 0         | 16 - 16 - 16       | 1 - 1 - 1      | 30 - 30 - 30     | 0 - 0 - 0    | 4      | 2.3 | <u>12345678</u>               |
| 3 NWT        | 0 - 0 - 0   | 0 - 0 - 0         | 5 - 5 - 5          | 2 - 2 - 2      | 9 - 9 - 9        | 12 - 12 - 12 | 4      | 3.3 | Default 1234-6                |
| 4 PED        | 5 - 5 - 5   | 27 - 27 - 27      | 0 - 0 - 0          | 0 - 0 - 0      | 0 - 0 - 0        | 0 - 0 - 0    | 3.7    | 2.3 | External Permit 0             |
| 5 -          | 0 - 0 - 0   | 0 - 0 - 0         | 0 - 0 - 0          | 0 - 0 - 0      | 0 - 0 - 0        | 0 - 0 - 0    | 0      | 0   | External Permit 1             |
| 6 SBT        | 0 - 0 - 0   | 0 - 0 - 0         | 16 - 16 - 16       | 1 - 1 - 1      | 30 - 30 - 30     | 0 - 0 - 0    | 4      | 2.3 | External Permit 2             |
| 7 -          | 0 - 0 - 0   | 0 - 0 - 0         | 0 - 0 - 0          | 0 - 0 - 0      | 0 - 0 - 0        | 0 - 0 - 0    | 0      | 0   |                               |
| 8 -          | 0 - 0 - 0   | 0 - 0 - 0         | 0 - 0 - 0          | 0 - 0 - 0      | 0 - 0 - 0        | 0 - 0 - 0    | 0      | 0   | L                             |

# TOD Schedule Report for 3923: Collins Av@5875 Blk

Print Date: 3/21/2017

#### Print Time 10:43 AM

|         |                       |       |          |          | G        | Green 1  | Time |          |   |   |             |        |
|---------|-----------------------|-------|----------|----------|----------|----------|------|----------|---|---|-------------|--------|
| Current | <u>t</u><br>dule Plan | Cycle | 1<br>SBI | 2<br>NBT | 3<br>NWT | 4<br>PED | 5    | 6<br>SBT | 7 | 8 | Ring Offset | Offset |
|         | 2                     | 100   | **       | 37       | 11       | 33       | 0    | 37       | 0 | 0 |             | 35     |
| 0700    | 18                    | 140   | **       | 77       | 11       | 33       | 0    | 77       | 0 | 0 | 0           | 101    |
| 0930    | 2                     | 100   | **       | 37       | 11       | 33       | 0    | 37       | 0 | 0 | 0           | 35     |
| 1500    | 19                    | 140   | **       | 77       | 11       | 33       | 0    | 77       | 0 | 0 | 0           | 11     |
| 2200    | 2                     | 100   | **       | 37       | 11       | 33       | 0    | 37       | 0 | 0 | 0           | 35     |
|         | 1                     | 90    | **       | 30       | 8        | 33       | 0    | 30       | 0 | 0 | 0           | 79     |
|         | 3                     | 100   | **       | 37       | 11       | 33       | 0    | 37       | 0 | 0 | 0           | 49     |
|         | 4                     | 140   | **       | 78       | 10       | 33       | 0    | 78       | 0 | 0 | 0           | 59     |
|         | 5                     | 100   | **       | 37       | 11       | 33       | 0    | 37       | 0 | 0 | 0           | 44     |
|         | 6                     | 100   | **       | 37       | 11       | 33       | 0    | 37       | 0 | 0 | 0           | 44     |
|         | 8                     | 105   | **       | 42       | 11       | 33       | 0    | 42       | 0 | 0 | 0           | 6      |
|         | 9                     | 105   | **       | 42       | 11       | 33       | 0    | 42       | 0 | 0 | 0           | 8      |
|         | 10                    | 120   | **       | 58       | 10       | 33       | 0    | 58       | 0 | 0 | 0           | 62     |
|         | 11                    | 140   | **       | 78       | 10       | 33       | 0    | 78       | 0 | 0 | 0           | 6      |
|         | 12                    | 120   | **       | 57       | 11       | 33       | 0    | 57       | 0 | 0 | 0           | 84     |
|         | 13                    | 100   | **       | 37       | 11       | 33       | 0    | 37       | 0 | 0 | 0           | 44     |
|         | 14                    | 105   | **       | 42       | 11       | 33       | 0    | 42       | 0 | 0 | 0           | 59     |
|         | 15                    | 120   | **       | 57       | 11       | 33       | 0    | 57       | 0 | 0 | 0           | 84     |
|         | 16                    | 100   | **       | 37       | 11       | 33       | 0    | 37       | 0 | 0 | 0           | 45     |
|         | 17                    | 100   | **       | 37       | 11       | 33       | 0    | 37       | 0 | 0 | 0           | 35     |
|         | 20                    | 120   | **       | 58       | 10       | 33       | 0    | 58       | 0 | 0 | 0           | 62     |
|         | 21                    | 120   | **       | 58       | 10       | 33       | 0    | 58       | 0 | 0 | 0           | 62     |
|         | 22                    | 90    | **       | 28       | 10       | 33       | 0    | 28       | 0 | 0 | 0           | 55     |
|         | 23                    | 90    | **       | 28       | 10       | 33       | 0    | 28       | 0 | 0 | 0           | 55     |

| Local TOD Schedule |             |            |  |  |  |  |  |  |  |
|--------------------|-------------|------------|--|--|--|--|--|--|--|
| Time               | <u>Plan</u> | DOW        |  |  |  |  |  |  |  |
| 0000               | 1           | Su S       |  |  |  |  |  |  |  |
| 0000               | 2           | M T W Th F |  |  |  |  |  |  |  |
| 0700               | 18          | M T W Th F |  |  |  |  |  |  |  |
| 0930               | 2           | M T W Th F |  |  |  |  |  |  |  |
| 1000               | 2           | Su S       |  |  |  |  |  |  |  |
| 1500               | 19          | M T W Th F |  |  |  |  |  |  |  |
| 2000               | 1           | Su S       |  |  |  |  |  |  |  |
| 2200               | 2           | M T W Th F |  |  |  |  |  |  |  |

7 - X-PED OMIT

8 - TBA

| Currei              | Current Time of Day Function |                       |                              |                     | Time of Day Function    |          | * Settings                            |                                                                                                                                                                                                                                        |  |
|---------------------|------------------------------|-----------------------|------------------------------|---------------------|-------------------------|----------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <u>Time</u><br>0000 | Function<br>TOD OUTPUTS      | <u>Settings *</u><br> | Day of Week<br>SuM T W ThF S | <u>Time</u><br>0000 | Function<br>TOD OUTPUTS | Settings | * <u>Day of Week</u><br>SuM T W ThF S | Blank - FREE - Phase Bank 1, Max 1<br>Blank - Plan - Phase Bank 1, Max 2<br>1 - Phase Bank 2, Max 1<br>2 - Phase Bank 2, Max 2<br>3 - Phase Bank 3, Max 1<br>4 - Phase Bank 3, Max 2<br>5 - EXTERNAL PERMIT 1<br>6 - EXTERNAL PERMIT 2 |  |

# TOD Schedule Report for 3923: Collins Av@5875 Blk

Print Date: 3/21/2017

Print Time 10:43 AM

No Calendar Defined/Enabled

|                          |                       |                            |             |             |                      | '              | OD Schedule Report |              |               |                              |                                   |                                 |  |  |  |
|--------------------------|-----------------------|----------------------------|-------------|-------------|----------------------|----------------|--------------------|--------------|---------------|------------------------------|-----------------------------------|---------------------------------|--|--|--|
| Print Date:<br>8/17/2013 |                       | for 2689: Collins Av&63 St |             |             |                      |                |                    |              |               |                              |                                   |                                 |  |  |  |
| Asset                    |                       | TOD<br>Intersection Schedu |             |             | <u>TOD</u><br>hedule | <u>Op Mode</u> | <u> Plan #</u>     | <u>Cycle</u> | <u>Offset</u> | <u>TOD</u><br><u>Setting</u> | <u>Active</u><br><u>PhaseBank</u> | <u>Active</u><br><u>Maximum</u> |  |  |  |
| 2689                     | 2689 Collins Av&63 St |                            |             | DOW-7       |                      |                | N/A                | 0            | 0             | N/A                          | 0                                 | Max 0                           |  |  |  |
|                          |                       |                            | <u>Sp</u>   | <u>lits</u> |                      |                |                    |              |               |                              |                                   |                                 |  |  |  |
| <u>PH 1</u>              | <u>PH 2</u>           | <u>PH 3</u>                | <u>PH 4</u> | <u>PH 5</u> | <u>PH 6</u>          | <u>PH 7</u>    | <u>PH 8</u>        |              |               |                              |                                   |                                 |  |  |  |
| -                        | NBT                   | -                          | EBT         | -           | -                    | -              | -                  |              |               |                              |                                   |                                 |  |  |  |
| 0                        | 0                     | 0                          | 0           | 0           | 0                    | 0              | 0                  |              |               |                              |                                   |                                 |  |  |  |
|                          | ↑                     |                            | →           |             |                      |                |                    |              |               |                              |                                   |                                 |  |  |  |

~ .

#### Active Phase Bank: Phase Bank 1 Max Limit <u>Walk</u> Don't Walk Min Initial Veh Ext <u>Max 2</u> <u>Yellow</u> <u>Red</u> Phase Last In Service Date: unknown Phase Bank 1 2 3 2 3 2 3 2 3 2 3 2 3 1 1 1 1 1 **Permitted Phases** 0 - 0 - 0 0 - 0 - 0 0 - 0 - 0 0 - 0 - 0 0 - 0 - 0 0 - 0 - 0 -0 0 1 <u>12345678</u> 22 - 22 - 22 7 - 7 - 7 40 - 40 - 40 0 - 50 - 50 2 NBT 7 - 7 - 7 1 - 1 - 1 4 1 0 - 0 - 0 0 - 0 - 0 -2-4-----0 - 0 - 0 0 - 0 - 0 0 Default 3 0 - 0 - 0 0 - 0 - 0 0 **External Permit 0** 4 EBT 7 - 7 - 7 19 - 19 - 19 7 - 7 -7 1 - 1 - 1 26 - 26 - 26 47 - 47 - 47 1 -----4 - 0 - 0 **External Permit 1** 5 0 - 0 - 0 0 - 0 - 0 0 - 0 -0 0 - 0 -0 0 -0 - 0 0 0 0 ------**External Permit 2** - 0 - 0 0 - 0 - 0 0 - 0 -- 0 -0 0 -0 - 0 0 - 0 - 0 0 -----6 -0 0 0 0 - 0 0 -0 7 -0 - 0 - 0 0 - 0 0 - 0 -0 0 - 0 0 0 - 0 - 0 - 0 0 0 -8 0 - 0 - 0 0 - 0 - 0 0 - 0 -0 0 - 0 -0 0 - 0 -0 0 - 0 - 0 0 0 -

| <u>Green Time</u> |             |              |   |     |   |     |   |   |   |   |             |               |
|-------------------|-------------|--------------|---|-----|---|-----|---|---|---|---|-------------|---------------|
| Current           |             | - ·          | 1 | 2   | 3 | 4   | 5 | 6 | 7 | 8 |             |               |
| TOD Schedule      | <u>Plan</u> | <u>Cycle</u> | - | NBT | - | EBT | - | - | - | - | Ring Offset | <u>Offset</u> |
|                   | 1           | 90           | 0 | 53  | 0 | 27  | 0 | 0 | 0 | 0 | 0           | 20            |
|                   | 2           | 90           | 0 | 45  | 0 | 35  | 0 | 0 | 0 | 0 | 0           | 0             |
|                   | 3           | 90           | 0 | 53  | 0 | 27  | 0 | 0 | 0 | 0 | 0           | 80            |
|                   | 4           | 80           | 0 | 43  | 0 | 27  | 0 | 0 | 0 | 0 | 0           | 55            |
|                   | 5           | 120          | 0 | 70  | 0 | 40  | 0 | 0 | 0 | 0 | 0           | 84            |
|                   | 6           | 80           | 0 | 43  | 0 | 27  | 0 | 0 | 0 | 0 | 0           | 55            |
|                   | 7           | 90           | 0 | 40  | 0 | 40  | 0 | 0 | 0 | 0 | 0           | 9             |
|                   | 8           | 80           | 0 | 44  | 0 | 26  | 0 | 0 | 0 | 0 | 0           | 20            |
|                   | 9           | 90           | 0 | 53  | 0 | 27  | 0 | 0 | 0 | 0 | 0           | 1             |
|                   | 10          | 80           | 0 | 43  | 0 | 27  | 0 | 0 | 0 | 0 | 0           | 36            |
|                   | 11          | 80           | 0 | 43  | 0 | 27  | 0 | 0 | 0 | 0 | 0           | 55            |
|                   | 12          | 100          | 0 | 49  | 0 | 41  | 0 | 0 | 0 | 0 | 0           | 45            |
|                   | 13          | 80           | 0 | 43  | 0 | 27  | 0 | 0 | 0 | 0 | 0           | 35            |
|                   | 14          | 90           | 0 | 53  | 0 | 27  | 0 | 0 | 0 | 0 | 0           | 76            |
|                   | 15          | 90           | 0 | 45  | 0 | 35  | 0 | 0 | 0 | 0 | 0           | 36            |
|                   | 16          | 90           | 0 | 40  | 0 | 40  | 0 | 0 | 0 | 0 | 0           | 9             |
|                   | 17          | 90           | 0 | 40  | 0 | 40  | 0 | 0 | 0 | 0 | 0           | 27            |
|                   | 18          | 90           | 0 | 40  | 0 | 40  | 0 | 0 | 0 | 0 | 0           | 36            |
|                   | 19          | 120          | 0 | 73  | 0 | 37  | 0 | 0 | 0 | 0 | 0           | 32            |
|                   | 20          | 90           | 0 | 39  | 0 | 41  | 0 | 0 | 0 | 0 | 0           | 10            |
|                   | 21          | 120          | 0 | 73  | 0 | 37  | 0 | 0 | 0 | 0 | 0           | 0             |
|                   | 22          | 80           | 0 | 43  | 0 | 27  | 0 | 0 | 0 | 0 | 0           | 55            |
|                   | 23          | 80           | 0 | 43  | 0 | 27  | 0 | 0 | 0 | 0 | 0           | 55            |

| Local TOD Schedule |             |            |   |  |  |  |  |  |
|--------------------|-------------|------------|---|--|--|--|--|--|
| <u>Time</u>        | <u>Plan</u> | DOW        |   |  |  |  |  |  |
| 0000               | 13          | Su         | S |  |  |  |  |  |
| 0000               | 14          | M T W Th F |   |  |  |  |  |  |
| 0600               | 1           | M T W Th F |   |  |  |  |  |  |
| 0800               | 2           | Su         | S |  |  |  |  |  |
| 0930               | 17          | M T W Th F |   |  |  |  |  |  |
| 1045               | 18          | M T W Th F |   |  |  |  |  |  |
| 1300               | 15          | M T W Th F |   |  |  |  |  |  |
| 1500               | 16          | M T W Th F |   |  |  |  |  |  |
| 1615               | 7           | M T W Th F |   |  |  |  |  |  |
| 1630               | 12          | Su         | S |  |  |  |  |  |
| 1745               | 20          | M T W Th F |   |  |  |  |  |  |
| 1830               | 10          | Su         | S |  |  |  |  |  |
| 1845               | 19          | M T W Th F |   |  |  |  |  |  |
| 2100               | 13          | Su         | S |  |  |  |  |  |
| 2100               | 3           | M T W Th F |   |  |  |  |  |  |
| 2200               | 14          | M T W Th F |   |  |  |  |  |  |

2 - Phase Bank 2, Max 2 3 - Phase Bank 3, Max 1 4 - Phase Bank 3, Max 2 5 - EXTERNAL PERMIT 1 6 - EXTERNAL PERMIT 2

7 - X-PED OMIT

8 - TBA

| Current Time of Day Function |                 |                   |               | Local | Time of Day Function | * Settings        |               |                                    |
|------------------------------|-----------------|-------------------|---------------|-------|----------------------|-------------------|---------------|------------------------------------|
| Time                         | <u>Function</u> | <u>Settings *</u> | Day of Week   | Time  | Function             | <u>Settings *</u> | Day of Week   | Blank - FREE - Phase Bank 1, Max 1 |
| 0000                         | TOD OUTPUTS     |                   | SuM T W ThF S | 0000  | TOD OUTPUTS          |                   | SuM T W ThF S | Blank - Plan - Phase Bank 1, Max 2 |
|                              |                 |                   |               |       |                      |                   |               | 1 - Phase Bank 2, Max 1            |

|  | No C | Calenda | ar Defin | ed/Enal | bled |  |
|--|------|---------|----------|---------|------|--|
|  |      |         |          |         |      |  |
|  |      |         |          |         |      |  |
|  |      |         |          |         |      |  |

### **TOD Schedule Report**

| Print Date:<br>1/13/2014 | for 2721: Indian Creek Dr&63 St |              |             |             |                      |                |               |              |               |                              |                                           | : |
|--------------------------|---------------------------------|--------------|-------------|-------------|----------------------|----------------|---------------|--------------|---------------|------------------------------|-------------------------------------------|---|
| Asset                    |                                 | Intersection | <u>1</u>    | Sc          | <u>TOD</u><br>hedule | <u>Op Mode</u> | <u>Plan #</u> | <u>Cycle</u> | <u>Offset</u> | <u>TOD</u><br><u>Setting</u> | <u>Active Active</u><br>PhaseBank Maximum |   |
| 2721                     | India                           | n Creek Dr&  | &63 St      | DC          | DW-2                 |                | N/A           | 0            | 0             | N/A                          | 0 Max 0                                   |   |
|                          |                                 |              | <u>Sp</u>   | <u>lits</u> |                      |                |               |              |               |                              |                                           |   |
| <u>PH 1</u>              | <u>PH 2</u>                     | <u>PH 3</u>  | <u>PH 4</u> | <u>PH 5</u> | <u>PH 6</u>          | <u>PH 7</u>    | <u>PH 8</u>   |              |               |                              |                                           |   |
| -                        | SBT                             | -            | -           | -           | -                    | WBL            | EBT           |              |               |                              |                                           |   |
| 0                        | 0                               | 0            | 0           | 0           | 0                    | 0              | 0             |              |               |                              |                                           |   |
|                          | <b>↓</b>                        |              |             |             |                      | F              | $\rightarrow$ |              |               |                              |                                           |   |

-

#### Active Phase Bank: Phase Bank 1

| <u>Phase</u> | <u>Walk</u> | Don't Walk   | <u>Min Initial</u> | <u>Veh Ext</u> | <u>Max Limit</u> | <u>Max 2</u>   | Yellow | Red | Last In Service Date   | unknown         |
|--------------|-------------|--------------|--------------------|----------------|------------------|----------------|--------|-----|------------------------|-----------------|
|              | Phase Bank  |              |                    |                |                  |                |        |     | Last III Service Date. | UTIKITOWIT      |
|              | 1 2 3       | 1 2 3        | 1 2 3              | 1 2 3          | 1 2 3            | 1 2 3          |        |     | Permitted Phases       |                 |
| 1 -          | 0 - 0 - 0   | 0 - 0 - 0    | 0 - 0 - 0          | 0 - 0 - 0      | 0 - 0 - 0        | 0 - 0 - 0      | 0      | 0   | r enninged r nases     |                 |
| 2 SBT        | 6 - 6 - 6   | 19 - 19 - 19 | 7 - 7 - 7          | 1 - 1 - 1      | 40 - 40 - 40     | 0 - 40 - 40    | 4      | 4   |                        | <u>12345678</u> |
| 3 -          | 0 - 0 - 0   | 0 - 0 - 0    | 0 - 0 - 0          | 0 - 0 - 0      | 0 - 0 - 0        | 0 - 0 - 0      | 0      | 0   | Default                | -278            |
| 4 -          | 0 - 0 - 0   | 0 - 0 - 0    | 0 - 0 - 0          | 0 - 0 - 0      | 0 - 0 - 0        | 0 - 0 - 0      | 0      | 0   | External Permit 0      |                 |
| 5 -          | 0 - 0 - 0   | 0 - 0 - 0    | 0 - 0 - 0          | 0 - 0 - 0      | 0 - 0 - 0        | 0 - 0 - 0      | 0      | 0   | External Permit 1      |                 |
| 6 -          | 0 - 0 - 0   | 0 - 0 - 0    | 0 - 0 - 0          | 0 - 0 - 0      | 0 - 0 - 0        | 0 - 0 - 0      | 0      | 0   | External Permit 2      |                 |
| 7 WBL        | 0 - 0 - 0   | 0 - 0 - 0    | 5 - 5 - 5          | 2 - 2 - 2      | 7 - 7 - 7        | 12 - 12 - 12   | 3.4    | 2.9 |                        |                 |
| <u>8 EBT</u> | 6 - 6 - 6   | 16 - 16 - 16 | 7 - 7 - 7          | 5 - 5 - 5      | 24 - 24 - 24     | 125 - 125 - 12 | 4      | 2.9 |                        |                 |

|                |             |              |   |     |   | Green | <u>Time</u> |   |     |     |             |               |
|----------------|-------------|--------------|---|-----|---|-------|-------------|---|-----|-----|-------------|---------------|
| <u>Current</u> |             |              | 1 | 2   | 3 | 4     | 5           | 6 | 7   | 8   |             |               |
| TOD Schedule   | <u>Plan</u> | <u>Cycle</u> | - | SBT | - | -     | -           | - | WBL | EBT | Ring Offset | <u>Offset</u> |
|                | 1           | 180          | 0 | 92  | 0 | 0     | 0           | 0 | 8   | 59  | 0           | 0             |
|                | 2           | 90           | 0 | 37  | 0 | 0     | 0           | 0 | 9   | 23  | 0           | 69            |
|                | 4           | 180          | 0 | 130 | 0 | 0     | 0           | 0 | 6   | 23  | 0           | 47            |
|                | 5           | 120          | 0 | 45  | 0 | 0     | 0           | 0 | 6   | 48  | 0           | 15            |
|                | 8           | 80           | 0 | 27  | 0 | 0     | 0           | 0 | 6   | 26  | 0           | 39            |
|                | 9           | 90           | 0 | 38  | 0 | 0     | 0           | 0 | 8   | 23  | 0           | 62            |
|                | 10          | 80           | 0 | 27  | 0 | 0     | 0           | 0 | 7   | 25  | 0           | 17            |
|                | 11          | 80           | 0 | 30  | 0 | 0     | 0           | 0 | 6   | 23  | 0           | 21            |
|                | 12          | 100          | 0 | 32  | 0 | 0     | 0           | 0 | 8   | 39  | 0           | 27            |
|                | 13          | 80           | 0 | 27  | 0 | 0     | 0           | 0 | 6   | 26  | 0           | 19            |
|                | 14          | 90           | 0 | 35  | 0 | 0     | 0           | 0 | 7   | 27  | 0           | 63            |
|                | 15          | 180          | 0 | 60  | 0 | 0     | 0           | 0 | 7   | 92  | 0           | 11            |
|                | 16          | 180          | 0 | 50  | 0 | 0     | 0           | 0 | 7   | 102 | 0           | 86            |
|                | 17          | 180          | 0 | 74  | 0 | 0     | 0           | 0 | 7   | 78  | 0           | 7             |
|                | 18          | 180          | 0 | 64  | 0 | 0     | 0           | 0 | 7   | 88  | 0           | 15            |
|                | 20          | 80           | 0 | 30  | 0 | 0     | 0           | 0 | 6   | 23  | 0           | 21            |
|                | 22          | 80           | 0 | 30  | 0 | 0     | 0           | 0 | 6   | 23  | 0           | 55            |
|                | 23          | 80           | 0 | 30  | 0 | 0     | 0           | 0 | 6   | 23  | 0           | 70            |

| Local TOD   | Local TOD Schedule |            |   |  |  |  |  |  |  |  |  |  |  |
|-------------|--------------------|------------|---|--|--|--|--|--|--|--|--|--|--|
| <u>Time</u> | <u>Plan</u>        | DOW        |   |  |  |  |  |  |  |  |  |  |  |
| 0000        | 13                 | Su         | S |  |  |  |  |  |  |  |  |  |  |
| 0000        | 14                 | M T W Th F | - |  |  |  |  |  |  |  |  |  |  |
| 0100        | 8                  | Su         | S |  |  |  |  |  |  |  |  |  |  |
| 0600        | 10                 | Su         | S |  |  |  |  |  |  |  |  |  |  |
| 0700        | 1                  | M T W Th F | - |  |  |  |  |  |  |  |  |  |  |
| 0800        | 14                 | Su         | S |  |  |  |  |  |  |  |  |  |  |
| 0930        | 17                 | M T W Th F | - |  |  |  |  |  |  |  |  |  |  |
| 1000        | 2                  | Su         | S |  |  |  |  |  |  |  |  |  |  |
| 1045        | 18                 | M T W Th F | - |  |  |  |  |  |  |  |  |  |  |
| 1300        | 15                 | M T W Th F | = |  |  |  |  |  |  |  |  |  |  |
| 1500        | 16                 | M T W Th F | = |  |  |  |  |  |  |  |  |  |  |
| 1630        | 12                 | Su         | S |  |  |  |  |  |  |  |  |  |  |
| 1830        | 10                 | Su         | S |  |  |  |  |  |  |  |  |  |  |
| 1845        | 5                  | M T W Th F | = |  |  |  |  |  |  |  |  |  |  |
| 2100        | 13                 | Su         | S |  |  |  |  |  |  |  |  |  |  |
| 2100        | 14                 | M T W Th F | = |  |  |  |  |  |  |  |  |  |  |

| Current Time of Day Function |             |                   |               | Local       | Time of Day Function | * Settings        |               |                                    |
|------------------------------|-------------|-------------------|---------------|-------------|----------------------|-------------------|---------------|------------------------------------|
| <u>Time</u>                  | Function    | <u>Settings *</u> | Day of Week   | <u>Time</u> | Function             | <u>Settings *</u> | Day of Week   | Blank - FREE - Phase Bank 1, Max 1 |
| 0000                         | TOD OUTPUTS |                   | SuM T W ThF S | 0000        | TOD OUTPUTS          |                   | SuM T W ThF S | Blank - Plan - Phase Bank 1, Max 2 |
|                              |             |                   |               |             |                      |                   |               | 1 - Phase Bank 2 Max 1             |

| Blank - FREE - Phase Bank 1, Max 1<br>Blank - Plan - Phase Bank 1, Max 2 |
|--------------------------------------------------------------------------|
| 1 Dhank Than Thate Bank 1, Max 2                                         |
| 1 - Phase Bank 2, Max 1                                                  |
| 2 - Phase Bank 2, Max 2                                                  |
| 3 - Phase Bank 3, Max 1                                                  |
| 4 - Phase Bank 3, Max 2                                                  |
| 5 - EXTERNAL PERMIT 1                                                    |
| 6 - EXTERNAL PERMIT 2                                                    |
| 7 - X-PED OMIT                                                           |
| 8 - TBA                                                                  |

| <br>No C | alendar De | efined/Enab | led |  |
|----------|------------|-------------|-----|--|
|          |            |             |     |  |
|          |            |             |     |  |
|          |            |             |     |  |

# **APPENDIX D**

**Pedestrian LOS** (Source: 2010 HCM)

#### Highway Capacity Manual 2010

parts of the walkway. In cross-flow locations, the LOS E–F threshold is 13 ft<sup>2</sup>/p, as indicated in the notes for Exhibit 23-1 and Exhibit 23-2.

|     | Average                       | Re                                   | lated Measure           | <u>s</u>               |                                                                   |
|-----|-------------------------------|--------------------------------------|-------------------------|------------------------|-------------------------------------------------------------------|
| LOS | Space<br>(ft <sup>2</sup> /p) | Flow Rate<br>(p/min/ft) <sup>a</sup> | Average<br>Speed (ft/s) | v/c Ratio <sup>b</sup> | Comments                                                          |
| A   | >60                           | ≤5                                   | >4.25                   | ≤0.21                  | Ability to move in desired path, no need to alter movements       |
| В   | >40-60                        | >5-7                                 | >4.17-4.25              | >0.21-0.31             | Occasional need to adjust path to avoid conflicts                 |
| С   | >24-40                        | >7-10                                | >4.00-4.17              | >0.31-0.44             | Frequent need to adjust path to avoid conflicts                   |
| D   | >15-24                        | >10-15                               | >3.75-4.00              | >0.44-0.65             | Speed and ability to pass slower pedestrians restricted           |
| Е   | >8–15 <sup>c</sup>            | >15–23                               | >2.50-3.75              | >0.65-1.00             | Speed restricted, very limited ability to pass slower pedestrians |
| F   | ≤8 <sup>c</sup>               | Variable                             | ≤2.50                   | Variable               | Speeds severely restricted, frequent contact with other users     |

**Notes:** Exhibit 23-1 does not apply to walkways with steep grades (>5%). See the Special Cases section for further discussion.

<sup>a</sup> Pedestrians per minute per foot of walkway width.

 $^{b}$  v/c ratio = flow rate/23. LOS is based on average space per pedestrian.

<sup>c</sup> In cross-flow situations, the LOS E–F threshold is 13 ft<sup>2</sup>/p.

| LOS | Average<br>Space<br>(ft <sup>2</sup> /p) | Related<br><u>Measure</u><br>Flow Rate <sup>a</sup><br>(p/min/ft) <sup>b</sup> | Comments                                                             |
|-----|------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------|
| A   | >530                                     | ≤0.5                                                                           | Ability to move in desired path, no need to alter movements          |
| B   | >90-530                                  | >0.5-3                                                                         | Occasional need to adjust path to avoid conflicts                    |
| C   | >40-90                                   | >3-6                                                                           | Frequent need to adjust path to avoid conflicts                      |
| D   | >23-40                                   | >6-11                                                                          | Speed and ability to pass slower pedestrians restricted              |
| Е   | >11-23°                                  | >11-18                                                                         | Speed restricted, very limited ability to pass slower<br>pedestrians |
| F   | ≤11 <sup>c</sup>                         | >18                                                                            | Speeds severely restricted, frequent contact with other users        |

**Notes:** <sup>a</sup> Rates in the table represent average flow rates over a 5-min period. Flow rate is directly related to space; however, LOS is based on average space per pedestrian.

<sup>b</sup> Pedestrians per minute per foot of walkway width. <sup>c</sup> In cross-flow situations, the LOS E–F threshold is 13 ft<sup>2</sup>/p.

#### **Stairways**

Exhibit 23-3 provides the LOS criteria for stairways.

| LOS | Average<br>Space<br>(ft <sup>2</sup> /p) | Related M<br>Flow Rate<br>(p/min/ft) <sup>a</sup> | <u>Measures</u><br>v/c Ratio <sup>b</sup> | Comments                                                      |
|-----|------------------------------------------|---------------------------------------------------|-------------------------------------------|---------------------------------------------------------------|
| А   | >20                                      | ≤5                                                | ≤ 0.33                                    | No need to alter movements                                    |
| В   | >17-20                                   | >5-6                                              | >0.33-0.41                                | Occasional need to adjust path to avoid conflicts             |
| С   | >12-17                                   | >6-8                                              | >0.41-0.53                                | Frequent need to adjust path to avoid conflicts               |
| D   | >8-12                                    | >8-11                                             | >0.53-0.73                                | Limited ability to pass slower pedestrians                    |
| E   | >5-8                                     | >11-15                                            | >0.73-1.00                                | Very limited ability to pass slower pedestrians               |
| F   | ≤5                                       | Variable                                          | Variable                                  | Speeds severely restricted, frequent contact with other users |

Notes: <sup>a</sup> Pedestrians per minute per foot of walkway width.

<sup>b</sup> v/c ratio = flow rate/15. LOS is based on average space per pedestrian.

Chapter 23/Off-Street Pedestrian and Bicycle Facilities December 2010 Exhibit 23-1

**Exhibit 23-2** Platoon-Adjusted LOS Criteria for Walkways

Average Flow LOS Criteria for Walkways

**Exhibit 23-3** LOS Criteria for Stairways

# **APPENDIX E**

# **SYNCHRO** Analyses (Source 6372 Collins)

#### Collins Avenue and 63rd Street Weekday AM Peak Hour Analysis

|                             | Co   | ollins Aven | ue    |      |           |       |      | 63rd Stree | t     |      |           |       |  |
|-----------------------------|------|-------------|-------|------|-----------|-------|------|------------|-------|------|-----------|-------|--|
|                             | 1    | Northboun   | d     | 5    | Southboun | d     |      | Eastbound  | ł     |      | Westbound |       |  |
| Description                 | Left | Through     | Right | Left | Through   | Right | Left | Through    | Right | Left | Through   | Right |  |
|                             |      |             |       |      |           |       |      |            |       |      |           |       |  |
| Existing Traffic (8/4/2017) | 176  | 541         |       |      |           |       | 432  |            |       |      |           |       |  |
| Season Adjustment Factor    | 1.04 | 1.04        | 1.04  | 1.04 | 1.04      | 1.04  | 1.04 | 1.04       | 1.04  | 1.04 | 1.04      | 1.04  |  |
| 2016 Peak Season Traffic    | 183  | 563         | 0     | 0    | 0         | 0     | 449  | 0          | 0     | 0    | 0         | 0     |  |
|                             |      |             |       |      |           |       |      |            |       |      |           |       |  |
| Annual Growth Rate          | 1.5% | 1.5%        | 1.5%  | 1.5% | 1.5%      | 1.5%  | 1.5% | 1.5%       | 1.5%  | 1.5% | 1.5%      | 1.5%  |  |
| 2018 Growth Traffic         | 186  | 571         | 0     | 0    | 0         | 0     | 456  | 0          | 0     | 0    | 0         | 0     |  |
| 6372 Project Trips          |      | 11          |       |      |           |       | 21   |            |       |      |           |       |  |
| 2018 Background Traffic     | 186  | 582         | 0     | 0    | 0         | 0     | 477  | 0          | 0     | 0    | 0         | 0     |  |
|                             |      |             |       |      |           |       |      |            |       |      |           |       |  |
| 5775 Collins                |      | 12          |       |      |           |       |      |            |       |      |           |       |  |
| 2018 Total Traffic          | 186  | 594         | 0     | 0    | 0         | 0     | 477  | 0          | 0     | 0    | 0         | 0     |  |



#### Collins Avenue and 63rd Street Weekday PM Peak Hour Analysis

|                             | Co   | ollins Aven | ue    |      |            |       |      | 63rd Stree | t     |           |         |       |
|-----------------------------|------|-------------|-------|------|------------|-------|------|------------|-------|-----------|---------|-------|
|                             | 1    | Northboun   | d     | 5    | Southbound |       |      | Eastbound  | ł     | Westbound |         |       |
| Description                 | Left | Through     | Right | Left | Through    | Right | Left | Through    | Right | Left      | Through | Right |
|                             |      |             |       |      |            |       |      |            |       |           |         |       |
| Existing Traffic (8/4/2017) | 286  | 1,230       |       |      |            |       | 809  |            | 0     |           |         |       |
| Season Adjustment Factor    | 1.04 | 1.04        | 1.04  | 1.04 | 1.04       | 1.04  | 1.04 | 1.04       | 1.04  | 1.04      | 1.04    | 1.04  |
| 2016 Peak Season Traffic    | 297  | 1,279       | 0     | 0    | 0          | 0     | 841  | 0          | 0     | 0         | 0       | 0     |
|                             |      |             |       |      |            |       |      |            |       |           |         |       |
| Annual Growth Rate          | 1.5% | 1.5%        | 1.5%  | 1.5% | 1.5%       | 1.5%  | 1.5% | 1.5%       | 1.5%  | 1.5%      | 1.5%    | 1.5%  |
| 2018 Growth Traffic         | 302  | 1,298       | 0     | 0    | 0          | 0     | 854  | 0          | 0     | 0         | 0       | 0     |
| 6372 Project Trips          |      | 14          |       |      |            |       | 20   |            |       |           |         |       |
| 2018 Background Traffic     | 302  | 1,312       | 0     | 0    | 0          | 0     | 874  | 0          | 0     | 0         | 0       | 0     |
|                             |      | 0           |       |      |            |       |      |            |       |           |         |       |
| 5775 Collins                |      | 6           |       |      |            |       |      |            |       |           |         |       |
| 2018 Total Traffic          | 302  | 1,318       | 0     | 0    | 0          | 0     | 874  | 0          | 0     | 0         | 0       | 0     |



#### Indian Creek Drive and W 63th Street Weekday AM Peak Hour Analysis

|                                                                 |           |           |           | Indi       | an Creek I    | )rive         | V 1         | V 63rd Stre | et         |            |           |             |
|-----------------------------------------------------------------|-----------|-----------|-----------|------------|---------------|---------------|-------------|-------------|------------|------------|-----------|-------------|
|                                                                 | 1         | Northboun | d         |            | Southboun     | d             |             | Eastbound   | ł          | Westbound  |           |             |
| Description                                                     | Left      | Through   | Right     | Left       | Through       | Right         | Left        | Through     | Right      | Left       | Through   | Right       |
|                                                                 |           |           |           |            |               |               |             |             |            |            |           |             |
| Existing Traffic (8/4/2017)                                     |           |           |           | 67         | 1,260         | 2,157         | 357         | 409         | 68         | 56         |           | 115         |
| Season Adjustment Factor                                        | 1.04      | 1.04      | 1.04      | 1.04       | 1.04          | 1.04          | 1.04        | 1.04        | 1.04       | 1.04       | 1.04      | 1.04        |
|                                                                 |           |           |           |            |               | 0.040         | 0.74        | 105         |            |            |           | 100         |
| 2016 Peak Season Traffic                                        | 0         | 0         | 0         | 70         | 1,310         | 2,243         | 3/1         | 425         | /1         | 58         | 0         | 120         |
| Annual Growth Rate<br>2018 Growth Traffic<br>6372 Project Trips | 1.5%<br>0 | 1.5%<br>0 | 1.5%<br>0 | 1.5%<br>71 | 1.5%<br>1,330 | 1.5%<br>2,277 | 1.5%<br>377 | 1.5%<br>432 | 1.5%<br>72 | 1.5%<br>59 | 1.5%<br>0 | 1.5%<br>121 |
| 0372 Project mps                                                |           |           |           | 15         | 0             | 0             |             | 0           |            |            |           |             |
| 2018 Background Traffic                                         | 0         | 0         | 0         | 84         | 1,338         | 2,283         | 377         | 440         | 72         | 59         | 0         | 121         |
| 5775 Collins                                                    |           |           |           |            | 4             |               |             |             |            |            |           |             |
| 2018 Total Traffic                                              | 0         | 0         | 0         | 84         | 1,342         | 2,283         | 377         | 440         | 72         | 59         | 0         | 121         |



#### Indian Creek Drive and W 63th Street Weekday PM Peak Hour Analysis

|                                                                 |           |           |           | Indian Creek Drive |                   |                     | W             | / 63rd Stre       | et          |            |           |             |
|-----------------------------------------------------------------|-----------|-----------|-----------|--------------------|-------------------|---------------------|---------------|-------------------|-------------|------------|-----------|-------------|
|                                                                 | 1         | lorthboun | d         | 5                  | Southboun         | d                   |               | Eastbound         | ł           | Westbound  |           |             |
| Description                                                     | Left      | Through   | Right     | Left               | Through           | Right               | Left          | Through           | Right       | Left       | Through   | Right       |
| Existing Traffic (8/4/2017)<br>Season Adjustment Factor         | 1.04      | 1.04      | 1.04      | 93<br>1.04         | 830<br>1.04       | 1,345<br>1.04       | 1,077<br>1.04 | 718<br>1.04       | 121<br>1.04 | 33<br>1.04 | 1.04      | 243<br>1.04 |
| 2016 Peak Season Traffic                                        | 0         | 0         | 0         | 97                 | 863               | 1,399               | 1,120         | 747               | 126         | 34         | 0         | 253         |
| Annual Growth Rate<br>2018 Growth Traffic<br>6372 Project Trips | 1.5%<br>0 | 1.5%<br>0 | 1.5%<br>0 | 1.5%<br>98<br>10   | 1.5%<br>876<br>15 | 1.5%<br>1,420<br>10 | 1.5%<br>1,137 | 1.5%<br>758<br>10 | 1.5%<br>128 | 1.5%<br>35 | 1.5%<br>0 | 1.5%<br>257 |
| 2018 Background Traffic                                         | 0         | 0         | 0         | 108                | 891               | 1,430               | 1,137         | 768               | 128         | 35         | 0         | 257         |
| 5775 Collins                                                    |           |           |           |                    | 10                |                     |               |                   |             |            |           |             |
| 2018 Total Traffic                                              | 0         | 0         | 0         | 108                | 901               | 1,430               | 1,137         | 768               | 128         | 35         | 0         | 257         |



#### Collins Avenue and 5875 Block Weekday PM Peak Hour Analysis

|                                                          | Co        | Collins Avenue |           |           | ollins Aven | ue        |           |           |           |           |           |           |
|----------------------------------------------------------|-----------|----------------|-----------|-----------|-------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
|                                                          | N         | lorthboun      | d         | S         | Southboun   | d         |           | Eastbound | ł         |           | Westbound | b         |
| Description                                              | U-turn    | Through        | Right     | Left      | Through     | Right     | Left      | Through   | Right     | Left      | Through   | Right     |
| Existing Traffic (3/10/2017)<br>Season Adjustment Factor | 1.00      | 1,333<br>1.00  | 1.00      | 1.00      | 958<br>1.00 | 1.00      | 1.00      | 1.00      | 1.00      | 1.00      | 1.00      | 1.00      |
| 2016 Peak Season Traffic                                 | 0         | 1,333          | 0         | 0         | 958         | 0         | 0         | 0         | 0         | 0         | 0         | 0         |
| Annual Growth Rate<br>2018 Growth Traffic                | 1.5%<br>0 | 1.5%<br>1,353  | 1.5%<br>0 | 1.5%<br>0 | 1.5%<br>972 | 1.5%<br>0 |
| 2018 Background Traffic                                  | 0         | 1,353          | 0         | 0         | 972         | 0         | 0         | 0         | 0         | 0         | 0         | 0         |
| Net New Project Trips                                    | 17        |                |           |           |             |           |           |           |           |           |           |           |
| 2018 Total Traffic                                       | 17        | 1,353          | 0         | 0         | 972         | 0         | 0         | 0         | 0         | 0         | 0         | 0         |





Traf Tech ENGINEERING, INC. EXISTING TRAFFIC COUNTS AM & (PM) Peak Hour **FIGURE 4** 5775 Collins Miami Beach, Florida



Traf Tech ENGINEERING, INC. BACKGROUND TRAFFIC AM & (PM) Peak Hour **FIGURE 5** 5775 Collins Miami Beach, Florida





TOTAL TRAFFIC AM & (PM) Peak Hour **FIGURE 6** 5775 Collins Miami Beach, Florida

## HCM Signalized Intersection Capacity Analysis 101: Indian Creek Drive & W 63 Street

|                          | ٦         | -     | $\rightarrow$ | ¥     | ←        | •         | •         | 1    | 1    | 1    | ŧ          | ~     |
|--------------------------|-----------|-------|---------------|-------|----------|-----------|-----------|------|------|------|------------|-------|
| Movement                 | EBL       | EBT   | EBR           | WBL   | WBT      | WBR       | NBL       | NBT  | NBR  | SBL  | SBT        | SBR   |
| Lane Configurations      | ሻሻ        | ፋፑ    |               | ٦     |          | 1         |           |      |      |      | <b>4</b> ↑ | 11    |
| Traffic Volume (vph)     | 371       | 425   | 71            | 58    | 0        | 120       | 0         | 0    | 0    | 70   | 1310       | 2243  |
| Future Volume (vph)      | 371       | 425   | 71            | 58    | 0        | 120       | 0         | 0    | 0    | 70   | 1310       | 2243  |
| Ideal Flow (vphpl)       | 1900      | 1900  | 1900          | 1900  | 1900     | 1900      | 1900      | 1900 | 1900 | 1900 | 1900       | 1900  |
| Total Lost time (s)      | 6.9       | 6.9   |               | 6.6   |          | 6.6       |           |      |      |      | 8.0        | 8.0   |
| Lane Util. Factor        | 0.86      | 0.86  |               | 1.00  |          | 1.00      |           |      |      |      | 0.95       | 0.88  |
| Frpb, ped/bikes          | 1.00      | 0.99  |               | 1.00  |          | 0.97      |           |      |      |      | 1.00       | 0.97  |
| Flpb, ped/bikes          | 1.00      | 1.00  |               | 1.00  |          | 1.00      |           |      |      |      | 1.00       | 1.00  |
| Frt                      | 1.00      | 0.98  |               | 1.00  |          | 0.85      |           |      |      |      | 1.00       | 0.85  |
| Flt Protected            | 0.95      | 1.00  |               | 0.95  |          | 1.00      |           |      |      |      | 1.00       | 1.00  |
| Satd. Flow (prot)        | 2739      | 2795  |               | 1593  |          | 1375      |           |      |      |      | 3177       | 2435  |
| Flt Permitted            | 0.95      | 1.00  |               | 0.95  |          | 1.00      |           |      |      |      | 1.00       | 1.00  |
| Satd. Flow (perm)        | 2739      | 2795  |               | 1593  |          | 1375      |           |      |      |      | 3177       | 2435  |
| Peak-hour factor, PHF    | 0.92      | 0.92  | 0.92          | 0.92  | 0.92     | 0.92      | 0.92      | 0.92 | 0.92 | 0.92 | 0.92       | 0.92  |
| Adj. Flow (vph)          | 403       | 462   | 77            | 63    | 0        | 130       | 0         | 0    | 0    | 76   | 1424       | 2438  |
| RTOR Reduction (vph)     | 0         | 6     | 0             | 0     | 0        | 124       | 0         | 0    | 0    | 0    | 0          | 623   |
| Lane Group Flow (vph)    | 363       | 573   | 0             | 63    | 0        | 6         | 0         | 0    | 0    | 0    | 1500       | 1815  |
| Confl. Peds. (#/hr)      | 2         |       | 17            | 17    |          | 2         |           |      |      |      |            | 2     |
| Confl. Bikes (#/hr)      |           |       | 4             |       |          | 2         |           |      |      |      |            | 3     |
| Turn Type                | Split     | NA    |               | Prot  |          | Perm      |           |      |      | Perm | NA         | Perm  |
| Protected Phases         | 8         | 8     |               | 7     |          |           |           |      |      |      | 2          |       |
| Permitted Phases         |           |       |               |       |          | 7         |           |      |      | 2    |            | 2     |
| Actuated Green, G (s)    | 50.5      | 50.5  |               | 8.0   |          | 8.0       |           |      |      |      | 99.5       | 99.5  |
| Effective Green, g (s)   | 50.5      | 50.5  |               | 8.0   |          | 8.0       |           |      |      |      | 99.5       | 99.5  |
| Actuated g/C Ratio       | 0.28      | 0.28  |               | 0.04  |          | 0.04      |           |      |      |      | 0.55       | 0.55  |
| Clearance Time (s)       | 6.9       | 6.9   |               | 6.6   |          | 6.6       |           |      |      |      | 8.0        | 8.0   |
| Vehicle Extension (s)    | 5.0       | 5.0   |               | 2.0   |          | 2.0       |           |      |      |      | 1.0        | 1.0   |
| Lane Grp Cap (vph)       | 770       | 786   |               | 70    |          | 61        |           |      |      |      | 1761       | 1349  |
| v/s Ratio Prot           | 0.13      | c0.20 |               | c0.04 |          |           |           |      |      |      |            |       |
| v/s Ratio Perm           |           |       |               |       |          | 0.00      |           |      |      |      | 0.47       | c0.75 |
| v/c Ratio                | 0.47      | 0.73  |               | 0.90  |          | 0.09      |           |      |      |      | 0.85       | 1.35  |
| Uniform Delay, d1        | 53.4      | 58.3  |               | 85.4  |          | 82.3      |           |      |      |      | 33.8       | 40.0  |
| Progression Factor       | 1.00      | 1.00  |               | 1.00  |          | 1.00      |           |      |      |      | 1.00       | 1.00  |
| Incremental Delay, d2    | 1.0       | 4.2   |               | 72.6  |          | 0.2       |           |      |      |      | 5.4        | 160.5 |
| Delay (s)                | 54.4      | 62.5  |               | 158.0 |          | 82.5      |           |      |      |      | 39.2       | 200.5 |
| Level of Service         | D         | E     |               | F     |          | F         |           |      |      |      | D          | F     |
| Approach Delay (s)       |           | 59.4  |               |       | 107.1    |           |           | 0.0  |      |      | 139.0      |       |
| Approach LOS             |           | E     |               |       | F        |           |           | A    |      |      | F          |       |
| Intersection Summary     |           |       |               |       |          |           |           |      |      |      |            |       |
| HCM 2000 Control Delay   | у         |       | 123.0         | F     | ICM 20   | 00 Leve   | l of Serv | vice | F    |      |            |       |
| HCM 2000 Volume to Ca    | apacity   | ratio | 1.12          |       |          |           |           |      |      |      |            |       |
| Actuated Cycle Length (  | s)        |       | 179.5         | S     | Sum of I | ost time  | (s)       |      | 21.5 |      |            |       |
| Intersection Capacity Ut | ilization |       | 94.1%         | I     | CU Leve  | el of Ser | vice      |      | F    |      |            |       |
| Analysis Period (min)    |           |       | 15            |       |          |           |           |      |      |      |            |       |
|                          |           |       |               |       |          |           |           |      |      |      |            |       |

c Critical Lane Group

# Timings 101: Indian Creek Drive & W 63 Street

|                          | ٦          | -        | 4         | ×      | Ļ         | ~          |      |
|--------------------------|------------|----------|-----------|--------|-----------|------------|------|
| Lane Group               | EBL        | EBT      | WBL       | WBR    | SBT       | SBR        |      |
| Lane Configurations      | ሻሻ         | ፋፑ       | ٦         | 1      | 4Þ        | 11         |      |
| Traffic Volume (vph)     | 371        | 425      | 58        | 120    | 1310      | 2243       |      |
| Future Volume (vph)      | 371        | 425      | 58        | 120    | 1310      | 2243       |      |
| Turn Type                | Split      | NA       | Prot      | Perm   | NA        | Perm       |      |
| Protected Phases         | . 8        | 8        | 7         |        | 2         |            |      |
| Permitted Phases         |            |          |           | 7      |           | 2          |      |
| Detector Phase           | 8          | 8        | 7         | 7      | 2         | 2          |      |
| Switch Phase             |            |          |           |        |           |            |      |
| Minimum Initial (s)      | 7.0        | 7.0      | 5.0       | 5.0    | 7.0       | 7.0        |      |
| Minimum Split (s)        | 28.9       | 28.9     | 14.0      | 14.0   | 33.0      | 33.0       |      |
| Total Split (s)          | 64.9       | 64.9     | 14.6      | 14.6   | 100.0     | 100.0      |      |
| Total Split (%)          | 36.2%      | 36.2%    | 8.1%      | 8.1%   | 55.7%     | 55.7%      |      |
| Yellow Time (s)          | 4.0        | 4.0      | 3.7       | 3.7    | 4.0       | 4.0        |      |
| All-Red Time (s)         | 2.9        | 2.9      | 2.9       | 2.9    | 4.0       | 4.0        |      |
| Lost Time Adjust (s)     | 0.0        | 0.0      | 0.0       | 0.0    | 0.0       | 0.0        |      |
| Total Lost Time (s)      | 6.9        | 6.9      | 6.6       | 6.6    | 8.0       | 8.0        |      |
| Lead/Lag                 | Lag        | Lag      | Lead      | Lead   |           |            |      |
| Lead-Lag Optimize?       | Yes        | Yes      | Yes       | Yes    |           |            |      |
| Recall Mode              | None       | None     | None      | None   | C-Min     | C-Min      |      |
| Act Effct Green (s)      | 50.5       | 50.5     | 8.0       | 8.0    | 99.5      | 99.5       |      |
| Actuated g/C Ratio       | 0.28       | 0.28     | 0.04      | 0.04   | 0.55      | 0.55       |      |
| v/c Ratio                | 0.47       | 0.73     | 0.90      | 0.70   | 0.85      | 1.24       |      |
| Control Delay            | 54.7       | 62.6     | 163.1     | 31.7   | 40.7      | 127.8      |      |
| Queue Delay              | 0.0        | 0.0      | 0.0       | 0.0    | 0.0       | 0.0        |      |
| Total Delay              | 54.7       | 62.6     | 163.1     | 31.7   | 40.7      | 127.8      |      |
| LOS                      | D          | Е        | F         | С      | D         | F          |      |
| Approach Delay           |            | 59.6     |           |        | 94.6      |            |      |
| Approach LOS             |            | E        |           |        | F         |            |      |
| Intersection Summary     |            |          |           |        |           |            |      |
| Cycle Length: 179.5      |            |          |           |        |           |            |      |
| Actuated Cycle Length:   | 179.5      |          |           |        |           |            |      |
| Offset: 30 (17%), Refer  | enced to   | o phase  | 2:SBTL    | and 6: | , Start o | f Yellow   |      |
| Natural Cycle: 130       |            |          |           |        |           |            |      |
| Control Type: Actuated   | -Coordir   | nated    |           |        |           |            |      |
| Maximum v/c Ratio: 1.2   | 24         |          |           |        |           |            |      |
| Intersection Signal Dela | ay: 87.3   |          |           |        | ntersec   | tion LOS   | : F  |
| Intersection Capacity U  | tilization | 94.1%    |           |        | CU Lev    | el of Serv | vice |
| Analysis Period (min) 1  | 5          |          |           |        |           |            |      |
|                          |            |          |           |        |           |            |      |
| Splits and Phases: 1     | 01: India  | an Creek | C Drive & | & W 63 | Street    |            |      |

| ∲ ø2 (R) | ₹ø7    | <b>▲</b> Ø8 |
|----------|--------|-------------|
| 100 s    | 14.6 s | 64.9 s      |

### Queues 101: Indian Creek Drive & W 63 Street

|                         | ۶    | <b>→</b> | 4     | ×    | Ļ    | 1     |
|-------------------------|------|----------|-------|------|------|-------|
| Lane Group              | EBL  | EBT      | WBL   | WBR  | SBT  | SBR   |
| Lane Group Flow (vph)   | 363  | 579      | 63    | 130  | 1500 | 2438  |
| v/c Ratio               | 0.47 | 0.73     | 0.90  | 0.70 | 0.85 | 1.24  |
| Control Delay           | 54.7 | 62.6     | 163.1 | 31.7 | 40.7 | 127.8 |
| Queue Delay             | 0.0  | 0.0      | 0.0   | 0.0  | 0.0  | 0.0   |
| Total Delay             | 54.7 | 62.6     | 163.1 | 31.7 | 40.7 | 127.8 |
| Queue Length 50th (ft)  | 205  | 353      | 75    | 0    | 780  | ~1575 |
| Queue Length 95th (ft)  | 252  | 413      | #179  | #90  | 969  | #1684 |
| Internal Link Dist (ft) |      | 365      |       |      | 1320 |       |
| Turn Bay Length (ft)    | 250  |          |       |      |      |       |
| Base Capacity (vph)     | 885  | 909      | 70    | 185  | 1760 | 1972  |
| Starvation Cap Reductn  | 0    | 0        | 0     | 0    | 0    | 0     |
| Spillback Cap Reductn   | 0    | 0        | 0     | 0    | 0    | 0     |
| Storage Cap Reductn     | 0    | 0        | 0     | 0    | 0    | 0     |
| Reduced v/c Ratio       | 0.41 | 0.64     | 0.90  | 0.70 | 0.85 | 1.24  |
|                         |      |          |       |      |      |       |

#### Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.

# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

# HCM Signalized Intersection Capacity Analysis 102: Collins Avenue & W 63 Street

|                          | ٨          | $\rightarrow$ | 1     | 1    | ŧ         | ~            |         |      |  |
|--------------------------|------------|---------------|-------|------|-----------|--------------|---------|------|--|
| Movement                 | EBL        | EBR           | NBL   | NBT  | SBT       | SBR          |         |      |  |
| Lane Configurations      | ሻሻ         |               |       | 4†₽  |           |              |         |      |  |
| Traffic Volume (vph)     | 449        | 0             | 183   | 563  | 0         | 0            |         |      |  |
| Future Volume (vph)      | 449        | 0             | 183   | 563  | 0         | 0            |         |      |  |
| Ideal Flow (vphpl)       | 1900       | 1900          | 1900  | 1900 | 1900      | 1900         |         |      |  |
| Total Lost time (s)      | 6.3        |               |       | 6.3  |           |              |         |      |  |
| Lane Util. Factor        | 0.97       |               |       | 0.91 |           |              |         |      |  |
| Frpb, ped/bikes          | 1.00       |               |       | 1.00 |           |              |         |      |  |
| Flpb, ped/bikes          | 1.00       |               |       | 1.00 |           |              |         |      |  |
| Frt                      | 1.00       |               |       | 1.00 |           |              |         |      |  |
| Flt Protected            | 0.95       |               |       | 0.99 |           |              |         |      |  |
| Satd, Flow (prot)        | 3090       |               |       | 4508 |           |              |         |      |  |
| Flt Permitted            | 0.95       |               |       | 0.99 |           |              |         |      |  |
| Satd. Flow (perm)        | 3090       |               |       | 4508 |           |              |         |      |  |
| Peak-hour factor PHF     | 0.90       | 0.90          | 0.90  | 0.90 | 0.90      | 0.90         |         |      |  |
| Adi Flow (vph)           | 499        | 0.00          | 203   | 626  | 0.00      | 0            |         |      |  |
| RTOR Reduction (vph)     | 0          | 0             | 0     | 0_0  | 0         | 0            |         |      |  |
| Lane Group Flow (vph)    | 499        | 0             | 0     | 829  | 0         | 0            |         |      |  |
| Confl Peds (#/hr)        | 100        | 22            | 12    | 020  | Ű         | 12           |         |      |  |
| Confl Bikes (#/hr)       |            | 1             | •=    |      |           | 1            |         |      |  |
|                          | Prot       | •             | Perm  | NΔ   |           | •            |         |      |  |
| Protected Phases         | 4          |               | i cim | 2    |           |              |         |      |  |
| Permitted Phases         | т          |               | 2     | 2    |           |              |         |      |  |
| Actuated Green G (s)     | 18 3       |               | 2     | 59.7 |           |              |         |      |  |
| Effective Green, g (s)   | 18.3       |               |       | 59.7 |           |              |         |      |  |
| Actuated q/C Ratio       | 0.20       |               |       | 0.66 |           |              |         |      |  |
| Clearance Time (s)       | 63         |               |       | 63   |           |              |         |      |  |
| Vehicle Extension (s)    | 1.0        |               |       | 1.0  |           |              |         |      |  |
| Lane Grp Cap (vpb)       | 624        |               |       | 2070 |           |              |         |      |  |
| v/s Ratio Prot           | c0 16      |               |       | 2310 |           |              |         |      |  |
| v/s Ratio Perm           | 0.10       |               |       | 0.18 |           |              |         |      |  |
| v/s Ratio Ferm           | 0.80       |               |       | 0.10 |           |              |         |      |  |
| Uniform Delay, d1        | 34.4       |               |       | 6.5  |           |              |         |      |  |
| Progression Eactor       | 1 00       |               |       | 1.00 |           |              |         |      |  |
| Incremental Delay, d2    | 6.6        |               |       | 0.2  |           |              |         |      |  |
| Delay (s)                | /1 1       |               |       | 6.7  |           |              |         |      |  |
| Level of Service         | י.וד-<br>ח |               |       | 0.7  |           |              |         |      |  |
| Approach Delay (s)       | /1 1       |               |       | 67   | 0.0       |              |         |      |  |
| Approach LOS             | 41.1<br>D  |               |       | 0.7  | 0.0       |              |         |      |  |
| Approach 203             | U          |               |       | A    | A         |              |         |      |  |
| Intersection Summary     |            |               |       |      |           |              |         |      |  |
| HCM 2000 Control Dela    | у          |               | 19.6  | F    | ICM 200   | 0 Level of S | Service | В    |  |
| HCM 2000 Volume to C     | apacity    | ratio         | 0.40  |      |           |              |         |      |  |
| Actuated Cycle Length (  | s)         |               | 90.6  | S    | Sum of Ic | ost time (s) |         | 12.6 |  |
| Intersection Capacity Ut | ilization  |               | 46.1% | 10   | CU Leve   | l of Service |         | A    |  |
| Analysis Period (min)    |            |               | 15    |      |           |              |         |      |  |

Critical Lane Group С

# Timings 102: Collins Avenue & W 63 Street

|                         | الحر        | †       |                                |
|-------------------------|-------------|---------|--------------------------------|
| Lane Group              | EBL         | NBT     |                                |
| Lane Configurations     | ሻሻ          | 4†î⊳    |                                |
| Traffic Volume (vph)    | 449         | 563     |                                |
| Future Volume (vph)     | 449         | 563     |                                |
| Turn Type               | Prot        | NA      |                                |
| Protected Phases        | 4           | 2       |                                |
| Permitted Phases        |             |         |                                |
| Detector Phase          | 4           | 2       |                                |
| Switch Phase            |             |         |                                |
| Minimum Initial (s)     | 5.0         | 5.0     |                                |
| Minimum Split (s)       | 32.3        | 35.3    |                                |
| Total Split (s)         | 32.3        | 58.3    |                                |
| Total Split (%)         | 35.7%       | 64.3%   |                                |
| Yellow Time (s)         | 4.0         | 4.0     |                                |
| All-Red Time (s)        | 2.3         | 2.3     |                                |
| Lost Time Adjust (s)    | 0.0         | 0.0     |                                |
| Total Lost Time (s)     | 6.3         | 6.3     |                                |
| Lead/Lag                |             |         |                                |
| Lead-Lag Optimize?      |             |         |                                |
| Recall Mode             | None        | C-Min   |                                |
| Act Effct Green (s)     | 18.3        | 59.7    |                                |
| Actuated g/C Ratio      | 0.20        | 0.66    |                                |
| v/c Ratio               | 0.80        | 0.28    |                                |
| Control Delay           | 44.3        | 7.2     |                                |
| Queue Delay             | 0.9         | 0.0     |                                |
| Total Delay             | 45.2        | 7.2     |                                |
| LOS                     | D           | A       |                                |
| Approach Delay          | 45.2        | 7.2     |                                |
| Approach LOS            | D           | A       |                                |
| Intersection Summary    |             |         |                                |
| Cycle Length: 90.6      |             |         |                                |
| Actuated Cycle Length   | : 90.6      |         |                                |
| Offset: 43 (47%), Refe  | renced to   | o phase | 2:NBTL and 6:, Start of Yellow |
| Natural Cycle: 70       |             |         |                                |
| Control Type: Actuated  | d-Coordir   | nated   |                                |
| Maximum v/c Ratio: 0.   | 80          |         |                                |
| Intersection Signal Del | lay: 21.5   |         | Intersection LOS: C            |
| Intersection Capacity L | Jtilization | 46.1%   | ICU Level of Service A         |
| Analysis Period (min) 1 | 15          |         |                                |
| Splits and Phases: 1    | 102: Colli  | ns Aver | nue & W 63 Street              |
| 1 Ø2 (R)                |             |         | _ <i>▶</i> ¢i4                 |
| 58.3 s                  |             |         |                                |

∮Ø2 (R) 58.3 s

### Queues 102: Collins Avenue & W 63 Street

|                         | ٦    | t    |
|-------------------------|------|------|
| Lane Group              | EBL  | NBT  |
| Lane Group Flow (vph)   | 499  | 829  |
| v/c Ratio               | 0.80 | 0.28 |
| Control Delay           | 44.3 | 7.2  |
| Queue Delay             | 0.9  | 0.0  |
| Total Delay             | 45.2 | 7.2  |
| Queue Length 50th (ft)  | 141  | 64   |
| Queue Length 95th (ft)  | 181  | 102  |
| Internal Link Dist (ft) | 170  | 216  |
| Turn Bay Length (ft)    |      |      |
| Base Capacity (vph)     | 886  | 2970 |
| Starvation Cap Reductn  | 168  | 0    |
| Spillback Cap Reductn   | 0    | 0    |
| Storage Cap Reductn     | 0    | 0    |
| Reduced v/c Ratio       | 0.69 | 0.28 |
| Intersection Summarv    |      |      |

|                           | ٨       | ¥             | •        | Ť            | ţ        | 4       |                                  |
|---------------------------|---------|---------------|----------|--------------|----------|---------|----------------------------------|
| Movement                  | EBL     | EBR           | NBL      | NBT          | SBT      | SBR     |                                  |
| Lane Configurations       | ካካ      |               |          | 4 <b>†</b> ₽ |          |         |                                  |
| Traffic Volume (veh/h)    | 449     | 0             | 183      | 563          | 0        | 0       |                                  |
| Future Volume (veh/h)     | 449     | 0             | 183      | 563          | 0        | 0       |                                  |
| Number                    | 7       | 14            | 5        | 2            |          |         |                                  |
| Initial Q (Qb), veh       | 0       | 0             | 0        | 0            |          |         |                                  |
| Ped-Bike Adj(A_pbT)       | 1.00    | 1.00          | 1.00     |              |          |         |                                  |
| Parking Bus, Adj          | 1.00    | 1.00          | 1.00     | 1.00         |          |         |                                  |
| Adj Sat Flow, veh/h/ln    | 1676    | 0             | 1710     | 1676         |          |         |                                  |
| Adj Flow Rate, veh/h      | 499     | 0             | 203      | 626          |          |         |                                  |
| Adj No. of Lanes          | 2       | 0             | 0        | 3            |          |         |                                  |
| Peak Hour Factor          | 0.90    | 0.90          | 0.90     | 0.90         |          |         |                                  |
| Percent Heavy Veh, %      | 2       | 0             | 2        | 2            |          |         |                                  |
| Cap, veh/h                | 0       | 0             | 959      | 2968         |          |         |                                  |
| Arrive On Green           | 0.00    | 0.00          | 0.93     | 0.93         |          |         |                                  |
| Sat Flow, veh/h           | 0       |               | 958      | 3326         |          |         |                                  |
| Grp Volume(v), veh/h      | 0.0     |               | 287      | 542          |          |         |                                  |
| Grp Sat Flow(s),veh/h/ln  |         |               | 1370     | 1388         |          |         |                                  |
| Q Serve(g_s), s           |         |               | 0.6      | 1.5          |          |         |                                  |
| Cycle Q Clear(g_c), s     |         |               | 1.4      | 1.5          |          |         |                                  |
| Prop In Lane              |         |               | 0.71     |              |          |         |                                  |
| Lane Grp Cap(c), veh/h    |         |               | 1343     | 2584         |          |         |                                  |
| V/C Ratio(X)              |         |               | 0.21     | 0.21         |          |         |                                  |
| Avail Cap(c_a), veh/h     |         |               | 1343     | 2584         |          |         |                                  |
| HCM Platoon Ratio         |         |               | 1.00     | 1.00         |          |         |                                  |
| Upstream Filter(I)        |         |               | 1.00     | 1.00         |          |         |                                  |
| Uniform Delay (d), s/veh  |         |               | 0.3      | 0.3          |          |         |                                  |
| Incr Delay (d2), s/veh    |         |               | 0.4      | 0.2          |          |         |                                  |
| Initial Q Delay(d3),s/veh |         |               | 0.0      | 0.0          |          |         |                                  |
| %ile BackOfQ(50%),veh/    | ′ln     |               | 0.7      | 0.6          |          |         |                                  |
| LnGrp Delay(d),s/veh      |         |               | 0.6      | 0.5          |          |         |                                  |
| LnGrp LOS                 |         |               | А        | А            |          |         |                                  |
| Approach Vol. veh/h       |         |               |          | 829          |          |         |                                  |
| Approach Delay, s/veh     |         |               |          | 0.5          |          |         |                                  |
| Approach LOS              |         |               |          | А            |          |         |                                  |
| Timer                     | 4       | 0             | 2        | 4            | ~        | 0       | 7 0                              |
|                           | 1       | 2             | 3        | 4            | 5        | 0       | 1 8                              |
| Assigned Phs              | -       | 2             |          |              |          |         |                                  |
| Phys Duration (G+Y+RC),   | S       | 91.0          |          |              |          |         |                                  |
| Change Period (Y+RC), s   |         | " 6.3<br>* 50 |          |              |          |         |                                  |
| Max Green Setting (Gma    | IX), S  | ° 52          |          |              |          |         |                                  |
| Max Q Clear Time (g_c+    | 11), S  | 3.5           |          |              |          |         |                                  |
| Green Ext Time (p_c), s   |         | 2.1           |          |              |          |         |                                  |
| Intersection Summary      |         |               |          |              |          |         |                                  |
| HCM 2010 Ctrl Delay       |         |               | 0.5      |              |          |         |                                  |
| HCM 2010 LOS              |         |               | A        |              |          |         |                                  |
| Notes                     |         |               |          |              |          |         |                                  |
| * HCM 2010 computation    | al engi | ne requ       | ires equ | al clear     | ance tin | nes for | the phases crossing the barrier. |

Existing AM Peak

Synchro 10 Light Report

## HCM Signalized Intersection Capacity Analysis 101: Indian Creek Drive & W 63 Street

|                          | ٦         | -     | $\rightarrow$ | ¥     | -        | •         | 1         | t    | 1    | 1    | ŧ          | ~     |
|--------------------------|-----------|-------|---------------|-------|----------|-----------|-----------|------|------|------|------------|-------|
| Movement                 | EBL       | EBT   | EBR           | WBL   | WBT      | WBR       | NBL       | NBT  | NBR  | SBL  | SBT        | SBR   |
| Lane Configurations      | ሻሻ        | ፋፑ    |               | ۲     |          | 1         |           |      |      |      | <b>4</b> ↑ | 11    |
| Traffic Volume (vph)     | 1120      | 747   | 126           | 34    | 0        | 253       | 0         | 0    | 0    | 97   | 863        | 1399  |
| Future Volume (vph)      | 1120      | 747   | 126           | 34    | 0        | 253       | 0         | 0    | 0    | 97   | 863        | 1399  |
| Ideal Flow (vphpl)       | 1900      | 1900  | 1900          | 1900  | 1900     | 1900      | 1900      | 1900 | 1900 | 1900 | 1900       | 1900  |
| Total Lost time (s)      | 6.9       | 6.9   |               | 6.6   |          | 6.6       |           |      |      |      | 8.0        | 8.0   |
| Lane Util. Factor        | 0.86      | 0.86  |               | 1.00  |          | 1.00      |           |      |      |      | 0.95       | 0.88  |
| Frpb, ped/bikes          | 1.00      | 0.99  |               | 1.00  |          | 1.00      |           |      |      |      | 1.00       | 0.93  |
| Flpb, ped/bikes          | 1.00      | 1.00  |               | 1.00  |          | 1.00      |           |      |      |      | 1.00       | 1.00  |
| Frt                      | 1.00      | 0.98  |               | 1.00  |          | 0.85      |           |      |      |      | 1.00       | 0.85  |
| Flt Protected            | 0.95      | 0.99  |               | 0.95  |          | 1.00      |           |      |      |      | 0.99       | 1.00  |
| Satd. Flow (prot)        | 2739      | 2790  |               | 1593  |          | 1425      |           |      |      |      | 3169       | 2339  |
| Flt Permitted            | 0.95      | 0.99  |               | 0.95  |          | 1.00      |           |      |      |      | 0.99       | 1.00  |
| Satd. Flow (perm)        | 2739      | 2790  |               | 1593  |          | 1425      |           |      |      |      | 3169       | 2339  |
| Peak-hour factor, PHF    | 0.96      | 0.96  | 0.96          | 0.96  | 0.96     | 0.96      | 0.96      | 0.96 | 0.96 | 0.96 | 0.96       | 0.96  |
| Adj. Flow (vph)          | 1167      | 778   | 131           | 35    | 0        | 264       | 0         | 0    | 0    | 101  | 899        | 1457  |
| RTOR Reduction (vph)     | 0         | 6     | 0             | 0     | 0        | 254       | 0         | 0    | 0    | 0    | 0          | 607   |
| Lane Group Flow (vph)    | 1027      | 1043  | 0             | 35    | 0        | 10        | 0         | 0    | 0    | 0    | 1000       | 850   |
| Confl. Peds. (#/hr)      |           |       | 19            | 19    |          |           |           |      |      |      |            | 13    |
| Confl. Bikes (#/hr)      |           |       | 1             |       |          |           |           |      |      |      |            | 1     |
| Turn Type                | Split     | NA    |               | Prot  |          | Perm      |           |      |      | Perm | NA         | Perm  |
| Protected Phases         | 8         | 8     |               | 7     |          |           |           |      |      |      | 2          |       |
| Permitted Phases         |           |       |               |       |          | 7         |           |      |      | 2    |            | 2     |
| Actuated Green, G (s)    | 102.2     | 102.2 |               | 6.9   |          | 6.9       |           |      |      |      | 50.0       | 50.0  |
| Effective Green, g (s)   | 102.2     | 102.2 |               | 6.9   |          | 6.9       |           |      |      |      | 50.0       | 50.0  |
| Actuated g/C Ratio       | 0.57      | 0.57  |               | 0.04  |          | 0.04      |           |      |      |      | 0.28       | 0.28  |
| Clearance Time (s)       | 6.9       | 6.9   |               | 6.6   |          | 6.6       |           |      |      |      | 8.0        | 8.0   |
| Vehicle Extension (s)    | 5.0       | 5.0   |               | 2.0   |          | 2.0       |           |      |      |      | 1.0        | 1.0   |
| Lane Grp Cap (vph)       | 1549      | 1578  |               | 60    |          | 54        |           |      |      |      | 877        | 647   |
| v/s Ratio Prot           | c0.37     | 0.37  |               | c0.02 |          |           |           |      |      |      |            |       |
| v/s Ratio Perm           |           |       |               |       |          | 0.01      |           |      |      |      | 0.32       | c0.36 |
| v/c Ratio                | 0.66      | 0.66  |               | 0.58  |          | 0.19      |           |      |      |      | 1.14       | 1.31  |
| Uniform Delay, d1        | 27.2      | 27.2  |               | 85.4  |          | 84.1      |           |      |      |      | 65.3       | 65.3  |
| Progression Factor       | 1.00      | 1.00  |               | 1.00  |          | 1.00      |           |      |      |      | 1.00       | 1.00  |
| Incremental Delay, d2    | 1.4       | 1.4   |               | 9.0   |          | 0.6       |           |      |      |      | 76.8       | 151.7 |
| Delay (s)                | 28.7      | 28.6  |               | 94.4  |          | 84.7      |           |      |      |      | 142.1      | 217.0 |
| Level of Service         | С         | С     |               | F     |          | F         |           |      |      |      | F          | F     |
| Approach Delay (s)       |           | 28.6  |               |       | 85.9     |           |           | 0.0  |      |      | 186.5      |       |
| Approach LOS             |           | С     |               |       | F        |           |           | A    |      |      | F          |       |
| Intersection Summary     |           |       |               |       |          |           |           |      |      |      |            |       |
| HCM 2000 Control Dela    | У         |       | 112.5         | F     | ICM 20   | 00 Leve   | l of Serv | vice | F    |      |            |       |
| HCM 2000 Volume to C     | apacity   | ratio | 0.86          |       |          |           |           |      |      |      |            |       |
| Actuated Cycle Length (  | s)        |       | 180.6         | S     | Sum of l | ost time  | (s)       |      | 21.5 |      |            |       |
| Intersection Capacity Ut | ilization |       | 78.9%         | 10    | CU Leve  | el of Ser | vice      |      | D    |      |            |       |
| Analysis Period (min)    |           |       | 15            |       |          |           |           |      |      |      |            |       |

c Critical Lane Group

# Timings 101: Indian Creek Drive & W 63 Street

|                                                     | الر                                                            | -        | 4       | ×.      | Ļ        | -      |  |  |  |  |  |
|-----------------------------------------------------|----------------------------------------------------------------|----------|---------|---------|----------|--------|--|--|--|--|--|
| Lane Group                                          | EBL                                                            | EBT      | WBL     | WBR     | SBT      | SBR    |  |  |  |  |  |
| Lane Configurations                                 | ሻሻ                                                             | ፋፑ       | ۲       | 1       | 41⊳      | 11     |  |  |  |  |  |
| Traffic Volume (vph)                                | 1120                                                           | 747      | 34      | 253     | 863      | 1399   |  |  |  |  |  |
| Future Volume (vph)                                 | 1120                                                           | 747      | 34      | 253     | 863      | 1399   |  |  |  |  |  |
| Turn Type                                           | Split                                                          | NA       | Prot    | Perm    | NA       | Perm   |  |  |  |  |  |
| Protected Phases                                    | . 8                                                            | 8        | 7       |         | 2        |        |  |  |  |  |  |
| Permitted Phases                                    |                                                                |          |         | 7       |          | 2      |  |  |  |  |  |
| Detector Phase                                      | 8                                                              | 8        | 7       | 7       | 2        | 2      |  |  |  |  |  |
| Switch Phase                                        |                                                                |          |         |         |          |        |  |  |  |  |  |
| Minimum Initial (s)                                 | 7.0                                                            | 7.0      | 5.0     | 5.0     | 7.0      | 7.0    |  |  |  |  |  |
| Minimum Split (s)                                   | 28.9                                                           | 28.9     | 13.0    | 13.0    | 33.0     | 33.0   |  |  |  |  |  |
| Total Split (s)                                     | 109.0                                                          | 109.0    | 13.6    | 13.6    | 58.0     | 58.0   |  |  |  |  |  |
| Total Split (%)                                     | 60.4%                                                          | 60.4%    | 7.5%    | 7.5%    | 32.1%    | 32.1%  |  |  |  |  |  |
| Yellow Time (s)                                     | 4.0                                                            | 4.0      | 3.7     | 3.7     | 4.0      | 4.0    |  |  |  |  |  |
| All-Red Time (s)                                    | 2.9                                                            | 2.9      | 2.9     | 2.9     | 4.0      | 4.0    |  |  |  |  |  |
| Lost Time Adjust (s)                                | 0.0                                                            | 0.0      | 0.0     | 0.0     | 0.0      | 0.0    |  |  |  |  |  |
| Total Lost Time (s)                                 | 6.9                                                            | 6.9      | 6.6     | 6.6     | 8.0      | 8.0    |  |  |  |  |  |
| Lead/Lag                                            | Lag                                                            | Lag      | Lead    | Lead    |          |        |  |  |  |  |  |
| Lead-Lag Optimize?                                  | Yes                                                            | Yes      | Yes     | Yes     |          |        |  |  |  |  |  |
| Recall Mode                                         | None                                                           | None     | None    | None    | C-Min    | C-Min  |  |  |  |  |  |
| Act Effct Green (s)                                 | 102.2                                                          | 102.2    | 6.9     | 6.9     | 50.0     | 50.0   |  |  |  |  |  |
| Actuated g/C Ratio                                  | 0.57                                                           | 0.57     | 0.04    | 0.04    | 0.28     | 0.28   |  |  |  |  |  |
| v/c Ratio                                           | 0.66                                                           | 0.66     | 0.58    | 0.86    | 1.14     | 1.16   |  |  |  |  |  |
| Control Delay                                       | 29.9                                                           | 29.4     | 120.1   | 32.7    | 133.2    | 104.7  |  |  |  |  |  |
| Queue Delay                                         | 0.0                                                            | 0.0      | 0.0     | 0.0     | 0.0      | 0.0    |  |  |  |  |  |
| Total Delay                                         | 29.9                                                           | 29.4     | 120.1   | 32.7    | 133.2    | 104.7  |  |  |  |  |  |
| LOS                                                 | С                                                              | С        | F       | С       | F        | F      |  |  |  |  |  |
| Approach Delay                                      |                                                                | 29.6     |         |         | 116.3    |        |  |  |  |  |  |
| Approach LOS                                        |                                                                | С        |         |         | F        |        |  |  |  |  |  |
| Intersection Summary                                |                                                                |          |         |         |          |        |  |  |  |  |  |
| Cycle Length: 180.6                                 |                                                                |          |         |         |          |        |  |  |  |  |  |
| Actuated Cycle Length:                              | 180.6                                                          |          |         |         |          |        |  |  |  |  |  |
| Offset: 14 (8%), Refere                             | enced to                                                       | phase 2  | SBTL :  | and 6:, | Start of | Yellow |  |  |  |  |  |
| Natural Cycle: 90                                   |                                                                |          |         |         |          |        |  |  |  |  |  |
| Control Type: Actuated                              | -Coordir                                                       | nated    |         |         |          |        |  |  |  |  |  |
| Maximum v/c Ratio: 1.1                              | 16                                                             |          |         |         |          |        |  |  |  |  |  |
| Intersection Signal Delay: 74.5 Intersection LOS: E |                                                                |          |         |         |          |        |  |  |  |  |  |
| Intersection Capacity U                             | Intersection Capacity Utilization 78.9% ICU Level of Service D |          |         |         |          |        |  |  |  |  |  |
| Analysis Period (min) 15                            |                                                                |          |         |         |          |        |  |  |  |  |  |
| Splits and Phases: 1                                | 01: India                                                      | an Creek | Drive 8 | & W 63  | Street   |        |  |  |  |  |  |

| ∲ø2 (R) | ₹ø7                 | 7 🕹 Ø8 |  |
|---------|---------------------|--------|--|
| 58 s    | 13.6 <mark>s</mark> | 109 s  |  |

### Queues 101: Indian Creek Drive & W 63 Street

|                         | ٦    | -    | 4     | ×    | ţ     | ~     |
|-------------------------|------|------|-------|------|-------|-------|
| Lane Group              | EBL  | EBT  | WBL   | WBR  | SBT   | SBR   |
| Lane Group Flow (vph)   | 1027 | 1049 | 35    | 264  | 1000  | 1457  |
| v/c Ratio               | 0.66 | 0.66 | 0.58  | 0.86 | 1.14  | 1.16  |
| Control Delay           | 29.9 | 29.4 | 120.1 | 32.7 | 133.2 | 104.7 |
| Queue Delay             | 0.0  | 0.0  | 0.0   | 0.0  | 0.0   | 0.0   |
| Total Delay             | 29.9 | 29.4 | 120.1 | 32.7 | 133.2 | 104.7 |
| Queue Length 50th (ft)  | 480  | 485  | 42    | 0    | ~724  | ~726  |
| Queue Length 95th (ft)  | 568  | 573  | #96   | #150 | #865  | #876  |
| Internal Link Dist (ft) |      | 365  |       |      | 1320  |       |
| Turn Bay Length (ft)    | 250  |      |       |      |       |       |
| Base Capacity (vph)     | 1550 | 1584 | 61    | 309  | 877   | 1255  |
| Starvation Cap Reductn  | 0    | 0    | 0     | 0    | 0     | 0     |
| Spillback Cap Reductn   | 0    | 0    | 0     | 0    | 0     | 0     |
| Storage Cap Reductn     | 0    | 0    | 0     | 0    | 0     | 0     |
| Reduced v/c Ratio       | 0.66 | 0.66 | 0.57  | 0.85 | 1.14  | 1.16  |
|                         |      |      |       |      |       |       |

#### Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.

# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

## HCM Signalized Intersection Capacity Analysis 102: Collins Avenue & W 63 Street

|                                   | ٦       | $\rightarrow$ | 1     | 1            | ŧ         | -            |         |      |  |
|-----------------------------------|---------|---------------|-------|--------------|-----------|--------------|---------|------|--|
| Movement                          | EBL     | EBR           | NBL   | NBT          | SBT       | SBR          |         |      |  |
| Lane Configurations               | ሻሻ      |               |       | 4 <b>†</b> ħ |           |              |         |      |  |
| Traffic Volume (vph)              | 841     | 0             | 297   | 1279         | 0         | 0            |         |      |  |
| Future Volume (vph)               | 841     | 0             | 297   | 1279         | 0         | 0            |         |      |  |
| Ideal Flow (vphpl)                | 1900    | 1900          | 1900  | 1900         | 1900      | 1900         |         |      |  |
| Total Lost time (s)               | 6.3     |               |       | 6.3          |           |              |         |      |  |
| Lane Util. Factor                 | 0.97    |               |       | 0.91         |           |              |         |      |  |
| Frpb, ped/bikes                   | 1.00    |               |       | 1.00         |           |              |         |      |  |
| Flpb, ped/bikes                   | 1.00    |               |       | 0.99         |           |              |         |      |  |
| Frt                               | 1.00    |               |       | 1.00         |           |              |         |      |  |
| Flt Protected                     | 0.95    |               |       | 0.99         |           |              |         |      |  |
| Satd. Flow (prot)                 | 3090    |               |       | 4507         |           |              |         |      |  |
| Flt Permitted                     | 0.95    |               |       | 0.99         |           |              |         |      |  |
| Satd. Flow (perm)                 | 3090    |               |       | 4507         |           |              |         |      |  |
| Peak-hour factor, PHF             | 0.97    | 0.97          | 0.97  | 0.97         | 0.97      | 0.97         |         |      |  |
| Adj. Flow (vph)                   | 867     | 0             | 306   | 1319         | 0         | 0            |         |      |  |
| RTOR Reduction (vph)              | 0       | 0             | 0     | 0            | 0         | 0            |         |      |  |
| Lane Group Flow (vph)             | 867     | 0             | 0     | 1625         | 0         | 0            |         |      |  |
| Confl. Peds. (#/hr)               |         | 32            | 31    |              |           | 31           |         |      |  |
| Confl. Bikes (#/hr)               |         |               |       |              |           | 1            |         |      |  |
| Turn Type                         | Prot    |               | Perm  | NA           |           |              |         |      |  |
| Protected Phases                  | 4       |               |       | 2            |           |              |         |      |  |
| Permitted Phases                  |         |               | 2     |              |           |              |         |      |  |
| Actuated Green, G (s)             | 30.0    |               |       | 48.0         |           |              |         |      |  |
| Effective Green, g (s)            | 30.0    |               |       | 48.0         |           |              |         |      |  |
| Actuated g/C Ratio                | 0.33    |               |       | 0.53         |           |              |         |      |  |
| Clearance Time (s)                | 6.3     |               |       | 6.3          |           |              |         |      |  |
| Vehicle Extension (s)             | 1.0     |               |       | 1.0          |           |              |         |      |  |
| Lane Grp Cap (vph)                | 1023    |               |       | 2387         |           |              |         |      |  |
| v/s Ratio Prot                    | c0.28   |               |       |              |           |              |         |      |  |
| v/s Ratio Perm                    |         |               |       | 0.36         |           |              |         |      |  |
| v/c Ratio                         | 0.85    |               |       | 0.68         |           |              |         |      |  |
| Uniform Delay, d1                 | 28.2    |               |       | 15.7         |           |              |         |      |  |
| Progression Factor                | 1.00    |               |       | 1.00         |           |              |         |      |  |
| Incremental Delay, d2             | 6.4     |               |       | 1.6          |           |              |         |      |  |
| Delay (s)                         | 34.5    |               |       | 17.3         |           |              |         |      |  |
| Level of Service                  | С       |               |       | В            |           |              |         |      |  |
| Approach Delay (s)                | 34.5    |               |       | 17.3         | 0.0       |              |         |      |  |
| Approach LOS                      | С       |               |       | В            | А         |              |         |      |  |
| Intersection Summary              |         |               |       |              |           |              |         |      |  |
| HCM 2000 Control Dela             | y       |               | 23.3  | ŀ            | ICM 200   | 0 Level of   | Service | С    |  |
| HCM 2000 Volume to C              | apacity | ratio         | 0.74  |              |           |              |         |      |  |
| Actuated Cycle Length (s)         |         |               | 90.6  | 5            | Sum of Io | ost time (s) |         | 12.6 |  |
| Intersection Capacity Utilization |         |               | 73.5% |              | CU Leve   | el of Servic | e       | D    |  |
| Analysis Period (min)             |         |               | 15    |              |           |              |         |      |  |
| a Oritical Lana Oracia            |         |               |       |              |           |              |         |      |  |

c Critical Lane Group
# Timings 102: Collins Avenue & W 63 Street

|                         | الحر        | t        |                                |
|-------------------------|-------------|----------|--------------------------------|
| Lane Group              | EBL         | NBT      |                                |
| Lane Configurations     | ሻሻ          | ተተኩ      |                                |
| Traffic Volume (vph)    | 841         | 1279     |                                |
| Future Volume (vph)     | 841         | 1279     |                                |
| Turn Type               | Prot        | NA       |                                |
| Protected Phases        | 4           | 2        |                                |
| Permitted Phases        |             |          |                                |
| Detector Phase          | 4           | 2        |                                |
| Switch Phase            |             |          |                                |
| Minimum Initial (s)     | 5.0         | 5.0      |                                |
| Minimum Split (s)       | 32.3        | 35.3     |                                |
| Total Split (s)         | 45.3        | 45.3     |                                |
| Total Split (%)         | 50.0%       | 50.0%    |                                |
| Yellow Time (s)         | 4.0         | 4.0      |                                |
| All-Red Time (s)        | 2.3         | 2.3      |                                |
| Lost Time Adjust (s)    | 0.0         | 0.0      |                                |
| Total Lost Time (s)     | 6.3         | 6.3      |                                |
| Lead/Lag                |             |          |                                |
| Lead-Lag Optimize?      |             |          |                                |
| Recall Mode             | None        | C-Min    |                                |
| Act Effct Green (s)     | 30.0        | 48.0     |                                |
| Actuated g/C Ratio      | 0.33        | 0.53     |                                |
| v/c Ratio               | 0.85        | 0.68     |                                |
| Control Delay           | 36.5        | 18.4     |                                |
| Queue Delay             | 9.0         | 0.0      |                                |
| Total Delay             | 45.5        | 18.4     |                                |
| LOS                     | D           | В        |                                |
| Approach Delay          | 45.5        | 18.4     |                                |
| Approach LOS            | D           | В        |                                |
| Intersection Summary    |             |          |                                |
| Cycle Length: 90.6      |             |          |                                |
| Actuated Cycle Length   | : 90.6      |          |                                |
| Offset: 9 (10%), Refere | enced to    | phase 2  | R:NBTL and 6:, Start of Yellow |
| Natural Cycle: 70       |             |          |                                |
| Control Type: Actuated  | d-Coordir   | nated    |                                |
| Maximum v/c Ratio: 0.   | 85          |          |                                |
| Intersection Signal Del | ay: 27.8    |          | Intersection LOS: C            |
| Intersection Capacity L | Jtilization | 73.5%    | ICU Level of Service D         |
| Analysis Period (min)   | 15          |          |                                |
| ,                       |             |          |                                |
| Splits and Phases: 1    | 102: Colli  | ins Aver | ue & W 63 Street               |

| <sup>−1</sup> Ø2 (R) | ∕* ø4  |
|----------------------|--------|
| 45.3 s               | 45.3 s |

#### Queues 102: Collins Avenue & W 63 Street

|                         | ٨    | Ť    |
|-------------------------|------|------|
| Lane Group              | EBL  | NBT  |
| Lane Group Flow (vph)   | 867  | 1625 |
| v/c Ratio               | 0.85 | 0.68 |
| Control Delay           | 36.5 | 18.4 |
| Queue Delay             | 9.0  | 0.0  |
| Total Delay             | 45.5 | 18.4 |
| Queue Length 50th (ft)  | 234  | 238  |
| Queue Length 95th (ft)  | 275  | 341  |
| Internal Link Dist (ft) | 170  | 216  |
| Turn Bay Length (ft)    |      |      |
| Base Capacity (vph)     | 1330 | 2390 |
| Starvation Cap Reductn  | 429  | 0    |
| Spillback Cap Reductn   | 0    | 0    |
| Storage Cap Reductn     | 0    | 0    |
| Reduced v/c Ratio       | 0.96 | 0.68 |
| Intersection Summary    |      |      |

|                           | ٨       | ¥       | •        | Ť            | ţ        | 4       |                                  |
|---------------------------|---------|---------|----------|--------------|----------|---------|----------------------------------|
| Movement                  | EBL     | EBR     | NBL      | NBT          | SBT      | SBR     |                                  |
| Lane Configurations       | ካካ      |         |          | 4 <b>†</b> ↑ |          |         |                                  |
| Traffic Volume (veh/h)    | 841     | 0       | 297      | 1279         | 0        | 0       |                                  |
| Future Volume (veh/h)     | 841     | 0       | 297      | 1279         | 0        | 0       |                                  |
| Number                    | 7       | 14      | 5        | 2            |          |         |                                  |
| Initial Q (Qb), veh       | 0       | 0       | 0        | 0            |          |         |                                  |
| Ped-Bike Adj(A_pbT)       | 1.00    | 1.00    | 1.00     |              |          |         |                                  |
| Parking Bus, Adj          | 1.00    | 1.00    | 1.00     | 1.00         |          |         |                                  |
| Adj Sat Flow, veh/h/ln    | 1676    | 0       | 1710     | 1676         |          |         |                                  |
| Adj Flow Rate, veh/h      | 867     | 0       | 306      | 1319         |          |         |                                  |
| Adj No. of Lanes          | 2       | 0       | 0        | 3            |          |         |                                  |
| Peak Hour Factor          | 0.97    | 0.97    | 0.97     | 0.97         |          |         |                                  |
| Percent Heavy Veh, %      | 2       | 0       | 2        | 2            |          |         |                                  |
| Cap, veh/h                | 0       | 0       | 785      | 3189         |          |         |                                  |
| Arrive On Green           | 0.00    | 0.00    | 0.93     | 0.93         |          |         |                                  |
| Sat Flow, veh/h           | 0       |         | 778      | 3564         |          |         |                                  |
| Grp Volume(v), veh/h      | 0.0     |         | 562      | 1063         |          |         |                                  |
| Grp Sat Flow(s),veh/h/ln  |         |         | 1428     | 1388         |          |         |                                  |
| Q Serve(g_s), s           |         |         | 4.1      | 3.9          |          |         |                                  |
| Cycle Q Clear(g_c), s     |         |         | 4.1      | 3.9          |          |         |                                  |
| Prop In Lane              |         |         | 0.54     |              |          |         |                                  |
| Lane Grp Cap(c), veh/h    |         |         | 1390     | 2584         |          |         |                                  |
| V/C Ratio(X)              |         |         | 0.40     | 0.41         |          |         |                                  |
| Avail Cap(c_a), veh/h     |         |         | 1390     | 2584         |          |         |                                  |
| HCM Platoon Ratio         |         |         | 1.00     | 1.00         |          |         |                                  |
| Upstream Filter(I)        |         |         | 1.00     | 1.00         |          |         |                                  |
| Uniform Delay (d), s/veh  |         |         | 0.4      | 0.4          |          |         |                                  |
| Incr Delay (d2), s/veh    |         |         | 0.9      | 0.5          |          |         |                                  |
| Initial Q Delay(d3),s/veh |         |         | 0.0      | 0.0          |          |         |                                  |
| %ile BackOfQ(50%),veh/    | Ίn      |         | 1.7      | 1.5          |          |         |                                  |
| LnGrp Delay(d),s/veh      |         |         | 1.2      | 0.8          |          |         |                                  |
| LnGrp LOS                 |         |         | А        | А            |          |         |                                  |
| Approach Vol, veh/h       |         |         |          | 1625         |          |         |                                  |
| Approach Delay, s/veh     |         |         |          | 1.0          |          |         |                                  |
| Approach LOS              |         |         |          | А            |          |         |                                  |
| Timor                     | 1       | 2       | 2        | 1            | F        | 6       | 7 0                              |
|                           |         | 2       | 3        | 4            | 5        | 0       | / 8                              |
| Assigned Phs              | -       | 2       |          |              |          |         |                                  |
| Phys Duration (G+Y+RC),   | S       | 91.0    |          |              |          |         |                                  |
| Change Period (Y+Rc), s   |         | * 20    |          |              |          |         |                                  |
| Max Green Setting (Gma    | IX), S  |         |          |              |          |         |                                  |
| Max Q Clear Time (g_c+    | 11), S  | 6.1     |          |              |          |         |                                  |
| Green Ext Time (p_c), s   |         | 5.1     |          |              |          |         |                                  |
| Intersection Summary      |         |         |          |              |          |         |                                  |
| HCM 2010 Ctrl Delay       |         |         | 1.0      |              |          |         |                                  |
| HCM 2010 LOS              |         |         | A        |              |          |         |                                  |
| Notes                     |         |         |          |              |          |         |                                  |
| * HCM 2010 computation    | al engi | ne requ | ires equ | al clear     | ance tin | nes for | the phases crossing the barrier. |

Existing PM Peak

Synchro 10 Light Report

## HCM Signalized Intersection Capacity Analysis 101: Indian Creek Drive & W 63 Street

| NBL NBT NBR SBL SBT SBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                             |                                                                                                             |                                                                                                                                                                                                                                                               |                                                                                       |                                                                                                                                                                                                                  |                                                                                                  |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A* ##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NBT                                                                                                         | NBL                                                                                                         | WBR                                                                                                                                                                                                                                                           | WBT                                                                                   | WBL                                                                                                                                                                                                              | EBR                                                                                              | EBT                                                                                        | EBL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Movement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| मा ।।                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                             |                                                                                                             | 1                                                                                                                                                                                                                                                             |                                                                                       | ۲                                                                                                                                                                                                                |                                                                                                  | ፋፑ                                                                                         | ሻሻ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Lane Configurations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0 0 0 84 1338 2283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                           | 0                                                                                                           | 121                                                                                                                                                                                                                                                           | 0                                                                                     | 59                                                                                                                                                                                                               | 72                                                                                               | 440                                                                                        | 377                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Traffic Volume (vph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0 0 0 84 1338 2283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                           | 0                                                                                                           | 121                                                                                                                                                                                                                                                           | 0                                                                                     | 59                                                                                                                                                                                                               | 72                                                                                               | 440                                                                                        | 377                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Future Volume (vph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1900 1900 1900 1900 1900 1900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1900                                                                                                        | 1900                                                                                                        | 1900                                                                                                                                                                                                                                                          | 1900                                                                                  | 1900                                                                                                                                                                                                             | 1900                                                                                             | 1900                                                                                       | 1900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ideal Flow (vphpl)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 8.0 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                             |                                                                                                             | 6.6                                                                                                                                                                                                                                                           |                                                                                       | 6.6                                                                                                                                                                                                              |                                                                                                  | 6.9                                                                                        | 6.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Total Lost time (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.95 0.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                             |                                                                                                             | 1.00                                                                                                                                                                                                                                                          |                                                                                       | 1.00                                                                                                                                                                                                             |                                                                                                  | 0.86                                                                                       | 0.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Lane Util. Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1.00 0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                             |                                                                                                             | 0.97                                                                                                                                                                                                                                                          |                                                                                       | 1.00                                                                                                                                                                                                             |                                                                                                  | 0.99                                                                                       | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Frpb, ped/bikes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1.00 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                             |                                                                                                             | 1.00                                                                                                                                                                                                                                                          |                                                                                       | 1.00                                                                                                                                                                                                             |                                                                                                  | 1.00                                                                                       | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Flpb, ped/bikes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1.00 0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                             |                                                                                                             | 0.85                                                                                                                                                                                                                                                          |                                                                                       | 1.00                                                                                                                                                                                                             |                                                                                                  | 0.98                                                                                       | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Frt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1.00 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                             |                                                                                                             | 1.00                                                                                                                                                                                                                                                          |                                                                                       | 0.95                                                                                                                                                                                                             |                                                                                                  | 1.00                                                                                       | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Flt Protected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3176 2435                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                             |                                                                                                             | 1375                                                                                                                                                                                                                                                          |                                                                                       | 1593                                                                                                                                                                                                             |                                                                                                  | 2797                                                                                       | 2739                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Satd. Flow (prot)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1.00 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                             |                                                                                                             | 1.00                                                                                                                                                                                                                                                          |                                                                                       | 0.95                                                                                                                                                                                                             |                                                                                                  | 1.00                                                                                       | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Flt Permitted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3176 2435                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                             |                                                                                                             | 1375                                                                                                                                                                                                                                                          |                                                                                       | 1593                                                                                                                                                                                                             |                                                                                                  | 2797                                                                                       | 2739                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Satd. Flow (perm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.92 0.92 0.92 0.92 0.92 0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.92                                                                                                        | 0.92                                                                                                        | 0.92                                                                                                                                                                                                                                                          | 0.92                                                                                  | 0.92                                                                                                                                                                                                             | 0.92                                                                                             | 0.92                                                                                       | 0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Peak-hour factor, PHF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0 0 0 91 1454 2482                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                           | 0                                                                                                           | 132                                                                                                                                                                                                                                                           | 0                                                                                     | 64                                                                                                                                                                                                               | 78                                                                                               | 478                                                                                        | 410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Adj. Flow (vph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0 0 0 0 0 624                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                           | 0                                                                                                           | 126                                                                                                                                                                                                                                                           | 0                                                                                     | 0                                                                                                                                                                                                                | 0                                                                                                | 6                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RTOR Reduction (vph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0 0 0 0 1545 1858                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                           | 0                                                                                                           | 6                                                                                                                                                                                                                                                             | 0                                                                                     | 64                                                                                                                                                                                                               | 0                                                                                                | 591                                                                                        | 369                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Lane Group Flow (vph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                             |                                                                                                             | 2                                                                                                                                                                                                                                                             |                                                                                       | 17                                                                                                                                                                                                               | 17                                                                                               |                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Confl. Peds. (#/hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                             |                                                                                                             | 2                                                                                                                                                                                                                                                             |                                                                                       |                                                                                                                                                                                                                  | 4                                                                                                |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Confl. Bikes (#/hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Perm NA Perm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                             |                                                                                                             | Perm                                                                                                                                                                                                                                                          |                                                                                       | Prot                                                                                                                                                                                                             |                                                                                                  | NA                                                                                         | Split                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Turn Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                             |                                                                                                             |                                                                                                                                                                                                                                                               |                                                                                       | 7                                                                                                                                                                                                                |                                                                                                  | 8                                                                                          | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Protected Phases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                             |                                                                                                             | 7                                                                                                                                                                                                                                                             |                                                                                       |                                                                                                                                                                                                                  |                                                                                                  |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Permitted Phases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 98.5 98.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                             |                                                                                                             | 8.0                                                                                                                                                                                                                                                           |                                                                                       | 8.0                                                                                                                                                                                                              |                                                                                                  | 51.5                                                                                       | 51.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Actuated Green, G (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 98.5 98.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                             |                                                                                                             | 8.0                                                                                                                                                                                                                                                           |                                                                                       | 8.0                                                                                                                                                                                                              |                                                                                                  | 51.5                                                                                       | 51.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Effective Green, g (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.55 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                             |                                                                                                             | 0.04                                                                                                                                                                                                                                                          |                                                                                       | 0.04                                                                                                                                                                                                             |                                                                                                  | 0.29                                                                                       | 0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Actuated g/C Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 8.0 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                             |                                                                                                             | 6.6                                                                                                                                                                                                                                                           |                                                                                       | 6.6                                                                                                                                                                                                              |                                                                                                  | 6.9                                                                                        | 6.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Clearance Time (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1.0 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                             |                                                                                                             | 2.0                                                                                                                                                                                                                                                           |                                                                                       | 2.0                                                                                                                                                                                                              |                                                                                                  | 5.0                                                                                        | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Vehicle Extension (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1742 1336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                             |                                                                                                             | 61                                                                                                                                                                                                                                                            |                                                                                       | 70                                                                                                                                                                                                               |                                                                                                  | 802                                                                                        | 785                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Lane Grp Cap (vph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                             |                                                                                                             |                                                                                                                                                                                                                                                               |                                                                                       | c0.04                                                                                                                                                                                                            |                                                                                                  | c0.21                                                                                      | 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | v/s Ratio Prot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.49 c0.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                             |                                                                                                             | 0.00                                                                                                                                                                                                                                                          |                                                                                       |                                                                                                                                                                                                                  |                                                                                                  |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | v/s Ratio Perm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.89 1.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                             |                                                                                                             | 0.10                                                                                                                                                                                                                                                          |                                                                                       | 0.91                                                                                                                                                                                                             |                                                                                                  | 0.74                                                                                       | 0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | v/c Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 35.6 40.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                             |                                                                                                             | 82.3                                                                                                                                                                                                                                                          |                                                                                       | 85.4                                                                                                                                                                                                             |                                                                                                  | 57.9                                                                                       | 52.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Uniform Delay, d1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1.00 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                             |                                                                                                             | 1.00                                                                                                                                                                                                                                                          |                                                                                       | 1.00                                                                                                                                                                                                             |                                                                                                  | 1.00                                                                                       | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Progression Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 7.1 180.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                             |                                                                                                             | 0.3                                                                                                                                                                                                                                                           |                                                                                       | 76.8                                                                                                                                                                                                             |                                                                                                  | 4.3                                                                                        | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Incremental Delay, d2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 42.7 221.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                             |                                                                                                             | 82.5                                                                                                                                                                                                                                                          |                                                                                       | 162.2                                                                                                                                                                                                            |                                                                                                  | 62.2                                                                                       | 53.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Delay (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| D F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                             |                                                                                                             | F                                                                                                                                                                                                                                                             |                                                                                       | F                                                                                                                                                                                                                |                                                                                                  | E                                                                                          | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Level of Service                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.0 152.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0                                                                                                         |                                                                                                             |                                                                                                                                                                                                                                                               | 108.6                                                                                 |                                                                                                                                                                                                                  |                                                                                                  | 58.9                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Approach Delay (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| A F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | А                                                                                                           |                                                                                                             |                                                                                                                                                                                                                                                               | F                                                                                     |                                                                                                                                                                                                                  |                                                                                                  | E                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Approach LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                             |                                                                                                             |                                                                                                                                                                                                                                                               |                                                                                       |                                                                                                                                                                                                                  |                                                                                                  |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Intersection Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| el of Service F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | vice                                                                                                        | of Serv                                                                                                     | 00 Level                                                                                                                                                                                                                                                      | ICM 20                                                                                | F                                                                                                                                                                                                                | 133.6                                                                                            |                                                                                            | у                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HCM 2000 Control Dela                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                             |                                                                                                             |                                                                                                                                                                                                                                                               |                                                                                       |                                                                                                                                                                                                                  | 1.15                                                                                             | ratio                                                                                      | apacity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HCM 2000 Volume to C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| e (s) 21.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                             | (s)                                                                                                         | ost time                                                                                                                                                                                                                                                      | Sum of l                                                                              | S                                                                                                                                                                                                                | 179.5                                                                                            |                                                                                            | s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Actuated Cycle Length (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| rvice F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                             | vice                                                                                                        | el of Ser                                                                                                                                                                                                                                                     | CU Leve                                                                               | ](                                                                                                                                                                                                               | 95.6%                                                                                            |                                                                                            | ilization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Intersection Capacity Ut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                             |                                                                                                             |                                                                                                                                                                                                                                                               |                                                                                       |                                                                                                                                                                                                                  | 15                                                                                               |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Analysis Period (min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   100   1.00   1.00   1.00   1.00   1   1742   13   135.6   40   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1. | 1900<br>0.92<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 1900<br>0.92<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 1900<br>6.6<br>1.00<br>0.97<br>1.00<br>0.85<br>1.00<br>1375<br>1.00<br>1375<br>0.92<br>132<br>126<br>6<br>2<br>2<br>Perm<br>7<br>8.0<br>8.0<br>0.04<br>6.6<br>2.0<br>61<br>0.00<br>0.10<br>82.3<br>1.00<br>0.3<br>82.5<br>F<br>D0 Level<br>ost time<br>of Ser | 1900<br>1900<br>0.92<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 1900<br>6.6<br>1.00<br>1.00<br>1.00<br>0.95<br>1593<br>0.95<br>1593<br>0.92<br>64<br>0<br>64<br>17<br>Prot<br>7<br>8.0<br>8.0<br>0.04<br>6.6<br>2.0<br>70<br>c0.04<br>0.91<br>85.4<br>1.00<br>76.8<br>162.2<br>F | 1900<br>0.92<br>78<br>0<br>0<br>17<br>4<br>0<br>17<br>4<br>133.6<br>1.15<br>179.5<br>95.6%<br>15 | 1900<br>6.9<br>0.86<br>0.99<br>1.00<br>2797<br>1.00<br>2797<br>0.92<br>478<br>6<br>591<br> | 1900<br>6.9<br>0.86<br>1.00<br>1.00<br>0.95<br>2739<br>0.95<br>2739<br>0.95<br>2739<br>0.92<br>410<br>0<br>369<br>2<br>Split<br>8<br>51.5<br>51.5<br>0.29<br>6.9<br>5.0<br>785<br>0.13<br>0.47<br>52.8<br>1.00<br>0.9<br>5.0<br>785<br>0.13<br>0.47<br>52.8<br>1.00<br>0.9<br>5.0<br>785<br>0.13<br>0.47<br>52.8<br>1.00<br>0.9<br>5.0<br>785<br>0.13<br>0.47<br>52.8<br>1.00<br>0.9<br>5.0<br>785<br>0.13<br>0.47<br>52.8<br>1.00<br>0.9<br>5.0<br>785<br>0.13<br>0.47<br>52.8<br>1.00<br>0.9<br>5.0<br>785<br>0.13<br>0.47<br>52.8<br>1.00<br>0.9<br>5.0<br>785<br>0.13<br>0.47<br>52.8<br>1.00<br>0.9<br>5.0<br>785<br>0.13<br>0.9<br>5.0<br>785<br>0.13<br>0.9<br>5.0<br>785<br>0.13<br>0.47<br>52.8<br>1.00<br>0.9<br>5.0<br>785<br>0.13<br>0.47<br>52.8<br>1.00<br>0.9<br>53.7<br>D | Ideal Flow (vphpl)<br>Total Lost time (s)<br>Lane Util. Factor<br>Frpb, ped/bikes<br>Flpb, ped/bikes<br>Frt<br>Flt Protected<br>Satd. Flow (prot)<br>Flt Permitted<br>Satd. Flow (perm)<br>Peak-hour factor, PHF<br>Adj. Flow (vph)<br>RTOR Reduction (vph)<br>Lane Group Flow (vph)<br>Confl. Peds. (#/hr)<br>Confl. Bikes (#/hr)<br>Turn Type<br>Protected Phases<br>Permitted Phases<br>Actuated Green, G (s)<br>Effective Green, g (s)<br>Actuated g/C Ratio<br>Clearance Time (s)<br>Vehicle Extension (s)<br>Lane Grp Cap (vph)<br>v/s Ratio Perm<br>v/c Ratio<br>Uniform Delay, d1<br>Progression Factor<br>Incremental Delay, d2<br>Delay (s)<br>Level of Service<br>Approach Delay (s)<br>Approach LOS<br>Intersection Summary<br>HCM 2000 Volume to C<br>Actuated Cycle Length (<br>Intersection Capacity Ut<br>Analysis Period (min) |

# Timings 101: Indian Creek Drive & W 63 Street

|                          | ار         | <b>→</b> | 4         | •      | Ļ         | 1          |        |  |
|--------------------------|------------|----------|-----------|--------|-----------|------------|--------|--|
| Lane Group               | EBL        | EBT      | WBL       | WBR    | SBT       | SBR        |        |  |
| Lane Configurations      | ሻሻ         | ፋኩ       | ۲         | 1      | 4ħ        | 11         |        |  |
| Traffic Volume (vph)     | 377        | 440      | 59        | 121    | 1338      | 2283       |        |  |
| Future Volume (vph)      | 377        | 440      | 59        | 121    | 1338      | 2283       |        |  |
| Turn Type                | Split      | NA       | Prot      | Perm   | NA        | Perm       |        |  |
| Protected Phases         | . 8        | 8        | 7         |        | 2         |            |        |  |
| Permitted Phases         |            |          |           | 7      |           | 2          |        |  |
| Detector Phase           | 8          | 8        | 7         | 7      | 2         | 2          |        |  |
| Switch Phase             |            |          |           |        |           |            |        |  |
| Minimum Initial (s)      | 7.0        | 7.0      | 5.0       | 5.0    | 7.0       | 7.0        |        |  |
| Minimum Split (s)        | 28.9       | 28.9     | 14.0      | 14.0   | 33.0      | 33.0       |        |  |
| Total Split (s)          | 64.9       | 64.9     | 14.6      | 14.6   | 100.0     | 100.0      |        |  |
| Total Split (%)          | 36.2%      | 36.2%    | 8.1%      | 8.1%   | 55.7%     | 55.7%      |        |  |
| Yellow Time (s)          | 4.0        | 4.0      | 3.7       | 3.7    | 4.0       | 4.0        |        |  |
| All-Red Time (s)         | 2.9        | 2.9      | 2.9       | 2.9    | 4.0       | 4.0        |        |  |
| Lost Time Adjust (s)     | 0.0        | 0.0      | 0.0       | 0.0    | 0.0       | 0.0        |        |  |
| Total Lost Time (s)      | 6.9        | 6.9      | 6.6       | 6.6    | 8.0       | 8.0        |        |  |
| Lead/Lag                 | Lag        | Lag      | Lead      | Lead   |           |            |        |  |
| Lead-Lag Optimize?       | Yes        | Yes      | Yes       | Yes    |           |            |        |  |
| Recall Mode              | None       | None     | None      | None   | C-Min     | C-Min      |        |  |
| Act Effct Green (s)      | 51.5       | 51.5     | 8.0       | 8.0    | 98.5      | 98.5       |        |  |
| Actuated g/C Ratio       | 0.29       | 0.29     | 0.04      | 0.04   | 0.55      | 0.55       |        |  |
| v/c Ratio                | 0.47       | 0.74     | 0.91      | 0.71   | 0.89      | 1.27       |        |  |
| Control Delay            | 54.0       | 62.4     | 166.4     | 31.6   | 43.9      | 141.7      |        |  |
| Queue Delay              | 0.0        | 0.0      | 0.0       | 0.0    | 0.0       | 0.0        |        |  |
| Total Delay              | 54.0       | 62.4     | 166.4     | 31.6   | 43.9      | 141.7      |        |  |
| LOS                      | D          | E        | F         | C      | D         | F          |        |  |
| Approach Delay           |            | 59.2     |           |        | 104.1     |            |        |  |
| Approach LOS             |            | E        |           |        | F         |            |        |  |
| Intersection Summary     |            |          |           |        |           |            |        |  |
| Cycle Length: 179.5      |            |          |           |        |           |            |        |  |
| Actuated Cycle Length:   | 179.5      |          |           |        |           |            |        |  |
| Offset: 30 (17%), Refer  | enced to   | o phase  | 2:SBTL    | and 6: | , Start o | f Yellow   |        |  |
| Natural Cycle: 150       |            |          |           |        |           |            |        |  |
| Control Type: Actuated-  | -Coordir   | nated    |           |        |           |            |        |  |
| Maximum v/c Ratio: 1.2   | 27         |          |           |        |           |            |        |  |
| Intersection Signal Dela | ay: 94.7   |          |           | I      | ntersec   | tion LOS:  | : F    |  |
| Intersection Capacity U  | tilization | 95.6%    |           | I      | CU Lev    | el of Serv | vice F |  |
| Analysis Period (min) 1  | 5          |          |           |        |           |            |        |  |
| Splits and Phases: 10    | 01: India  | an Creek | c Drive & | & W 63 | Street    |            |        |  |

| ∲ Ø2 (R) | <b>∢</b> Ø7 <b>▲</b> Ø8 |
|----------|-------------------------|
| 100 s    | 14.6 s 64.9 s           |

#### Queues 101: Indian Creek Drive & W 63 Street

|                         | ۶    | -    | 4     | ×    | ţ     | -     |
|-------------------------|------|------|-------|------|-------|-------|
| Lane Group              | EBL  | EBT  | WBL   | WBR  | SBT   | SBR   |
| Lane Group Flow (vph)   | 369  | 597  | 64    | 132  | 1545  | 2482  |
| v/c Ratio               | 0.47 | 0.74 | 0.91  | 0.71 | 0.89  | 1.27  |
| Control Delay           | 54.0 | 62.4 | 166.4 | 31.6 | 43.9  | 141.7 |
| Queue Delay             | 0.0  | 0.0  | 0.0   | 0.0  | 0.0   | 0.0   |
| Total Delay             | 54.0 | 62.4 | 166.4 | 31.6 | 43.9  | 141.7 |
| Queue Length 50th (ft)  | 206  | 362  | 77    | 0    | 845   | ~1644 |
| Queue Length 95th (ft)  | 258  | 428  | #184  | #90  | #1075 | #1753 |
| Internal Link Dist (ft) |      | 365  |       |      | 1320  |       |
| Turn Bay Length (ft)    | 250  |      |       |      |       |       |
| Base Capacity (vph)     | 885  | 909  | 70    | 187  | 1742  | 1959  |
| Starvation Cap Reductn  | 0    | 0    | 0     | 0    | 0     | 0     |
| Spillback Cap Reductn   | 0    | 0    | 0     | 0    | 0     | 0     |
| Storage Cap Reductn     | 0    | 0    | 0     | 0    | 0     | 0     |
| Reduced v/c Ratio       | 0.42 | 0.66 | 0.91  | 0.71 | 0.89  | 1.27  |
|                         |      |      |       |      |       |       |

#### Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.

# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

## HCM Signalized Intersection Capacity Analysis 102: Collins Avenue & W 63 Street

|                          | ≯         | $\rightarrow$ | 1     | 1    | ŧ         | 1             |         |      |  |  |
|--------------------------|-----------|---------------|-------|------|-----------|---------------|---------|------|--|--|
| Movement                 | EBL       | EBR           | NBL   | NBT  | SBT       | SBR           |         |      |  |  |
| Lane Configurations      | ሻሻ        |               |       | -↑↑↑ |           |               |         |      |  |  |
| Traffic Volume (vph)     | 477       | 0             | 186   | 582  | 0         | 0             |         |      |  |  |
| Future Volume (vph)      | 477       | 0             | 186   | 582  | 0         | 0             |         |      |  |  |
| Ideal Flow (vphpl)       | 1900      | 1900          | 1900  | 1900 | 1900      | 1900          |         |      |  |  |
| Total Lost time (s)      | 6.3       |               |       | 6.3  |           |               |         |      |  |  |
| Lane Util. Factor        | 0.97      |               |       | 0.91 |           |               |         |      |  |  |
| Frpb, ped/bikes          | 1.00      |               |       | 1.00 |           |               |         |      |  |  |
| Flpb, ped/bikes          | 1.00      |               |       | 1.00 |           |               |         |      |  |  |
| Frt                      | 1.00      |               |       | 1.00 |           |               |         |      |  |  |
| Flt Protected            | 0.95      |               |       | 0.99 |           |               |         |      |  |  |
| Satd. Flow (prot)        | 3090      |               |       | 4509 |           |               |         |      |  |  |
| Flt Permitted            | 0.95      |               |       | 0.99 |           |               |         |      |  |  |
| Satd. Flow (perm)        | 3090      |               |       | 4509 |           |               |         |      |  |  |
| Peak-hour factor, PHF    | 0.90      | 0.90          | 0.90  | 0.90 | 0.90      | 0.90          |         |      |  |  |
| Adj. Flow (vph)          | 530       | 0             | 207   | 647  | 0         | 0             |         |      |  |  |
| RTOR Reduction (vph)     | 0         | 0             | 0     | 0    | 0         | 0             |         |      |  |  |
| Lane Group Flow (vph)    | 530       | 0             | 0     | 854  | 0         | 0             |         |      |  |  |
| Confl. Peds. (#/hr)      |           | 22            | 12    |      |           | 12            |         |      |  |  |
| Confl. Bikes (#/hr)      |           | 1             |       |      |           | 1             |         |      |  |  |
| Turn Type                | Prot      |               | Perm  | NA   |           |               |         |      |  |  |
| Protected Phases         | 4         |               |       | 2    |           |               |         |      |  |  |
| Permitted Phases         |           |               | 2     |      |           |               |         |      |  |  |
| Actuated Green, G (s)    | 19.0      |               |       | 59.0 |           |               |         |      |  |  |
| Effective Green, g (s)   | 19.0      |               |       | 59.0 |           |               |         |      |  |  |
| Actuated g/C Ratio       | 0.21      |               |       | 0.65 |           |               |         |      |  |  |
| Clearance Time (s)       | 6.3       |               |       | 6.3  |           |               |         |      |  |  |
| Vehicle Extension (s)    | 1.0       |               |       | 1.0  |           |               |         |      |  |  |
| Lane Grp Cap (vph)       | 648       |               |       | 2936 |           |               |         |      |  |  |
| v/s Ratio Prot           | c0.17     |               |       |      |           |               |         |      |  |  |
| v/s Ratio Perm           |           |               |       | 0.19 |           |               |         |      |  |  |
| v/c Ratio                | 0.82      |               |       | 0.29 |           |               |         |      |  |  |
| Uniform Delay, d1        | 34.1      |               |       | 6.8  |           |               |         |      |  |  |
| Progression Factor       | 1.00      |               |       | 1.00 |           |               |         |      |  |  |
| Incremental Delay, d2    | 7.5       |               |       | 0.3  |           |               |         |      |  |  |
| Delay (s)                | 41.7      |               |       | 7.0  |           |               |         |      |  |  |
| Level of Service         | D         |               |       | А    |           |               |         |      |  |  |
| Approach Delay (s)       | 41.7      |               |       | 7.0  | 0.0       |               |         |      |  |  |
| Approach LOS             | D         |               |       | А    | А         |               |         |      |  |  |
| Intersection Summary     |           |               |       |      |           |               |         |      |  |  |
| HCM 2000 Control Dela    | у         |               | 20.3  | F    | ICM 200   | 0 Level of    | Service | С    |  |  |
| HCM 2000 Volume to C     | apacity   | ratio         | 0.42  |      |           |               |         |      |  |  |
| Actuated Cycle Length (  | s)        |               | 90.6  | S    | Sum of Io | ost time (s)  |         | 12.6 |  |  |
| Intersection Capacity Ut | ilization |               | 47.0% | 10   | CU Leve   | el of Service | •       | А    |  |  |
| Analysis Period (min)    |           |               | 15    |      |           |               |         |      |  |  |
| a Critical Lana Croup    |           |               |       |      |           |               |         |      |  |  |

# Timings 102: Collins Avenue & W 63 Street

|                          | الحر        | t       |                                |
|--------------------------|-------------|---------|--------------------------------|
| Lane Group               | EBL         | NBT     |                                |
| Lane Configurations      | ካካ          | 441>    |                                |
| Traffic Volume (vph)     | 477         | 582     |                                |
| Future Volume (vph)      | 477         | 582     |                                |
| Turn Type                | Prot        | NA      |                                |
| Protected Phases         | 4           | 2       |                                |
| Permitted Phases         |             |         |                                |
| Detector Phase           | 4           | 2       |                                |
| Switch Phase             |             |         |                                |
| Minimum Initial (s)      | 5.0         | 5.0     |                                |
| Minimum Split (s)        | 32.3        | 35.3    |                                |
| Total Split (s)          | 32.3        | 58.3    |                                |
| Total Split (%)          | 35.7%       | 64.3%   |                                |
| Yellow Time (s)          | 4.0         | 4.0     |                                |
| All-Red Time (s)         | 2.3         | 2.3     |                                |
| Lost Time Adjust (s)     | 0.0         | 0.0     |                                |
| Total Lost Time (s)      | 6.3         | 6.3     |                                |
| Lead/Lag                 |             |         |                                |
| Lead-Lag Optimize?       |             |         |                                |
| Recall Mode              | None        | C-Min   |                                |
| Act Effct Green (s)      | 19.0        | 59.0    |                                |
| Actuated g/C Ratio       | 0.21        | 0.65    |                                |
| v/c Ratio                | 0.82        | 0.29    |                                |
| Control Delay            | 44.6        | 7.6     |                                |
| Queue Delay              | 1.5         | 0.0     |                                |
| Total Delay              | 46.0        | 7.6     |                                |
| LOS                      | D           | А       |                                |
| Approach Delay           | 46.0        | 7.6     |                                |
| Approach LOS             | D           | А       |                                |
| Intersection Summary     |             |         |                                |
| Cycle Length: 90.6       |             |         |                                |
| Actuated Cycle Length:   | 90.6        |         |                                |
| Offset: 43 (47%), Refer  | renced to   | o phase | 2:NBTL and 6:, Start of Yellow |
| Natural Cycle: 70        |             |         |                                |
| Control Type: Actuated   | -Coordir    | nated   |                                |
| Maximum v/c Ratio: 0.8   | 32          |         |                                |
| Intersection Signal Dela | ay: 22.3    |         | Intersection LOS: C            |
| Intersection Capacity U  | Itilization | 47.0%   | ICU Level of Service A         |
| Analysis Period (min) 1  | 5           |         |                                |
| Splits and Phases: 1     | 02: Colli   | ns Aven | ue & W 63 Street               |

| <sup>™</sup> ¶ø2 (R) | ≁ø4    |  |
|----------------------|--------|--|
| 58.3 s               | 32.3 s |  |

#### Queues 102: Collins Avenue & W 63 Street

|                         | ٨    | t    |
|-------------------------|------|------|
| Lane Group              | EBL  | NBT  |
| Lane Group Flow (vph)   | 530  | 854  |
| v/c Ratio               | 0.82 | 0.29 |
| Control Delay           | 44.6 | 7.6  |
| Queue Delay             | 1.5  | 0.0  |
| Total Delay             | 46.0 | 7.6  |
| Queue Length 50th (ft)  | 150  | 68   |
| Queue Length 95th (ft)  | 192  | 106  |
| Internal Link Dist (ft) | 170  | 216  |
| Turn Bay Length (ft)    |      |      |
| Base Capacity (vph)     | 886  | 2934 |
| Starvation Cap Reductn  | 186  | 0    |
| Spillback Cap Reductn   | 0    | 0    |
| Storage Cap Reductn     | 0    | 0    |
| Reduced v/c Ratio       | 0.76 | 0.29 |
| Intersection Summary    |      |      |

## HCM Signalized Intersection Capacity Analysis 101: Indian Creek Drive & W 63 Street

|                          | ٦         | <b>→</b> | $\rightarrow$ | €     | -        | •         | •         | 1    | 1    | 1    | ŧ          | ~     |
|--------------------------|-----------|----------|---------------|-------|----------|-----------|-----------|------|------|------|------------|-------|
| Movement                 | EBL       | EBT      | EBR           | WBL   | WBT      | WBR       | NBL       | NBT  | NBR  | SBL  | SBT        | SBR   |
| Lane Configurations      | ሻሻ        | ፋፑ       |               | ٦     |          | 1         |           |      |      |      | <b>4</b> ↑ | 11    |
| Traffic Volume (vph)     | 1137      | 768      | 128           | 35    | 0        | 257       | 0         | 0    | 0    | 108  | 891        | 1430  |
| Future Volume (vph)      | 1137      | 768      | 128           | 35    | 0        | 257       | 0         | 0    | 0    | 108  | 891        | 1430  |
| Ideal Flow (vphpl)       | 1900      | 1900     | 1900          | 1900  | 1900     | 1900      | 1900      | 1900 | 1900 | 1900 | 1900       | 1900  |
| Total Lost time (s)      | 6.9       | 6.9      |               | 6.3   |          | 6.3       |           |      |      |      | 8.0        | 8.0   |
| Lane Util. Factor        | 0.86      | 0.86     |               | 1.00  |          | 1.00      |           |      |      |      | 0.95       | 0.88  |
| Frpb, ped/bikes          | 1.00      | 0.99     |               | 1.00  |          | 1.00      |           |      |      |      | 1.00       | 0.93  |
| Flpb, ped/bikes          | 1.00      | 1.00     |               | 1.00  |          | 1.00      |           |      |      |      | 1.00       | 1.00  |
| Frt                      | 1.00      | 0.98     |               | 1.00  |          | 0.85      |           |      |      |      | 1.00       | 0.85  |
| Flt Protected            | 0.95      | 0.99     |               | 0.95  |          | 1.00      |           |      |      |      | 0.99       | 1.00  |
| Satd. Flow (prot)        | 2739      | 2791     |               | 1593  |          | 1425      |           |      |      |      | 3168       | 2340  |
| Flt Permitted            | 0.95      | 0.99     |               | 0.95  |          | 1.00      |           |      |      |      | 0.99       | 1.00  |
| Satd. Flow (perm)        | 2739      | 2791     |               | 1593  |          | 1425      |           |      |      |      | 3168       | 2340  |
| Peak-hour factor, PHF    | 0.96      | 0.96     | 0.96          | 0.96  | 0.96     | 0.96      | 0.96      | 0.96 | 0.96 | 0.96 | 0.96       | 0.96  |
| Adj. Flow (vph)          | 1184      | 800      | 133           | 36    | 0        | 268       | 0         | 0    | 0    | 112  | 928        | 1490  |
| RTOR Reduction (vph)     | 0         | 5        | 0             | 0     | 0        | 258       | 0         | 0    | 0    | 0    | 0          | 598   |
| Lane Group Flow (vph)    | 1042      | 1070     | 0             | 36    | 0        | 10        | 0         | 0    | 0    | 0    | 1041       | 892   |
| Confl. Peds. (#/hr)      |           |          | 19            | 19    |          |           |           |      |      |      |            | 13    |
| Confl. Bikes (#/hr)      |           |          | 1             |       |          |           |           |      |      |      |            | 1     |
| Turn Type                | Split     | NA       |               | Prot  |          | Perm      |           |      |      | Perm | NA         | Perm  |
| Protected Phases         | 8         | 8        |               | 7     |          |           |           |      |      |      | 2          |       |
| Permitted Phases         |           |          |               |       |          | 7         |           |      |      | 2    |            | 2     |
| Actuated Green, G (s)    | 102.1     | 102.1    |               | 6.7   |          | 6.7       |           |      |      |      | 50.0       | 50.0  |
| Effective Green, g (s)   | 102.1     | 102.1    |               | 6.7   |          | 6.7       |           |      |      |      | 50.0       | 50.0  |
| Actuated g/C Ratio       | 0.57      | 0.57     |               | 0.04  |          | 0.04      |           |      |      |      | 0.28       | 0.28  |
| Clearance Time (s)       | 6.9       | 6.9      |               | 6.3   |          | 6.3       |           |      |      |      | 8.0        | 8.0   |
| Vehicle Extension (s)    | 5.0       | 5.0      |               | 2.0   |          | 2.0       |           |      |      |      | 1.0        | 1.0   |
| Lane Grp Cap (vph)       | 1553      | 1583     |               | 59    |          | 53        |           |      |      |      | 880        | 650   |
| v/s Ratio Prot           | 0.38      | c0.38    |               | c0.02 |          |           |           |      |      |      |            |       |
| v/s Ratio Perm           |           |          |               |       |          | 0.01      |           |      |      |      | 0.33       | c0.38 |
| v/c Ratio                | 0.67      | 0.68     |               | 0.61  |          | 0.19      |           |      |      |      | 1.18       | 1.37  |
| Uniform Delay, d1        | 27.2      | 27.3     |               | 85.4  |          | 84.0      |           |      |      |      | 65.0       | 65.0  |
| Progression Factor       | 1.00      | 1.00     |               | 0.83  |          | 4.34      |           |      |      |      | 0.99       | 0.97  |
| Incremental Delay, d2    | 1.5       | 1.5      |               | 9.2   |          | 0.5       |           |      |      |      | 91.1       | 174.7 |
| Delay (s)                | 28.7      | 28.8     |               | 80.2  |          | 365.5     |           |      |      |      | 155.5      | 237.8 |
| Level of Service         | С         | С        |               | F     |          | F         |           |      |      |      | F          | F     |
| Approach Delay (s)       |           | 28.8     |               |       | 331.7    |           |           | 0.0  |      |      | 204.0      |       |
| Approach LOS             |           | С        |               |       | F        |           |           | А    |      |      | F          |       |
| Intersection Summary     |           |          |               |       |          |           |           |      |      |      |            |       |
| HCM 2000 Control Dela    | у         |          | 136.9         | F     | ICM 20   | 00 Leve   | l of Serv | vice | F    |      |            |       |
| HCM 2000 Volume to C     | apacity   | ratio    | 0.89          |       |          |           |           |      |      |      |            |       |
| Actuated Cycle Length (  | s)        |          | 180.0         | S     | Sum of l | ost time  | (s)       |      | 21.2 |      |            |       |
| Intersection Capacity Ut | ilization |          | 80.8%         | 10    | CU Leve  | el of Ser | vice      |      | D    |      |            |       |
| Analysis Period (min)    |           |          | 15            |       |          |           |           |      |      |      |            |       |

# Timings 101: Indian Creek Drive & W 63 Street

|                         | الحر                                                     | <b>→</b> | 4         | •      | Ļ         | ~         |        |  |  |  |  |
|-------------------------|----------------------------------------------------------|----------|-----------|--------|-----------|-----------|--------|--|--|--|--|
| Lane Group              | EBL                                                      | EBT      | WBL       | WBR    | SBT       | SBR       |        |  |  |  |  |
| Lane Configurations     | ካካ                                                       | ፋቡ       | ٦         | 1      | 4₽        | 11        |        |  |  |  |  |
| Traffic Volume (vph)    | 1137                                                     | 768      | 35        | 257    | 891       | 1430      |        |  |  |  |  |
| Future Volume (vph)     | 1137                                                     | 768      | 35        | 257    | 891       | 1430      |        |  |  |  |  |
| Turn Type               | Split                                                    | NA       | Prot      | Perm   | NA        | Perm      |        |  |  |  |  |
| Protected Phases        | 8                                                        | 8        | 7         |        | 2         |           |        |  |  |  |  |
| Permitted Phases        |                                                          |          |           | 7      |           | 2         |        |  |  |  |  |
| Detector Phase          | 8                                                        | 8        | 7         | 7      | 2         | 2         |        |  |  |  |  |
| Switch Phase            |                                                          |          |           |        |           |           |        |  |  |  |  |
| Minimum Initial (s)     | 7.0                                                      | 7.0      | 5.0       | 5.0    | 7.0       | 7.0       |        |  |  |  |  |
| Minimum Split (s)       | 28.9                                                     | 28.9     | 13.0      | 13.0   | 33.0      | 33.0      |        |  |  |  |  |
| Total Split (s)         | 109.0                                                    | 109.0    | 13.0      | 13.0   | 58.0      | 58.0      |        |  |  |  |  |
| Total Split (%)         | 60.6%                                                    | 60.6%    | 7.2%      | 7.2%   | 32.2%     | 32.2%     |        |  |  |  |  |
| Yellow Time (s)         | 4.0                                                      | 4.0      | 3.4       | 3.4    | 4.0       | 4.0       |        |  |  |  |  |
| All-Red Time (s)        | 2.9                                                      | 2.9      | 2.9       | 2.9    | 4.0       | 4.0       |        |  |  |  |  |
| Lost Time Adjust (s)    | 0.0                                                      | 0.0      | 0.0       | 0.0    | 0.0       | 0.0       |        |  |  |  |  |
| Total Lost Time (s)     | 6.9                                                      | 6.9      | 6.3       | 6.3    | 8.0       | 8.0       |        |  |  |  |  |
| Lead/Lag                | Lag                                                      | Lag      | Lead      | Lead   |           |           |        |  |  |  |  |
| Lead-Lag Optimize?      | Yes                                                      | Yes      | Yes       | Yes    |           |           |        |  |  |  |  |
| Recall Mode             | None                                                     | None     | None      | None   | C-Min     | C-Min     |        |  |  |  |  |
| Act Effct Green (s)     | 102.1                                                    | 102.1    | 6.7       | 6.7    | 50.0      | 50.0      |        |  |  |  |  |
| Actuated g/C Ratio      | 0.57                                                     | 0.57     | 0.04      | 0.04   | 0.28      | 0.28      |        |  |  |  |  |
| v/c Ratio               | 0.67                                                     | 0.68     | 0.61      | 0.86   | 1.18      | 1.19      |        |  |  |  |  |
| Control Delay           | 29.9                                                     | 29.7     | 100.5     | 44.9   | 144.8     | 116.4     |        |  |  |  |  |
| Queue Delay             | 0.0                                                      | 50.7     | 0.0       | 56.2   | 0.0       | 0.0       |        |  |  |  |  |
| Total Delay             | 29.9                                                     | 80.4     | 100.5     | 101.0  | 144.9     | 116.4     |        |  |  |  |  |
| LOS                     | С                                                        | F        | F         | F      | F         | F         |        |  |  |  |  |
| Approach Delay          |                                                          | 55.6     |           |        | 128.1     |           |        |  |  |  |  |
| Approach LOS            |                                                          | E        |           |        | F         |           |        |  |  |  |  |
| Intersection Summary    |                                                          |          |           |        |           |           |        |  |  |  |  |
| Cycle Length: 180       |                                                          |          |           |        |           |           |        |  |  |  |  |
| Actuated Cycle Length   | : 180                                                    |          |           |        |           |           |        |  |  |  |  |
| Offset: 86 (48%), Refe  | renced to                                                | o phase  | 2:SBTL    | and 6: | , Start o | f Yellow  |        |  |  |  |  |
| Natural Cycle: 90       |                                                          |          |           |        |           |           |        |  |  |  |  |
| Control Type: Actuated  | d-Coordir                                                | nated    |           |        |           |           |        |  |  |  |  |
| Maximum v/c Ratio: 1.1  | 19                                                       |          |           |        |           |           |        |  |  |  |  |
| Intersection Signal Del | ay: 95.4                                                 |          |           | I      | ntersec   | tion LOS  | 3: F   |  |  |  |  |
| Intersection Capacity L | Jtilization                                              | n 80.8%  |           | I      | CU Lev    | el of Ser | vice D |  |  |  |  |
| Analysis Period (min) 1 | 15                                                       |          |           |        |           |           |        |  |  |  |  |
| Solits and Phases: 1    | 101 · India                                              | an Creel | C Drive S | s W es | Street    |           |        |  |  |  |  |
|                         | Splits and Phases: 101: Indian Creek Drive & W 63 Street |          |           |        |           |           |        |  |  |  |  |

| ∲ Ø2 (R) | Ø7   | <b>4</b> Ø8 |
|----------|------|-------------|
| 58 s     | 13 s | 109 s       |

#### Queues 101: Indian Creek Drive & W 63 Street

|                         | ٦    | -    | 4     | ×.    | Ļ     | ~     |
|-------------------------|------|------|-------|-------|-------|-------|
| Lane Group              | EBL  | EBT  | WBL   | WBR   | SBT   | SBR   |
| Lane Group Flow (vph)   | 1042 | 1075 | 36    | 268   | 1041  | 1490  |
| v/c Ratio               | 0.67 | 0.68 | 0.61  | 0.86  | 1.18  | 1.19  |
| Control Delay           | 29.9 | 29.7 | 100.5 | 44.9  | 144.8 | 116.4 |
| Queue Delay             | 0.0  | 50.7 | 0.0   | 56.2  | 0.0   | 0.0   |
| Total Delay             | 29.9 | 80.4 | 100.5 | 101.0 | 144.9 | 116.4 |
| Queue Length 50th (ft)  | 488  | 502  | 44    | 79    | ~762  | ~776  |
| Queue Length 95th (ft)  | 576  | 590  | m60   | #260  | #905  | #1140 |
| Internal Link Dist (ft) |      | 365  |       |       | 1320  |       |
| Turn Bay Length (ft)    | 250  |      |       |       |       |       |
| Base Capacity (vph)     | 1553 | 1587 | 59    | 311   | 880   | 1248  |
| Starvation Cap Reductn  | 0    | 0    | 0     | 113   | 0     | 0     |
| Spillback Cap Reductn   | 0    | 769  | 0     | 0     | 6     | 0     |
| Storage Cap Reductn     | 0    | 0    | 0     | 0     | 0     | 0     |
| Reduced v/c Ratio       | 0.67 | 1.31 | 0.61  | 1.35  | 1.19  | 1.19  |
| Intersection Summary    |      |      |       |       |       |       |

Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.

# 95th percentile volume exceeds capacity, queue may be longer.Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

## HCM Signalized Intersection Capacity Analysis 102: Collins Avenue & W 63 Street

# Timings 102: Collins Avenue & W 63 Street

|                          | الر                  | t          |                              |
|--------------------------|----------------------|------------|------------------------------|
| Lane Group               | EBL                  | NBT        |                              |
| Lane Configurations      | ኘሻ                   | ተተኩ        |                              |
| Traffic Volume (vph)     | 874                  | 1312       |                              |
| Future Volume (vph)      | 874                  | 1312       |                              |
| Turn Type                | Prot                 | NA         |                              |
| Protected Phases         | 4                    | 2          |                              |
| Permitted Phases         |                      |            |                              |
| Detector Phase           | 4                    | 2          |                              |
| Switch Phase             |                      |            |                              |
| Minimum Initial (s)      | 7.0                  | 7.0        |                              |
| Minimum Split (s)        | 31.0                 | 34.0       |                              |
| Total Split (s)          | 45.0                 | 45.0       |                              |
| Total Split (%)          | 50.0%                | 50.0%      |                              |
| Yellow Time (s)          | 4.0                  | 4.0        |                              |
| All-Red Time (s)         | 1.0                  | 1.0        |                              |
| Lost Time Adjust (s)     | 0.0                  | 0.0        |                              |
| Total Lost Time (s)      | 5.0                  | 5.0        |                              |
| Lead/Lag                 |                      |            |                              |
| Lead-Lag Optimize?       |                      |            |                              |
| Recall Mode              | None                 | C-Min      |                              |
| Act Effct Green (s)      | 31.0                 | 49.0       |                              |
| Actuated g/C Ratio       | 0.34                 | 0.54       |                              |
| v/c Ratio                | 0.85                 | 0.68       |                              |
| Control Delay            | 48.5                 | 17.5       |                              |
| Queue Delay              | 2.2                  | 0.0        |                              |
| Total Delay              | 50.7                 | 17.5       |                              |
| LOS                      | D                    | В          |                              |
| Approach Delay           | 50.7                 | 17.5       |                              |
| Approach LOS             | D                    | В          |                              |
| Intersection Summary     |                      |            |                              |
| Cycle Length: 90         |                      |            |                              |
| Actuated Cycle Length    | : 90                 |            |                              |
| Offset: 9 (10%). Refere  | enced to             | phase 2    | NBTL and 6:. Start of Yellow |
| Natural Cycle: 65        |                      | 12.1200 2  |                              |
| Control Type: Actuated   | -Coordir             | nated      |                              |
| Maximum v/c Ratio: 0.8   | 85                   |            |                              |
| Intersection Signal Dela | av <sup>.</sup> 29.2 |            | Intersection LOS: C          |
| Intersection Canacity I  | Jtilization          | 73.2%      | ICU Level of Service D       |
| Analysis Period (min) 1  | 5                    | . , 0.2 /0 |                              |
|                          |                      |            |                              |
| Splits and Phases: 1     | 02: Colli            | ins Aver   | ue & W 63 Street             |

| <sup>▲</sup> ¶Ø2 (R) | <i>▶</i> ø4 |  |
|----------------------|-------------|--|
| 45 s                 | 45 s        |  |

#### Queues 102: Collins Avenue & W 63 Street

|                         | ٦    | Ť    |
|-------------------------|------|------|
| Lane Group              | EBL  | NBT  |
| Lane Group Flow (vph)   | 901  | 1664 |
| v/c Ratio               | 0.85 | 0.68 |
| Control Delay           | 48.5 | 17.5 |
| Queue Delay             | 2.2  | 0.0  |
| Total Delay             | 50.7 | 17.5 |
| Queue Length 50th (ft)  | 427  | 235  |
| Queue Length 95th (ft)  | m362 | 341  |
| Internal Link Dist (ft) | 170  | 216  |
| Turn Bay Length (ft)    |      |      |
| Base Capacity (vph)     | 1373 | 2456 |
| Starvation Cap Reductn  | 324  | 0    |
| Spillback Cap Reductn   | 0    | 41   |
| Storage Cap Reductn     | 0    | 0    |
| Reduced v/c Ratio       | 0.86 | 0.69 |
| Intersection Summary    |      |      |

m Volume for 95th percentile queue is metered by upstream signal.

## HCM Signalized Intersection Capacity Analysis 103: Collins Avenue & 5875 Block

|                                   | ٠     | 7    | ₹Ĩ    | 1    | t         | ŧ          | ~      |      |  |
|-----------------------------------|-------|------|-------|------|-----------|------------|--------|------|--|
| Movement                          | EBL   | EBR  | NBU   | NBL  | NBT       | SBT        | SBR    |      |  |
| Lane Configurations               |       |      | 0     |      | ***       | ***        | -      |      |  |
| Traffic Volume (vph)              | 0     | 0    | 17    | 0    | 1353      | 972        | 0      |      |  |
| Future Volume (vph)               | 0     | 0    | 17    | 0    | 1353      | 972        | 0      |      |  |
| Ideal Flow (vphpl)                | 1900  | 1900 | 1900  | 1900 | 1900      | 1900       | 1900   |      |  |
| Total Lost time (s)               |       |      | 7.3   |      | 6.3       | 6.3        |        |      |  |
| Lane Util. Factor                 |       |      | 1.00  |      | 0.91      | 0.91       |        |      |  |
| Frt                               |       |      | 1.00  |      | 1.00      | 1.00       |        |      |  |
| Flt Protected                     |       |      | 0.95  |      | 1.00      | 1.00       |        |      |  |
| Satd. Flow (prot)                 |       |      | 1770  |      | 5085      | 5085       |        |      |  |
| Flt Permitted                     |       |      | 0.95  |      | 1.00      | 1.00       |        |      |  |
| Satd. Flow (perm)                 |       |      | 1770  |      | 5085      | 5085       |        |      |  |
| Peak-hour factor, PHF             | 0.96  | 0.96 | 0.96  | 0.96 | 0.96      | 0.96       | 0.96   |      |  |
| Adi, Flow (vph)                   | 0     | 0    | 18    | 0    | 1409      | 1012       | 0      |      |  |
| RTOR Reduction (vph)              | 0     | 0    | 0     | 0    | 0         | 0          | 0      |      |  |
| Lane Group Flow (vph)             | 0     | 0    | 18    | 0    | 1409      | 1013       | 0      |      |  |
| Turn Type                         |       |      | Prot  |      | NA        | NA         |        |      |  |
| Protected Phases                  |       |      | 5     |      | 2         | 6          |        |      |  |
| Permitted Phases                  |       |      |       |      |           |            |        |      |  |
| Actuated Green, G (s)             |       |      | 3.0   |      | 140.6     | 124.0      |        |      |  |
| Effective Green, g (s)            |       |      | 3.0   |      | 140.6     | 124.0      |        |      |  |
| Actuated g/C Ratio                |       |      | 0.02  |      | 1.00      | 0.88       |        |      |  |
| Clearance Time (s)                |       |      | 7.3   |      | 6.3       | 6.3        |        |      |  |
| Vehicle Extension (s)             |       |      | 2.0   |      | 1.0       | 1.0        |        |      |  |
| Lane Grp Cap (vph)                |       |      | 37    |      | 5085      | 4484       |        |      |  |
| v/s Ratio Prot                    |       |      | 0.01  |      | c0.28     | 0.20       |        |      |  |
| v/s Ratio Perm                    |       |      |       |      |           |            |        |      |  |
| v/c Ratio                         |       |      | 0.49  |      | 0.28      | 0.23       |        |      |  |
| Uniform Delay, d1                 |       |      | 68.0  |      | 0.0       | 1.2        |        |      |  |
| Progression Factor                |       |      | 1.00  |      | 1.00      | 1.00       |        |      |  |
| Incremental Delay, d2             |       |      | 3.6   |      | 0.1       | 0.0        |        |      |  |
| Delay (s)                         |       |      | 71.7  |      | 0.1       | 1.2        |        |      |  |
| Level of Service                  |       |      | Е     |      | А         | А          |        |      |  |
| Approach Delay (s)                | 0.0   |      |       |      | 1.0       | 1.2        |        |      |  |
| Approach LOS                      | А     |      |       |      | А         | А          |        |      |  |
| Intersection Summary              |       |      |       |      |           |            |        |      |  |
| HCM 2000 Control Delay            |       |      | 1.1   | Н    | ICM 2000  | Level of S | ervice | А    |  |
| HCM 2000 Volume to Capacity       | ratio |      | 0.32  |      |           |            |        |      |  |
| Actuated Cycle Length (s)         |       |      | 140.6 | S    | um of los | t time (s) |        | 19.6 |  |
| Intersection Capacity Utilization | ı     |      | 31.4% | IC   | CU Level  | of Service |        | А    |  |
| Analysis Period (min)             |       |      | 15    |      |           |            |        |      |  |

## Timings 103: Collins Avenue & 5875 Block

|                                   | ₹          | t         | Ŧ           |      |                       |
|-----------------------------------|------------|-----------|-------------|------|-----------------------|
| Lane Group                        | NBU        | NBT       | SBT         | Ø4   |                       |
| Lane Configurations               | đ          | <b>^</b>  | <b>^††</b>  |      |                       |
| Traffic Volume (vph)              | 17         | 1353      | 972         |      |                       |
| Future Volume (vph)               | 17         | 1353      | 972         |      |                       |
| Turn Type                         | Prot       | NA        | NA          |      |                       |
| Protected Phases                  | 5          | 2         | 6           | 4    |                       |
| Permitted Phases                  |            |           |             |      |                       |
| Detector Phase                    | 5          | 2         | 6           |      |                       |
| Switch Phase                      |            |           |             |      |                       |
| Minimum Initial (s)               | 5.0        | 16.0      | 16.0        | 5.0  |                       |
| Minimum Split (s)                 | 12.3       | 24.3      | 24.3        | 24.0 |                       |
| Total Split (s)                   | 18.3       | 101.6     | 83.3        | 39.0 |                       |
| Total Split (%)                   | 13.0%      | 72.3%     | 59.2%       | 28%  |                       |
| Yellow Time (s)                   | 4.0        | 4.0       | 4.0         | 3.7  |                       |
| All-Red Time (s)                  | 3.3        | 2.3       | 2.3         | 2.3  |                       |
| Lost Time Adjust (s)              | 0.0        | 0.0       | 0.0         |      |                       |
| Total Lost Time (s)               | 7.3        | 6.3       | 6.3         |      |                       |
| Lead/Lag                          | Lead       |           | Lag         |      |                       |
| Lead-Lag Optimize?                | Yes        |           | Yes         |      |                       |
| Recall Mode                       | None       | C-Min     | Min         | None |                       |
| Act Effct Green (s)               | 6.1        | 140.6     | 132.2       |      |                       |
| Actuated g/C Ratio                | 0.04       | 1.00      | 0.94        |      |                       |
| v/c Ratio                         | 0.23       | 0.28      | 0.21        |      |                       |
| Control Delay                     | 71.6       | 0.1       | 1.0         |      |                       |
| Queue Delay                       | 0.0        | 0.0       | 0.0         |      |                       |
| Total Delay                       | 71.6       | 0.1       | 1.0         |      |                       |
| LOS                               | E          | Α         | А           |      |                       |
| Approach Delay                    |            | 1.0       | 1.0         |      |                       |
| Approach LOS                      |            | A         | А           |      |                       |
| Intersection Summary              |            |           |             |      |                       |
| Cycle Length: 140.6               |            |           |             |      |                       |
| Actuated Cycle Length: 140.       | .6         |           |             |      |                       |
| Offset: 11 (8%), Referenced       | to phase 2 | 2:NBT, St | art of Yell | ow   |                       |
| Natural Cycle: 65                 |            |           |             |      |                       |
| Control Type: Actuated-Coo        | rdinated   |           |             |      |                       |
| Maximum v/c Ratio: 0.28           |            |           |             |      |                       |
| Intersection Signal Delay: 1.     | 0          |           |             |      | ntersection LOS: A    |
| Intersection Capacity Utilization | tion 31.4% |           |             |      | CU Level of Service A |
| Analysis Period (min) 15          |            |           |             |      |                       |

Splits and Phases: 103: Collins Avenue & 5875 Block



#### Queues 103: Collins Avenue & 5875 Block

|                         | ۴I   | t    | Ŧ    |
|-------------------------|------|------|------|
| Lane Group              | NBU  | NBT  | SBT  |
| Lane Group Flow (vph)   | 18   | 1409 | 1013 |
| v/c Ratio               | 0.23 | 0.28 | 0.21 |
| Control Delay           | 71.6 | 0.1  | 1.0  |
| Queue Delay             | 0.0  | 0.0  | 0.0  |
| Total Delay             | 71.6 | 0.1  | 1.0  |
| Queue Length 50th (ft)  | 16   | 0    | 0    |
| Queue Length 95th (ft)  | 43   | 0    | 59   |
| Internal Link Dist (ft) |      | 590  | 631  |
| Turn Bay Length (ft)    |      |      |      |
| Base Capacity (vph)     | 138  | 5085 | 4781 |
| Starvation Cap Reductn  | 0    | 0    | 0    |
| Spillback Cap Reductn   | 0    | 0    | 0    |
| Storage Cap Reductn     | 0    | 0    | 0    |
| Reduced v/c Ratio       | 0.13 | 0.28 | 0.21 |
| Intersection Summary    |      |      |      |

# **APPENDIX F**

**Valet Queuing** 

# **Queuing Analysis based on ITE Procedures**

q = 39 veh/hr (demand rate)  
Q = 8.5 veh/hr (service rate at 7 minutes per veh)  
$$p = \frac{q}{NQ} = 0.7647$$
 (N = 6 valet runners)

 $Q_{M} = 0.4536$ 

Using Acceptable Probability of 5% (95% Confidence Level)

$$M = \left(\frac{\text{Ln } (x > M) - \text{Ln } (Q_M)}{\text{Ln } (p)}\right) - 1$$
$$M = \left(\frac{\text{Ln}(0.05) - \text{Ln}(0.4536)}{\text{Ln}(0.7647)}\right) - 1$$
$$M = \left(\frac{-2.9957 - (-0.7905)}{-0.2683}\right) - 1$$

M = 8.1 - 1 = 7.2, say 8 vehicle



#### Applications of Queueing Analysis

location, a 5% probability of back-up onto the adjacent street is judged to be acceptable. Demand on the system for design is expected to be 110 vehicles in a 45-minute period. Average service time was expected to be 2.2 minutes. Is the queue storage adequate?

Such problems can be quickly solved using Equation (8-9b) given in Table 8-10 and repeated below for convenience.

$$M = \left[\frac{\ln P(x > M) - \ln Q_M}{\ln \rho}\right] - 1$$

where:

- M = queue length which is exceeded p percent of the time
- N = number of service channels (drive-in positions)
- Q = service rate per channel (vehicles per hour)
- $\rho = \frac{\text{demand rate}}{\text{service rate}} = \frac{q}{NQ} = \text{utilization factor}$
- q = demand rate on the system (vehicles per hour)
- $Q_M$  = tabled values of the relationship between queue length, number of channels, and utilization factor (see Table 8.11)

#### **TABLE 8-11**

q

Table of Q<sub>M</sub> Values

|                                                                   | N = 1                                                                                    | 2                                                                                                 | 3                                                                                                 | 4                                                                                                 | 6                                                                                       | 8                                                                               | 10                                                                                       |
|-------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| 0.0<br>0.1<br>.2<br>.3<br>.4<br>.5<br>.6<br>.7<br>.8<br>.9<br>1.0 | 0.0000<br>.1000<br>.2000<br>.3000<br>.5000<br>.6000<br>.7000<br>.8000<br>.9000<br>1.0000 | 0.0000<br>.0182<br>.0666<br>.1385<br>.2286<br>.3333<br>.4501<br>.5766<br>.7111<br>.8526<br>1.0000 | 0.0000<br>.0037<br>.0247<br>.0700<br>.1411<br>.2368<br>.3548<br>.4923<br>.6472<br>.8172<br>1.0000 | 0.0000<br>.0008<br>.0096<br>.0370<br>.0907<br>.1739<br>.2870<br>.4286<br>.5964<br>.7878<br>1.0000 | .0000<br>.0015<br>.0111<br>.0400<br>.0991<br>.1965<br>.3359<br>.5178<br>.7401<br>1.0000 | 0.0000<br>.0002<br>.0185<br>.0591<br>.1395<br>.2706<br>.4576<br>.7014<br>1.0000 | 0.0000<br>.0000<br>.0011<br>.0088<br>.0360<br>.1013<br>.2218<br>.4093<br>.6687<br>1.0000 |

arrival rate, total

NQ (number of channels) (service rate per channel)

N = number of channels (service positions)





Step 1: 
$$Q = \frac{60 \text{ min/hr}}{2.2 \text{ min/service}} = 27.3 \text{ services per hour}$$

Step 2:  $q = (110 \text{ veh}/45 \text{ min}) \times (60 \text{ min/hr}) = 146.7 \text{ vehicles per hour}$ 

Step 3: 
$$\rho = \frac{q}{NO} = \frac{146.7}{(6)(27.3)} = 0.8956$$

- Step 4:  $Q_M = 0.7303$  by interpolation between 0.8 and 0.9 for N = 6 from the table of  $Q_M$  values (see Table 8-11).
- Step 5: The acceptable probability of the queue, M, being longer than the storage, 18 spaces in this example, was stated to be 5%. P(x > M) = 0.05, and:

$$M = \left[\frac{\ln 0.05 - \ln 0.7303}{\ln 0.8956}\right] - 1 = \left[\frac{-2.996 - (-0.314)}{-0.110}\right] - 1$$
  
= 24.38 - 1 = 23.38, say 23 vehicles.